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Exponentially Scaled Point Processes

and Data Classification
Marcel Jiřina

DRAFT
Abstract—We use a measure for distances of neighbors’ of a

given point that is based on lp metrics and a scaling exponent. We
show that if the measure scales with scaling exponent mentioned,
then distribution function of this measure converges to Erlang
distribution. The scaling of distances is used for designing a
classifier. Three variants of classifier are described. The local
approach uses local value of scaling exponent. The global method
uses the correlation dimension as the scaling exponent. In the
IINC method indexes of neighbors of the query point are essential.
Results of some experiments are shown and open problems of
classification with scaling are dicussed.

Keywords—Multivariate data, nearest neighbor, Erlang distribu-
tion, multifractal, scaling exponent, classification, IINC.

I. INTRODUCTION

The goal of this study is to analyze the distances of nearest
neighbors from given point (location) in a multidimensional
spatial point process in Rd with exponential scaling [5]. The
result is that when using scaled measure for distance of the
k-th neighbor, the distance can have the Erlang distribution of
order k. We show here that scaling leads to simple polynomial
transformation z = rq . A classifier can be designed with the
use of this transformation.

In this paper we use a model involving an underlying process
while some events occur in the process. We suppose that events
occur randomly and independently of one another. The only
information we have is d-dimensional data arising from events,
i.e. by (often rather approximate) measurement or sampling.

Important notion is a scaling characterized by scaling
exponent denoted also as fractal dimension. This dimension q
is lesser than space dimension d, and usually is not an integer.
The space dimension d is often called embedding dimension
using concept that fractal is a q-dimensional formation plunged
into a larger d-dimensional space [16]. This concept can be
applied to volume V of a ball of radius r. There is V = cqr

q

for q-dimensional ball in d-dimensional space; cq is a constant
dependent on q and the metrics used. Usually q = d but the
same holds for integer q < d, e.g. two dimensional circle
in three dimensional Euclidean space. Keeping the concept
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consistent, q need not be an integer but there is no intuition
how, say, 2.57-dimensional ball looks like.

II. MULTIDIMENSIONAL POINT PROCESSES AND FRACTAL

BEHAVIOR

A. Point processes

Let there be an “underlying process“ UP . This process
is sampled randomly and independently so that random d-
dimensional data

P = x1, x2, . . ., xi ∈ X ⊂ Rd (1)

arose. These data (without respect to time or order in which
individual samples xi was taken) form spatial point process in
Rd and individual samples xi are called points, in applications
often events [6], samples, patterns etc.

We are interested in distances from one selected fixed point
x to others; especially distance to the k-th nearest neighbor.
From now we use numbering of points according to their order
as neighbors of point x; xk being the k-th nearest neighbor of
point x. To distance lk from x to its k-th nearest neighbor a
probability is assigned. There is introduced

Sk(l) = Pr{l < lk} = Pr{N(lk) < k}

i.e. probability that a distance to the k-th nearest neighbor
is larger than l that is equal to probability of finding k-1
points within distance lk [4]. For k = 1 it is called avoidance
probability and often denoted P0. Function

Fk(l) = 1− Sk(l)

is the distribution function of distance l to the k-th neighbor.

A scaling function is a real-valued function c : Rd →
R+, that satisfies a self-similarity property with respect to a
group of affine transformations [20]. There are several types
of scaling functions, shifting, scaling, eventually reflections.
General equation for scaling can have the form

µ(~x+ ~a) = cθ(~x)

and in a less general (fractal) case of exponential scaling

µ(~x+ ~a) = ah(~x)

Here θ is l-dimensional parameter vector. When the scaling
is location dependent, we speak about locally dependent point
process.
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B. Fractal behavior

We admit that an “underlying process“ UP shows exponen-
tially scaled characteristics. Let there be data in Rd, see (1).

