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The existing sequent calculi for first-order logic [18] contain special rules for the introduction
of quantification and for substitution. The application of these rules depends on the unbounded
and bounded variables occurring in formulas. For example, in the standard Gentzen calculus
for first-order logic the rules

Γ ` ∆, A[x]

Γ ` ∆,∀xA
Γ, A[x] ` ∆

Γ,∃xA ` ∆

are sound only when x does not appear free in the conclusions of the rules.
A proposal for a display calculus for fragments of first-order logic was first presented in

[21, 20]. The key idea of this approach is that existential quantification can be viewed as a
diamond-like operator of modal logic, and universal quantification can be seen as a box-like
operator as discussed in [14, 19]. The underlying reason for these similarities which have been
observed and exploited in [14, 19, 21, 20] is order-theoretic and pertains to the phenomenon
of adjunction: indeed the set theoretic semantic interpretation of the existential and universal
quantification are the left and right adjoint respectively of the inverse projection map and more
generally, in categorical semantics, the left and right adjoint of the pullbacks along projections
[15],[7, Chapter 15]. However, the display calculus of [21] contains rules with side conditions on
the free and bounded variables of formulas similar to the ones presented above. This implies
that the rules are not closed under uniform substitution, that is, the display calculus is not
proper [20, Section 4.1].

We present results based on ongoing work in [10] on a proper display calculus for first-order
logic. The design of our calculus is based on the multi-type methodology first presented in
[5, 2], motivated by considerations discussed in [8, 4], for DEL and PDL and further developed
in [3, 6, 11, 12, 13, 1], in synergy with algebraic techniques [9]. The multi-type approach allows
for the co-existence of terms of different types bridged by heterogeneous connectives. The
requirement for the calculus is that in a derivable sequent x ` y the structures x and y must be
of the same type. In this framework properness means uniform substitution within each type.

Using insights from [15, 16, 17] we introduce a proper display calculus for first-order logic.
The conditions on rules are internalised in the calculus by the use of appropriate types. The
language of first-order logic is expanded with a unary heterogeneous connective that serves as
the right adjoint of the existential quantifier and the left adjoint of the universal quantifier.
In the context of the calculus this connective signifies the introduction of a fresh variable to a
formula.

In my talk I will present the proper display calculus for first-order logic and discuss its
completeness, soundness, cut-elimination and conservativity.
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