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Abstract. The paper deals with using so called singularity exponent in a classifier that is
based on ordered distances of patterns to-a given (classified) pattern. The approximation of
probability distribution mapping function of the distribution of points from the viewpoint of
distances from a given point in a form of a suitable power (exponent) of a distance is
presented together with a way how to state it. A classifier utilizing knowledge about explored
data distribution in a space and a suggested expression of the exponent is presented.
Experimental results on both synthetic and real-life data show interesting behavior
(classification accuracy) of the classifier in comparison with other well-known classifiers.
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Systems Design and Applications (ISDA2010) November 29 - December 1, 2010 Cairo
Egypt, paper No. 1011, pp. 220-224, ISBN: 978-1-4244-8135-4..



I Introduction

In this paper we use or slightly redefine if needed some notions from multifractals theory
for a classification task. One of the most important elements of chaos theory are singularity
exponents (also called scaling exponents). ‘They are used in multifractal chaotic series
analysis. We try here to use these exponents for a classification problem. In classification the
task is to properly recognize to which class a presented multivariate sample belongs. This task
usually has nothing to do with time seriesbut as shown already by Mandelbrot, 1982, [1] any
data may posses a fractal or multifractal nature.

In classification problems, the only known fact is the learning set, i.e. the set of points each
of known class. The problem is how to estimate the probability to which class a query point x
of the data space belongs. The different approaches to-classification.can be-divided into
parametric and nonparametric. methods. “Parametric methods include neural networks of
different kinds [2], decision trees or forests -and many more. Nonparametric methods are
mostly based on the Baye31an approach{3] and the k nearest nelghbors (k-NN) method [3] -
[6]. .

Here we show the-possibility of using' a suitable t_r_ansformation-(distortion) of the data
space so that the distribution-of points; which is ger}eralfy' non-uniform, looks uniform-like in
the transformed space, at least locally, i:e. in the neighborhood. of the query point. This is
important because it is generally accepted that classifiers exhibit Very good behavior in cases
of a uniform distribution of data.. ;

A core netion in this transformatlon is.a. slightly redefined singularity or scaling exponent
to fit notion of distance between points. The scaling considered here is related to distances
between pairs of points in.a multivariate space. Thus it-is. closer to the correlation dimension
by ‘Grassberger -and. Procaccia [7] than™to box countlng "or other fractal or multifractal
dimension deflmtlons [1] [8] -

We remind three ‘notions 1ntroduced or used in [9] [13] The probability distribution
mapping function-is a mapping of the probablhty distribution of points in n-dimensional space
to the distribution of pointsin one-dimensional ‘space of the distances. The distribution
density mapping function-(DDMF)_is a one-dimensional analogy to the probability density
function. The power approximation of the prbbablllty distribution mapping function in the
form of (distance)? is introduced, where the ‘exponent g we call the distribution mapping
exponent (DME).

These notions are local, i.e. are related to a particular (query) point. We show that the
distribution mapping exponent ¢ is something like a local value of the correlation dimension
according to Grassberger and Procaccia, [8]. It can be viewed also as the local dimension of
the attractor by Froehling [14] or singularity eventually scaling exponent (“exponent”) in the
sense of Stanley and Melkin, [8].

I1. Probability Density Estimation

A. Probability Distribution Mapping Function

To study a probability distribution of points (patterns) in the neighborhood of a query point
x in n-dimensional Euclidean space E,, let us introduce two definitions.



Definition. Let the probability distribution mapping function D(x, r) of the query point x in

E, be function D(x,r) = I p(z2)dz , where p(z) is the probability density of the points at z; r is
B(x,r)
the distance from the query point x and B(x, r) is the ball with center x and radius r.

Definition. Let the distribution density mapping function d(x, r) of the query point x in E,
be function d(x,r) = aiD(x, r), where D(x, r) is a probability distribution mapping function of
r

the query point x with radius r.

B. Power Approximation of the Probability Distribution Mapping Function

Now we propose a transformation with the'aim to somehow distort the distribution of the
points to look uniform-like because it is generally accepted that all classifiers exhibit very
good behavior in cases of a uniform distribution of data.

Let us try to transform the true distribilt_ion of -points so-that the distribution density
mapping function is constant, at least in the neighberhood of the query point.