One can introduce a distance between two points of P using
lp metrics, lij = ||xi - xj ||p, xi, xj ∈ P . In a bounded region

W ∈ Rd a cumulative distribution function of lij

CI(l) = lim
N→∞

1

N(N − 1)

N
∑

i=1

N−1
∑

j=1

h(l − lij) ,

is denoted as correlation integral; h(.) is the Heaviside step
function. Grassberger and Procaccia [10] introduced correla-
tion dimension ν as limit

ν = lim
l→0

CI(l)

l
.

Having empirical data on P , distances between any two
points of P is the only information yielded exactly with the
use of a relatively simple computation.

It is apparent that scaling of distances between any two
points of P also holds for near neighbors’ distances distri-
bution. Let Fk(l) be the distribution function of distance from
some point x to the k-th neighbor. Let us define another
function, the function D(x, l) of neighbors’ distances from
one particular point x as follows [13], [14].

Definition

Probability distribution mapping function D(x, l) of the
neighborhood of the query point x is function D(x, l) =
∫

B(x,l)

p(z)dz, where l is the distance from the query point

and B(x, l) is the ball with center x and radius l.
In bounded region W ⊂ P when using a proper rescaling,

the DMF is, in fact, a cumulative distribution function of
distances from given location x ∈ W ⊂ P to all other points
of P in W . We call it also near neighbors’ distance distribution
function. We use D(x, r) mostly in this sense. It is easily seen
that DMF can be written in the form

D(x, l) = lim
N→∞

1

N − 1

N−1
∑

j=1

h(l − lj).

The correlation integral can be decomposed into set of DMFs
each corresponding to particular point x0i ∈W ⊂ P as follows
[14]

CI(r) = lim
N→∞

1

N

N
∑

i=1





1

N − 1

N−1
∑

j=1

h(r − lij)





that means

CI(l) = lim
N→∞

1

N

N
∑

i=1

D(x0i, l) .

Thus, the correlation integral is a mean of probability distri-
bution mapping functions for all points of W ⊂ P .

We introduce a local scaling exponent q according to the
following definition.

Definition

Let there be a positive q such that
D(x,l)

lq
→

const for l → 0 + . We call function

z(l) = lq

a power approximation of the probability distribution mapping
function and q is a distribution mapping exponent.

C. Common interesting behavior

It is common that measure l(A) on Rd is usually a
Lebesgue measure or based on it. Thus l(A) depends on integer
dimensionality d. Our intention is to deal with some q, d ≥ q >
0 not necessary an integer.

Here we contract metric space (X , ρ) to (Rd, lp), where
lp is Lebesgue p-norm. Let q ∈ (0, d]. We define measure
µ(.) of neighbors distances so that for S = (a line between xi

and xj) there is µ(S) = lqp(xi − x) − lqp(xj − x) ,

lp(xi − x) ≥ lp(xj − x) , µ(O) = 0 , µ(S1 ∪ S2) =
µ(S1) + µ(S2); S1 ∩ S2 = O a.s.

It is easily seen that µ(.) is a measure; it is nonnegative, it
equals zero for the empty set and for xi = xj , and is countable
additive.

Then the theorem that is a special and useful case of more
general results about point processes [4], [5], [20] holds.

Theorem 1: Let there be a point process P and bounded
region x ⊂ Rd, where there is given point x and Nnearest
neighbors of x. Let D(x, l) scales with exponent q. Let process
P in bounded region W ⊂ Rd be mapped (by mapping
MPpx) to process p in bounded interval w ⊂ R+. Then one-
dimensional point process p in w ⊂ R+ is a homogenous
Poisson process with intensity λ = lim

N→∞
N/zN .

Proof: It is omitted here.
Theorem 1 can be applied to all points x0 ∈ P . Supposing

monofractal underlying process UP and by point process P
induced measure µpν(.) with correlation dimension ν as one
of its parameters, the ν scales also the DMF of all points of
P and then q = ν.

