Fixed-point elimination in the Intuitionistic Propositional Calculus

Silvio Ghilardi¹, Maria João Gouveia², and Luigi Santocanale^{3†}

¹ Dipartimento di Matematica Federigo Enriques, Università degli Studi di Milano silvio.ghilardi@unimi.it ² CEMAT-CIÊNCIAS, Faculdade de Ciências, Universidade de Lisboa mjgouveia@fc.ul.pt ³ LIF, CNRS UMR 7279, Aix-Marseille Université luigi.santocanale@lif.univ-mrs.fr

We approach Intuitionistic Logic and Heyting algebras from fixed-point theory and μ -calculi [1]. A μ -calculus is a prototypical computational logic, obtained from a base logic or a base algebraic system by addition of distinct forms of iteration, least and greatest fixed-points, so to increase expressivity. We consider therefore \mathbf{IPC}_{μ} , the Intuitionistic Propositional μ -Calculus, whose formula-terms are generated by the grammar

$$\phi = x \mid \top \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi \mid \mu_x.\phi \mid \nu_x.\phi,$$

where it is required in the last two productions that the variable x occurs positively in ϕ . Formulas are interpreted over complete Heyting algebras, with $\mu_x . \phi$ (resp. $\nu_x . \phi$) denoting the least fixed-point (resp. the greatest fixed-point) of the interpretation of $\phi(x)$, as a monotone function of the variable x. These extremal fixed-points exist, by the Knaster-Tarski theorem.

Ruitenburg [3] proved that for each formula $\phi(x)$ of the **IPC** there exists a number $\rho(\phi)$ such that $\phi^{\rho(\phi)}(x)$ —the formula obtained from ϕ by iterating $\rho(\phi)$ times substitution of ϕ for the variable x—and $\phi^{\rho(\phi)+2}(x)$ are equivalent in Intuitionistic Logic. An immediate consequence of this result is that a syntactically monotone intuitionistic formula $\phi(x)$ converges both to its least fixed-point and to its greatest fixed-point in at most $\rho(\phi)$ steps. In the language of μ -calculi, we have $\mu_x.\phi(x) = \phi^{\rho(\phi)}(\bot)$ and $\nu_x.\phi(x) = \phi^{\rho(\phi)}(\top)$. These identities witness that the **IPC**_µ is degenerated, meaning that every formula from the above grammar is equivalent to a fixed-point free formula. They also witness that nor completeness neither the Knaster-Tarski theorem are needed to interpret the above formulas over Heyting algebras.

Ruitenburg's result is not the end of the story. We aim at computing explicit representations of fixed-point expressions by means of fixed-point free formulas. Such an algorithm would provide an axiomatization of fixed-points in the **IPC** and also a decision procedure for the **IPC**_µ. We also aim at computing closure ordinals of intuitionisitc formulas $\phi(x)$, that is, the least number *n* such that $\mu_x.\phi(x) = \phi^n(\bot)$ and the least number *m* for which $\nu_x.\phi(x) = \phi^m(\top)$. Notice that bounds on Ruitenberg's numbers $\rho(\phi)$ might be over-approximation of closure ordinals of ϕ , for example, for an arbitrary intuitionistic formula ϕ , $\nu_x.\phi(x) = \phi^k(\top)$ for k = 1, while $\rho(\phi)$ might be arbitrarily large. We tackled these problems in a recent work [2]. We achieve there an effective transformation of intuitionistic μ -formulas into equivalent fixed-point free intuitionistic formulas. Such a transformation allows to estimate upper bounds of closure ordinals, which are tight in many cases.

We sketch in what follows the ideas by which we devise our effective transformation.

^{*}Partially supported by FCT under grant SFRH/BSAB/128039/2016.

[†]Partially supported by the Project TICAMORE ANR-16-CE91-0002-01.

Fixed-point elimination in the ${\bf IPC}$

Lemma. Every polynomial $\mathfrak{f} : H \longrightarrow H$ over a Heyting algebra H is compatible, meaning that the equation $\mathfrak{f}(x) \land y = \mathfrak{f}(x \land y) \land y$ holds.

A first consequence of the above statement is that, for such a polynomial, $\mathfrak{f}^2(\top) = \mathfrak{f}(\top)$, so $\mathfrak{f}(\top)$ is the greatest fixed-point of \mathfrak{f} when \mathfrak{f} is monotone. This observation is generalized to systems of equations as follows.