Definition. The power approximation of the probability .di-st_ributidn_mapping function
D(x,r).

D(x, r) is the function 7? such that p
T

~> const,” for. r — 0+ . The exponent g is the
distribution mapping exponent

The distribution mapping exponent (DME) “reminds one of the so-calledcorrelation
dimension by Grassberger and Procaccia [7];-and corresponds to generally used definitions of
power scaling laws especially to siﬂgularity ekponenf It can be. seen that the correlation
integral is a distribution-function of. distances between. all pairs of points of the data points
given. The probability distribution mapping function is a dlStI’lbuthl’l function of the distances
from one fixed point x. In the case of finite number of points N, there-are N(N - 1)/2 distances
between pairs_of points and from them one-can construct an empirical correlation integral.
Similarly, for each point there are N -1 distances and from these N - 1 distances one can
construct an_empirical probab111ty d1str1but10n mapping function. There are exactly N such
functions and the’ mean of these functions gives the correlation integral. This is also valid for
N going to infinity. : :

. o
. - -

C. Distribution Mappiﬁg’ Exponent Estimation- _
In this section, we suggest a procedure how to determine the distribution mapping exponent

for a classifier, which classifies 1nt0 two classes The extension to many classes will be
straightforward.

Let U be a learning set composed of points, (patterns, samples) x.;, where ¢ = {0, 1} is the
class mark and s =1, 2, ..., N. is-the index _()f the point within class c; N, is the number of
points in class ¢ and let N = Ny + N be the learning set size. Points x,, of one class are ordered
so that index s =1 corresponds to the nearest neighbor, index s =2 to the second nearest
neighbor, etc. In Euclidean metrics, r; = llx - x| is the distance of the s-th nearest neighbor of
class ¢ from point x. x; is the i-th nearest neighbor of point x. Symbol i(c) denotes such an
index i that point x;) belongs to class c.

To estimate the distribution mapping exponent ¢ we use a similar approach to the approach
of Grassberger and Procaccia, [8], for the correlation dimension estimation.



We look for exponent ¢ so, that r?is proportional to index s, i.e.

rd =ks,s=1,2,..,N, )
c=0orl,
where k is a proportionality constant, which will be eliminated later, so we need not bother
with it. Using a logarithm we get

gln(r,)=In(k) +1In(s), s=1,2, ..., N, 2)

This is a task of estimating the slope of a straight line linearly approximating the graph of
the dependence of the neighbor’s index s as a function of distance in log-log scale. This is the
same problem as in the correlation dimension estimation where equations of the same form as
(1) and (2) arise. Grassberger and Procaccia [7], proposed a solution by linear regression.
Other authors proposed different modifications and heuristies later. Many of these approaches
can be used for the distribution mapping exponent estimation,e.g. the use of N, < N, nearest
neighbors instead of N, eliminates the influence-of a limited number of the points of the
learning set. N, may be equal e.g. to one half or the square root of N;.. The accuracy of the
distribution mapping exponent estimation is the same problem. as the-accuracy of the
correlation dimension estimation. On-the other. hand, one can find that a small change of g
does not essentially 1nfluence the classification results.

We solve the system of N, equatlons (2) with respect to an unknown q by the use of
standard linear regression for both classes. Thus, for two classes we get two values of g, qo
and ¢;. To get a single value of g we use the_arithmetic mean, g = (qo + g1)/2. For more
classes, the arithmetic mean of the'q’s for the individual classes is used.

II1. The Method

Informally, let us consider the part1a1 influences of the individual p01nts to the probability
that point x is of class c. Each point of ¢lass ¢ in-the neighborhood of point x adds a little to
the probability. that point x is of ¢class c, vfzhere c € {0, 1} is-the class mark. Suppose that this
contribution is larger the closer the point con51dered is to point.x and vice versa. Let p(clx, i)
be a partial contribution of the i- th nearest p01nt to the- probabﬂlty that point x is of class c.
Then: -

For the fifst. (nearest) point’i =1 p(L: |3 =

n"1

where we use the dlstrlbutlon mapping exponent ¢-instead of the data space dimensionality n.
S, is proportionality constant dependent on the. dlmensmnahty and metrics used.