Corollary 1: Let there be a point process P and bounded
region W , where there are given location x and N nearest
neighbors of x. Let DMF D(x, l) scale with exponent q. Then
probability distribution of µk = µpq(xk – x) of the k-th nearest
neighbor xk of the given location x is Erlang distribution
Erl(µk, k, λ), i.e.

F (µk) = 1− exp(−λµk)

k−1
∑

j=0

(λµk)
j

j!

f(µk) =
λk

k!
(µk)

k−1 exp(−λµk) .

Proof: It is omitted here.
We have found that when one can find a scaling of

neighbors’ distances measure, in the form z = rq , q is the
distribution mapping exponent, then one can find a “Poisson
process-like” behavior, i.e. Erlang distribution of neighbors’
distances measure. Usually, a measure is considered that may
depend on the embedding space dimension d (integer), while
we use more general distribution mapping exponent q that is
a positive real number.
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III. CLASSIFICATION USING SCALING

Here we present the basic idea of multidimensional data
classification using scaling and three variants of this approach.

A. Data

Let the learning set U of total N samples be given. Each
sample xt = {xt1, xt2, xtd}; t = 1, 2, ...N, xtk ∈ R; k =
1, 2, ..., d corresponds to a point in d-dimensional metric space
Md, where d is the sample space dimension. For each xt ∈ U
a class function T : Rd → {1, 2, ...C} : T (xt) = c is
introduced. With the class function the learning set U is
decomposed into disjoint classes Uc = {xt ∈ U |T (xt) =

c}; c ∈ {1, 2, ..., C}, U =
C
⋃

c=1
Uc, Uc ∩ Ub = ∅; c, b ∈

1, 2, ..., C; c 6= b. Let the cardinality of set Uc be Nc. As
we need to express which sample is closer or further from
some given point x, we can rank points of the learning set
according to distance ri of point xi from point x. Therefore,
let points of U be indexed (ranked) so that for any two points
xi, xj ∈ U there is i < j if ri < rj ; i, j = 1, 2, ...N , and class
Uc = {xi ∈ U |T (xi) = c}. Of course, the ranking depends on
point x and eventually metrics of Md. We use Euclidean (L2)
and absolute (Manhattan, L1) metrics here. In the following
indexing by i means ranking just introduced.

B. The DME method

This classifier uses the distribution mapping exponent al-
ready introduced.

1) Intuitive explanation: Let us consider the partial influ-
ences of the individual points to the probability that point x is
of class c. Each point of class c in the neighborhood of point x
adds a little to the probability that point x is of class c, where
c = 0, 1 is the class mark. Suppose that this contribution is the
larger the closer the point considered is to point x, and vice
versa. Let p(c|x, i) be a partial contribution of the i-th nearest
point to the probability that point x is of class c. Then:

For the first (nearest) point i = 1 and there is p(c|x, 1) ≃
1

Sqr
q

1

, where we use the distribution mapping exponent q in-

stead of the data space dimensionality d; Sq is proportionality
constant dependent on the dimensionality and metrics used.
For the second point i = 2 there is p(c|x, 2) ≃ 1

Sqr
q

2

... And

so on; generally for point No. i p(c|x, i) ≃ 1
Sqr

q

i

.

We add the partial contributions of individual points together
by summing up

p(c|x) ≃
∑

xi∈Uc

p(c|x, i) = 1

Sq

∑

xi∈Uc

1/rqi

(The sum goes over the indexes i for which the corresponding
samples of the learning set are of class c). For both classes

there is p(0|x) + p(1|x) = 1 and from it Sq =
N
∑

i=1

1/rqi Thus,

we get the form suitable for practical computation

p̂(c|x) =

∑

xi∈Uc

1/rqi

N
∑

i=1

1/rqi

(2)

(The upper sum goes over the indexes i for which the
corresponding samples of the learning set are of class c). At the
same time all N points of the learning set are used instead of
some finite number as in the k-NN method. Moreover, we do
not use the nearest point (i = 1) usually. It can be found that
its influence is more negative than positive on the probability
estimate here.

