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We approach Intuitionistic Logic and Heyting algebras from fixed-point theory and µ-calculi
[1]. A µ-calculus is a prototypical computational logic, obtained from a base logic or a base
algebraic system by addition of distinct forms of iteration, least and greatest fixed-points, so to
increase expressivity. We consider therefore IPCµ, the Intuitionistic Propositional µ-Calculus,
whose formula-terms are generated by the grammar

φ = x | > | φ ∧ φ | φ ∨ φ | φ→ φ | µx.φ | νx.φ ,

where it is required in the last two productions that the variable x occurs positively in φ.
Formulas are interpreted over complete Heyting algebras, with µx.φ (resp. νx.φ) denoting the
least fixed-point (resp. the greatest fixed-point) of the intepretation of φ(x), as a monotone
function of the variable x. These extremal fixed-points exist, by the Knaster-Tarski theorem.

Ruitenburg [3] proved that for each formula φ(x) of the IPC there exists a number ρ(φ) such
that φρ(φ)(x)—the formula obtained from φ by iterating ρ(φ) times substitution of φ for the
variable x—and φρ(φ)+2(x) are equivalent in Intuitionistic Logic. An immediate consequence
of this result is that a syntactically monotone intuitionisitc formula φ(x) converges both to
its least fixed-point and to its greatest fixed-point in at most ρ(φ) steps. In the language of
µ-calculi, we have µx.φ(x) = φρ(φ)(⊥) and νx.φ(x) = φρ(φ)(>). These identities witness that
the IPCµ is degenerated, meaning that every formula from the above grammar is equivalent to
a fixed-point free formula. They also witness that nor completeness neither the Knaster-Tarski
theorem are needed to interpret the above formulas over Heyting algebras.

Ruitenburg’s result is not the end of the story. We aim at computing explicit representations
of fixed-point expressions by means of fixed-point free formulas. Such an algorithm would
provide an axiomatization of fixed-points in the IPC and also a decision procedure for the
IPCµ. We also aim at computing closure ordinals of intuitionisitc formulas φ(x), that is, the
least number n such that µx.φ(x) = φn(⊥) and the least number m for which νx.φ(x) = φm(>).
Notice that bounds on Ruitenberg’s numbers ρ(φ) might be over-approximation of closure
ordinals of φ, for example, for an arbitrary intuitionistic formula φ, νx.φ(x) = φk(>) for k = 1,
while ρ(φ) might be arbitrarily large. We tackled these problems in a recent work [2]. We
achieve there an effective transformation of intuitionisitc µ-formulas into equivalent fixed-point
free intuitionisitc formulas. Such a transformation allows to estimate upper bounds of closure
ordinals, which are tight in many cases.

We sketch in what follows the ideas by which we devise our effective transformation.
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Lemma. Every polynomial f : H −−→ H over a Heyting algebra H is compatible, meaning that
the equation f(x) ∧ y = f(x ∧ y) ∧ y holds.

A first consequence of the above statement is that, for such a polynomial, f2(>) = f(>),
so f(>) is the greatest fixed-point of f when f is monotone. This observation is generalized to
systems of equations as follows.

Lemma. If H is an Heyting algebra and, for i = 1, . . . , n, fi : Hn −−→ H is a monotone
polynomial, then 〈f1, . . . , fn〉n(>) is the greatest fixed-point of 〈f1, . . . , fn〉 : Hn −−→ Hn.

Fact. If f : P −−→ Q and g : Q −−→ P are monotone functions such that the least fixed-point
µ.(g ◦ f) of g ◦ f exists, then f(µ.(g ◦ f)) is the least fixed-point of f ◦ g.

These statements allow us to give an explicit representation of µx.φ(x) when all the oc-
currences of the variable x are under the left side of an implication. Namely, if we write
φ(x) = ψ0[ψ1(x)/y1, . . . , ψn(x)/yn] with yi under the left side of just one implication, then

µx.φ(x) = ψ0( νy1,...,yn .〈ψ1(ψ0(y1, . . . , yn)), . . . , ψn(ψ0(y1, . . . , yn))〉 )
= ψ0( 〈ψ1(ψ0(y1, . . . , yn)), . . . , ψn(ψ0(y1, . . . , yn))〉n(>) ) .

Other two important consequences of compatibility of polynomials are the following distribution
laws of least fixed-points w.r.t. the residuated structure:

µ.(
∧
i∈I

fj) =
∧
i∈I

µ.fi , µ.(α→ f) = α→ µ.f , (1)

which holds when f and fi are monotone polynomials and α is a constant.

Fact. The least fixed-point of a monotone function f(x, x) can be computed by firstly comput-
ing the least fixed-point of f(x, y) in the variable y, parametrizing in the variable x, and then
by computing the least fixed-point of the resulting monotone function in the variable x.

This observation allows us to split the search of an explicit representation of the least fixed-
point of a formula into two steps: first we can assume that every occurrence of the variable x
is under the left side of an implication; then we can assume that there are no occurrences of
the variable x under the left side of an implication. A formula with the latter property is then
equivalent to a conjunction of disjunctive formulas, that is, formulas generated by the grammar
below on the left:

φ = x | β ∨ φ | φ ∨ β | α→ φ | φ ∨ φ , µx.φ = (
∧

α∈Head(φ)

α)→ (
∨

β∈Side(φ)

β) , (2)

where α and β are formulas with no occurrence of the variable x. The first of the relations
(1) reduces the computation of the least fixed-point of a formula to the computation of the
least fixed-point of a disjunctive formula φ. For such a formula, call α a head formula and β
a side formula; let Head(φ) denote the set of head formulas in a parse tree of φ and, similarly,
let Side(φ) be the set of side formulas in the same parse tree of φ. Using the second of the
relations (1) and the fact that disjunctive formulas give rise to monotone inflationary functions,
an expression for the least fixed-point of a disjunctive formula appears on the right of (2).
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