Lemma. If H is an Heyting algebra and, for i = 1, ..., n, $\mathfrak{f}_i : H^n \longrightarrow H$ is a monotone polynomial, then $\langle \mathfrak{f}_1, \ldots, \mathfrak{f}_n \rangle^n(\top)$ is the greatest fixed-point of $\langle \mathfrak{f}_1, \ldots, \mathfrak{f}_n \rangle : H^n \longrightarrow H^n$.

Fact. If $f: P \longrightarrow Q$ and $g: Q \longrightarrow P$ are monotone functions such that the least fixed-point $\mu(g \circ f)$ of $g \circ f$ exists, then $f(\mu(g \circ f))$ is the least fixed-point of $f \circ g$.

These statements allow us to give an explicit representation of $\mu_x.\phi(x)$ when all the occurrences of the variable x are under the left side of an implication. Namely, if we write $\phi(x) = \psi_0[\psi_1(x)/y_1, \dots, \psi_n(x)/y_n]$ with y_i under the left side of just one implication, then

$$\mu_{x}.\phi(x) = \psi_{0}(\nu_{y_{1},...,y_{n}}.\langle\psi_{1}(\psi_{0}(y_{1},...,y_{n})),...,\psi_{n}(\psi_{0}(y_{1},...,y_{n}))\rangle\rangle \\ = \psi_{0}(\langle\psi_{1}(\psi_{0}(y_{1},...,y_{n})),...,\psi_{n}(\psi_{0}(y_{1},...,y_{n}))\rangle^{n}(\top)).$$

Other two important consequences of compatibility of polynomials are the following distribution laws of least fixed-points w.r.t. the residuated structure:

$$\mu.(\bigwedge_{i\in I}\mathfrak{f}_j) = \bigwedge_{i\in I}\mu.\mathfrak{f}_i, \qquad \qquad \mu.(\alpha\to\mathfrak{f}) = \alpha\to\mu.\mathfrak{f}, \qquad (1)$$

which holds when f and f_i are monotone polynomials and α is a constant.

Fact. The least fixed-point of a monotone function f(x, x) can be computed by firstly computing the least fixed-point of f(x, y) in the variable y, parametrizing in the variable x, and then by computing the least fixed-point of the resulting monotone function in the variable x.

This observation allows us to split the search of an explicit representation of the least fixedpoint of a formula into two steps: first we can assume that every occurrence of the variable xis under the left side of an implication; then we can assume that there are no occurrences of the variable x under the left side of an implication. A formula with the latter property is then equivalent to a conjunction of disjunctive formulas, that is, formulas generated by the grammar below on the left:

$$\phi = x \mid \beta \lor \phi \mid \phi \lor \beta \mid \alpha \to \phi \mid \phi \lor \phi, \qquad \mu_x \cdot \phi = (\bigwedge_{\alpha \in \mathsf{Head}(\phi)} \alpha) \to (\bigvee_{\beta \in \mathsf{Side}(\phi)} \beta), \qquad (2)$$

where α and β are formulas with no occurrence of the variable x. The first of the relations (1) reduces the computation of the least fixed-point of a formula to the computation of the least fixed-point of a disjunctive formula ϕ . For such a formula, call α a head formula and β a side formula; let $\text{Head}(\phi)$ denote the set of head formulas in a parse tree of ϕ and, similarly, let $\text{Side}(\phi)$ be the set of side formulas in the same parse tree of ϕ . Using the second of the relations (1) and the fact that disjunctive formulas give rise to monotone inflationary functions, an expression for the least fixed-point of a disjunctive formula appears on the right of (2).

- [1] A. Arnold and D. Niwiński. Rudiments of µ-calculus. Amsterdam: Elsevier, 2001.
- [2] S. Ghilardi, M. J. Gouveia, and L. Santocanale. Fixed-point elimination in the intuitionistic propositional calculus. In B. Jacobs and C. Löding, editors, *FOSSACS 2016, Proceedings*, volume 9634 of *Lecture Notes in Computer Science*, pages 126–141. Springer, 2016.
- [3] W. Ruitenburg. On the period of sequences $(a^n(p))$ in intuitionistic propositional calculus. The Journal of Symbolic Logic, 49(3):892–899, Sept. 1984.