2) Theory: Here we proceed from the assumption that the
best approximation of the probability distribution of the data is
closely related to the uniformity of the data space around the
query point x. In cases of uniform distribution - at least in the
neighborhood of the query point - the best results are usually
obtained. Therefore, we approximate (polynomially expand)
the true distribution so that at least in the neighborhood of the
query point the distribution density mapping function appears
to be constant.

Now a question arises why influences of individual points of
a given class to the final probability that point x is of the class
are inversely proportional to the z = rqi . Let there be Z, the
largest of all z for a given class. We have shown that variable
z = rq has uniform distribution with some density pz . It holds
that Zpz = 1 because the integral of the distribution density
function over its support (0, Z) equals one. If support would be
(0, Z1), Z1 < Z, then the density must be larger proportionally
to Z/Z1. It means that shift of each point closer to point x will
enlarge the density so that it will be inversely proportional to
the distance of a point from point x.

Theorem 2: Let the task of classification into two classes
be a given. Let the size of the learning set be N and let both
classes have the same number of samples. Let q , 1 < q < d
be the distribution mapping exponent, let i be the index of the
i-th nearest neighbor of point x (without respect to class), and
ri > 0 its distance from point x. Then,

p(c|x) = lim
N→∞

∑

xi∈Uc

1/rqi

N
∑

i=1

1/rqi

(3)

(the upper sum goes for all points of class c only) is probability
that point x belongs to class c.

Proof: can be found in [13]

3) Generalization: Up to now we reckoned with two classes
only and the same number of samples of both classes in
the learning set. Formula (3) must be completed for general
number of C classes and the different number of the samples
N1, N2, ...NC of individual classes. In fact, the latter is only
a recalculation of the relative representation of the different
number of the samples in classes.
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p(c|x) =
lim

N→∞
(1/Nc

∑

xi∈Uc

1/rqi )

C
∑

k=1

lim
N→∞

(1/Nk

∑

xi∈Uk

1/rqi )

(4)

4) The DME classifier construction: This method represents
a direct use of formula (2), eventually formula (4) in the form

p̂(c|x) =
1/Nc

∑

xi∈Uc

1/rqi

C
∑

k=1

(1/Nk

∑

xi∈Uk

1/rqi )

(5)

Note that the convergence of sums above is faster the larger
DME q is. Usually, for multivariate real-life data the DME
is also large (and the correlation dimension as well). Figs. 1
and 2 illustrate the convergence of the sum in the numerator
above for one query point for the well-known ”vote” data, see
[1]. The task is to find whether a president elected will be
republican or democrat. The data are 15-dimensional of two
classes that have a different number of samples. In the learning
set, there are 116 times republican and 184 times democrat.
The distribution mapping exponent q varies between 4.52 and
14 with the mean value 10.22.

Fig. 1. Sample contribution to the sum in the numerator of (5) for the 15
dimensional data vote and one particular query point; q = 7.22. The upper
line corresponds to the republican, the lower line to the democrat. Samples
are sorted according to the distance r, i.e. also to the size of the sample
contribution to the sum for one class. There are different numbers of samples
of one and the other class in the learning set.

The classification procedure is rather straightforward. First,
compute the distribution mapping exponent q for the query
point x by standard linear regression, see the next section.
Then, we simply sum up all the components excluding the
nearest point.

In our approach, a true distribution is mapped to the uniform
distribution. For uniform distribution, it holds that the i-th
neighbor distance from a given point has an Erlang distribution
of i-th order. For an Erlang distribution of i-th order, the
relative statistical deviation, i.e. the statistical deviation divided
by the mean, is equal to 1/

√
i. Then, the relative statistical

Fig. 2. The size of the total sum in the numerator of (5) for the 15-
dimensional data ”vote” and one particular query point; q = 7.22. The upper
line corresponds to the republican, the lower line to the democrat. The samples
are sorted according to the distance r, i.e. also to the size of the sample
contribution to the sum for one class.

deviation diminishes with the index of the neighbor and for the
nearest neighbor is equal to 1, which also follows from the fact
that the Erlang(1) distribution is exponential distribution. So,
there is a large relative spread in the positions of the nearest
neighbor and, at the same time, its influence is the largest.
In practice, it seems better to eliminate the influence of the
first nearest neighbor. Theorems for DME as well for the CD
method remain valid.

This is made for classes, simultaneously getting C sums for
all classes. Then, we can get the Bayes ratio or a probability
estimate that point x belongs to class. The class that has largest
probability estimate is taken as an estimated class of query
point x. Eventually these probabilities can be weighted in the
same way as in other classifiers.

5) Distribution mapping exponent estimation: An important
issue of this method is the procedure how to determine the
distribution mapping exponent.

To estimate the distribution mapping exponent q we use
a similar approach, nearly identical, to the approach of
Grassberger and Procaccia [10] for the correlation dimension
estimation.

This is the task of estimating the slope of a straight line
linearly approximating the graph of the dependence of the
neighbor’s index as a function of distance in log-log scale.
Grassberger and Procaccia [10] proposed a solution by linear
regression. Dvorak and Klaschka [7], Guerrero and Smith
[11], Osborne and Provenzale [18] later proposed different
modifications and heuristics. Many of these approaches and
heuristics can be used for the distribution mapping exponent
estimation, e.g. use of the square root of Nc nearest neighbors
instead of Nc to eliminate the influence of a limited number of
the points of the learning set. The accuracy of the distribution
mapping exponent estimation is the same problem as the
accuracy of the correlation dimension estimation. On the other
hand, one can find that a small change of q does not essentially
influence the classification results.

The approach described here has two other variants.
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C. CD method - correlation dimension based approach

In this method it is supposed that distribution mapping
exponents for individual query points differ only slightly and
that one can use the value of correlation dimension ν instead.
Computation has then two steps, in the first step the estimate of
correlation dimension ν is computed using any known suitable
method, and then one uses formulas (2) or (5), where ν instead
of q is used.

Again, as in Section III-B, we exclude the first nearest
neighbor of the query point. The convergence of sums is
equally fast as in the DME method.

A relative advantage of this approach is that the estimate of
the correlation dimension is more exact than the estimate of
the distribution mapping exponent and that computation of the
correlation dimension is done only once unlike the DME that
must be computed for each query point anew.

1) Correlation dimension estimation: For the approximation
of probability of class at a given point and classification
described above, a fast and reliable method for correlation
dimension estimation is needed. Methods for the estimation
of correlation dimension differ by approaches used and also
by some kind of heuristics that usually optimize the size of
radius r to get a realistic estimation of correlation dimension
[17], [3], [25], as mentioned above.

Averaging method

The basic problem of correlation dimension estimation is the
large number of pairs that arise even for a moderate learning
set size. The idea of the correlation dimension estimation
described below is based on the observation that distances
between all pairs of points can be divided into groups, each
group associated with one (fixed) point of the learning set.

Theorem 3: Let there be a learning set of N points (sam-
ples). Let the correlation integral be CI(r) and let D(x, r) be
the distribution mapping function corresponding to point x.
Then, CI(r) is a mean of D(x, r) for all points of U

Proof: For proof see [15].

We have found that for sufficiently good estimation of the
correlation dimension one can use part of the data set only, for
each point to estimate the distribution mapping exponent, and
take the average. The part of the data set may be some number
of points randomly selected from the data set. It suffices to use
100 points. The method of averaging need not be limited to
the Grassberger-Procaccia algorithm. We use it analogically
for Takens’ algorithm [25] as well.

D. IINC method - the inverted indexes of neighbors classifier

1) Intuitive basis: In a similar way as in Section III-B1 let
us assume that the influence on the probability that point x is
of class c of the nearest neighbor of class c is 1, the influence
of the second nearest neighbor is 1/2, the influence of the third
nearest neighbor is 1/3 etc. Again we add the partial influences
of individual points together by summing up

p̂(c|x) =
∑

xi∈Uc

p1(c|x, ri) = K
∑

xi∈Uc

1/i.

The sum goes over indexes i for which the corresponding
samples of the learning set are of class c. The estimation of
the probability that the query point x belongs to class c is

p̂(c|x) =

∑

xi∈Uc

1/i

N
∑

i=1

1/i

.

In the denominator is the so-called harmonic number HN ,
the sum of truncated harmonic series. The hypothesis above
is equivalent to the assumption that the influence of individual
points of the learning set is governed by the Zipfian distribution
(Zipf’s law) [27], [23]. There is an interesting fact that the use
of 1/i has a close connection to the correlation integral and
correlation dimension and, thus, to the dynamics and true data
dimensionality of processes that generate the data we wish to
separate.

2) Theory:
Theorem 4: Let the task of classification into two classes

be given. Let the size of the learning set be N and let both
classes have the same number of samples. Let i be the index
of the i-th nearest neighbor of point x (without considering the
neighbor’s class) and ri be its distance from point x. Then,

p(c|x) = lim
N→∞

∑

xi∈Uc

1/i

N
∑

i=1

1/i

(6)

(the upper sum goes over indexes i for which the corresponding
samples are of class c) is the probability that point x belongs
to class c.

Proof: For proof see [15].
In the formula above it is seen that the approach is, in the

end a kernel approach with rather strange kernel as compared
with the kernels usually used [12], [22].

It is easily seen that

C
∑

c=1

p(c|x) =
C
∑

c=1

lim
N→∞

∑

xi∈Uc

1/i

HN

= 1

and p(c|x) is a ”sum of relative frequencies of occurrence” of
points of a given class c. A ”relative frequencies of occurrence”
of point i , i.e. of the i-th neighbor of query point x, is

f(i; 1, N) =
1/i

HN

In fact, f(i; 1, N) is a probability mass function of the Zipfian
distribution (Zipf’s law). In our case, p(c|x) is a sum of
probability mass functions for all appearances of class c.
Theorem 4 above was formulated from these considerations.

3) The Classifier construction: Let samples of the learning
set (i.e. all samples regardless of the class) be sorted according
to their distances from the query point x. Let indexes be
assigned to these points so that 1 is assigned to the nearest
neighbor, 2 to the second nearest neighbor etc. This sorting
is an important difference to both methods described before
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that need no sorting when distribution mapping exponent
or cortrelation dimension are known. Let us compute sums

S0(x) = 1
N0

∑

xi∈U0

1/i and S1(x) = 1
N1

∑

xi∈U1

1/i, i.e. the

sums of the reciprocals of the indexes of samples from class
c = 0 and from class c = 1. N0 and N1 are the numbers of
samples of class 0 and class 1, respectively, N0 + N1 = N .
The probability that point x belongs to class 0 is

p̂(c = 0|x) = S0(x)

S0(x) + S1(x)
(7)

and, similarly, the probability that point x belongs to class 1
is

p̂(c = 1|x) = S1(x)

S0(x) + S1(x)
(8)

When some discriminant threshold θ is chosen, then if p̂(c =
1|x) > θ point x is of class 1 else it is of class 0. This is the
same procedure as in other classification approaches where the
output is an estimation of probability (naive Bayes) or any real
valued variable (neural networks). The value of threshold can
be optimized with respect to minimal classification error. The
default value of the discriminant threshold here is θ = 0.5.

4) Generalization: The formulas above hold for two class
problem with equal number of samples of both classes in
the learning set. For larger number of classes and a different
number of samples of classes the formula has the form similar
to (5):

p̂(c|x) =
1/Nc

∑

xi∈Uc

1/i

C
∑

k=1

(1/Nk

∑

xi∈Uk

1/i)

(9)

It is only a recalculation of the relative representation of
different numbers of samples of one and the other class. For
classification into more than two classes we use this formula
for all classes and we assign to the query point x a class c for
which p̂(c|x) is the largest.

IV. EXPERIMENTS

We demonstrate the features and the power of the classifier
both on synthetic and real-life data.

A. Synthetic Data

Synthetic data according to Paredes and Vidal [19] are
two-dimensional and consist of three two-dimensional normal
distributions with identical a-priori probabilities. If µ denotes
the vector of the means and Cm is the covariance matrix, there
is

Class A : µ = (2, 0.5)t, Cm = (1, 0; 0, 1) (identity matrix)
Class B : µ = (0, 2)t, Cm = (1, 0.5; 0.5, 1)
Class C : µ = (0,−1)t, Cm = (1,−0.5;−0.5, 1).
Fig. 3 shows the results obtained by the different methods

for the different learning sets sizes from 8 to 256 samples and
a testing set of 5000 samples, all from the same distributions

and all independent. Each point in the figure was obtained
by averaging over 100 different runs. It is seen that in this
synthetic experiment, the DME based method presented here
reliably outperforms all other methods shown, and for a large
number of samples fast approaches to the Bayes limit.

Fig. 3. Comparison of the classification errors of the synthetic data for the
different approaches in dependence on the size of the learning set. In the
legend, 1-NN(L2) means the 1-NN method with Euclidean metrics, CW, PW,
and CPW are three variants of the method by Paredes and Vidal [19]; the
points are estimated from this reference. Bayes means the Bayes limit, DME
means the basic method presented here.

Note that in this test, the error of the DME estimation is
combined with numerical errors, and with a negative influence
of the low number of the samples giving the results presented
in Fig. 3.

B. Data from Machine Learning Repository

The classification ability of the algorithm (DME) was
tested using real-life tasks from the UCI Machine Learning
Repository; see [1]. Seven databases have been used for the
classification task, see Table 1.

TABLE 1. Classification mean square errors for four different meth-
ods including DME.

For the Shuttle data, the learning and testing sets are directly
at hand and were used as they are. For smaller data sets a
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cross validation of 10 or 9 was used. The Iris data set was
modified into a two-class problem excluding the iris-setoza
class according to Friedman [9]. The methods for comparison
are

• 1-NN - standard nearest neighbor method
• Sqrt-NN - the k-NN method with k equal to the square

root of the number of samples of the learning set
• Bayes - the naive Bayes method using ten bins his-

tograms

For the k-NN, Bayes, and our method the discriminant
thresholds were tuned accordingly. The testing shows the
classification ability of the DME method for some tasks
compared to the other published methods and results for the
same data sets.

Fig. 4. Comparison of the classification errors for four different methods
including the DME. Note that for the Mushroom data, both the 1-NN and
DME algorithms, give zero error. For the Shuttle data, the errors are ten times
enlarged.

V. OPEN PROBLEMS

We have shown the use of scaling for data classification.
The three classifiers presented here were tested and can be
used as they are similar to the one that sometimes uses the 1-
NN or k-NN methods. On the other hand, preprocessing like
data editing or some kind of learning may essentially enhance
classifier‘s behavior.

A. Editing

This is a way of learning data set modification that tries
to enhance especially borders between classes to make class
recognition easier. The original idea of editing (or preclas-
sification) [26] is to classify a sample of the learning set
by the method for which edited learning data will be used.
If classification result does not correspond to the sample
class, remove this sample from the learning set. After this is
done, use the edited learning set for data classification by the
standard way. There are other ingenious methods that modify
originally simple methods with the help of learning, e.g. the
learning weigting method [19] modifies the learning set by
weighting classes and features, and then uses simple 1-NN
method similarly as [26].

B. Crossing phenomenon

The basic notion used here is the distribution mapping func-
tion. Depicted in the log-log coordinates, it is approximately
linearly growing function. When there are two classes we may
have two such lines in one graph for a point x. If one line lies
under the other, point x belongs to class of the lower line. But
what if the lines cross? And is the crossing point an essential
issue?

C. Scaled point processes but not exactly exponentially

The exponential scaling used here is a special case of more
complex scaling functions. Transformation z = rq may have
another form, depending on the scaling function used. The
main problem is scaling function identification [20], [21]. One
can suppose that the use of more realistic scaling function than
exponential may lead to modification of the methods presented
here and to improving their behavior.

VI. DISCUSSION

We have found that when one can find a scaling of
neighbors’ distances measure, in the form z = rq , q is the
distribution mapping exponent, then one can find a “Poisson
process-like” behavior, i.e. the Erlang distribution of neigh-
bors’ distances measure. Usually, a measure is considered that
may depend on the embedding space dimension d (integer),
while we use more general distribution mapping exponent q
that is a positive real number.

Because the Erlang distribution converges to the Gaussian
distribution for index k →∞, the result according to Theorem
1 also relates to some results of e.g. [2], [8], [24] about
convergence of near-neighbor distances.

The correlation dimension, eventually multifractal dimen-
sion, singularity (or Hölder) exponent or singularity strength,
is often used for characterization of one dimensional or two-
dimensional data, i.e. for signals and pictures. Our results are
valid for multidimensional data that need not form a series
because, in this respect, data are considered as individual
points in a multidimensional space with proper metrics.

Our model of the polynomial expansion of the data space
comes from the demand to have a uniform distribution of
points, at least locally. There is an interesting relationship
between the correlation dimension and the distribution map-
ping exponent. The former is a global feature of the fractal
or data generating process; the latter is a local feature of the
data set and is closely related to a particular query point. On
the other hand, if linear regression is used, the computational
procedure is almost the same in both cases. Moreover, it can
be found that the values of the distribution mapping exponent
lie sometimes in a narrow, sometimes in a rather wide interval
around its mean value. Not surprisingly, the mean value of
the distribution mapping exponent over all samples is not far
from the correlation dimension. Introducing the notion of the
distribution mapping exponent and the polynomial expansion
of the distances may be a starting point for a more detailed
description of the local behavior of the multivariate data
and for the development of new approaches to data analysis,
including classification problems.
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Our experiments demonstrate that the simplest classifier
based on the ideas introduced here can outperform other
methods for some data sets. In all, the tasks presented here,
the distribution-mapping-exponent-based method outperforms
or is comparable to the 1-NN algorithm and in six of the seven
tasks outperforms naive Bayes algorithm being only slightly
worse for the Splice data. All of these comparisons include
an uncertainty in the computation of the distribution mapping
exponent. By the use of the notion of distance, i.e. a simple
transformation En → E1, the problems with dimensionality
are easily eliminated at the loss of information on the true
distribution of the points in the neighborhood of the query
point, which does not seem to be fundamental.

VII. CONCLUSION

This work was motivated by the observation that near neigh-
bors distances in homogenous Poisson processes in Rd have,
in fact, the Erlang distribution modified so that independent
variable is substituted by term Krd, where K is a constant, r
the distance of the neighbor and d the space dimension. This
is the scaling function in exponential form. Here we answer
the question, what if point process has arisen from underlying
process with scaling exponent smaller than space dimension
d.

This problem is solved by introducing of a distribution
mapping function and its power approximation. It has been
shown that the distribution mapping exponent of the power
approximation is very close to the scaling exponent known
from the theory of fractals and multifractals. When simplified,
it leads, in the end, to a strange scale measured by scaling
exponent-power of neighbors’ distances. It was then found
that when using thus scaled measure for distance of the k-th
neighbor one can construct simple and effective classifier; we
have presented here three of its variants and discussed some
open problems.
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