For the second point i =2 . plelx2) =

ind
Snr2

And so on; generally for point No. i p(t' %) =

nri

We add the partial contributions of individual points together by summing up into estimate

k
pleln= >’ plelni)=— Zm 3)

i=1(c) ” i=1(c)



(The sum goes over the indexes i for which the corresponding samples of the learning set are

of class ¢). For both classes there is p(01x)+ p(11x)=1 and from it Sn ~Zl/r Thus we get
i=1

the form suitable for practical computation

plel =" 1t [3 i (@)
(The upper sum goes over the indexes i for-which the . :

corresponding samples of the learning set are of class c). .

At the same time all N points of the learning set are used instead of some finite number as
in the k-NN method. Moreover, we do_not use-the nearest point (i = 1). It can be_ found that its
influence is more negative than p0s1t1ve on the probablhty estlmate here.

A more exact elicitation for the two class classification and the same numbei-of samples for
both classes of the learning set is given in the next-section. We show that the generalization is
straightforward later. . -

IV. Classifier Constructlon

In this section, we show how~to construct a cla531f1er that ‘mcorporates the idea of the
distribution mapping exponént. First, compute the distribution mapping exponent ¢ using (2)

by linear regreséion for the query point'x Then; we simply sumup all the components 1/ r,

excluding-the- nearest point. This is madefor. classes, simultaneously getting numbers Sy and
S, forboth classes. Then we can get the Bayes ratio-or a probab111ty estimate that point x € E,
belongs to class 1 from the Equatlons ST o

.S .\-\. g

h S, -
Rx)==L  or ==
| (x) = S, pl( xX)= 5 +So

Then for a threshold (cut) Gchosen if R(x) >0 or 2 (x) > @ then x belongs to class 1 or else to
class 0. : -

Note that for the different number No and N1 of the samples of one and the other class
formula (1) has the form ' -

— ZI/r

C i=2(c)

plclx) =

— l/r +— l/r
NO i=2(0) N, i=2(1)

It is only a recalculation of the relative representation of the different number of samples of
one and the other class.

For M classes, M > 2 the formula above has form

—Zl/r

A ¢ i=2(c
plclx)= M# @)

S o S

2(c)



V. Experiments

The presented classification method based on DME with respect to other well-known
classification algorithms is compared on both synthetic and real-life data.

A. Synthetic Data

Synthetic data according to Paredes and Vidal [5] is two-dimensional and consists of three
two-dimensional normal distributions with identical a- pr10r1 probabilities. u denotes the
vector of means and C,, is the covariance matrlx

Class A: u = (2,0.5), C,=(1,0,0,1) (1dent1ty matrix) -
Class B: £ = (0,2), C,=(1,05;0.5,1)
Class C: pt = (0, -1y, Cp=(1,-0.5:-0.5, 1).
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Figure 1.." Comparison of classification errors of the synthetic dat-a for._the-different approaches. In the legend, 1-NN (L2)
means the 1-NN method with Euchdean metrlcs CW; PW* and CPW are threqvarlants of the method by Paredes and Vidal,
2006;[5]. i -

Fig. 1 ‘shows the. results obtamed by the dlfferent classification methods for different
learning sets sizes from-8 to 256 samples and. a testing set of 5000 samples all from the same
distributions and independent. Each point in the figure was obtained by averaging over 100
different runs. For other methods, i.¢, the 1-NN method with L2 metrics and variants of the
LWM method, the values were estimated from: literature cited. It is seen that in this synthetic
experiment, the DME based method presented here reliably outperforms all other methods
shown and for a large number of samples fast approaches the Bayes limit. For the distribution
mapping estimation the linear regression over the whole learning set was used.

B. Data from Machine Learning Repository

Tasks from UCI Machine Learning Repository — Comprehensive Tests.

The testing should show the classification ability of the DME method for some tasks and
also shows the classification ability relative to the other published methods and the results for
the same data sets.

We used real-life tasks mainly from the UCI Machine Learning Repository, see Asuncion
and Newman, 2007, [15]. DNA data can be found in Paredes, 2009, [6]. 24 databases have
been used for the classification task into two to 26 classes. The number of attributes not
including the class mark differs from 4 to 180.



Classification methods compared

The best results obtained with five different classification methods are shown in Table 1.
We used five classification methods as follows. Notation corresponds to columns in Table 1.

e Bayes — the naive Bayes method that uses 10 bins histograms (e.g. [3]).

e [-NN - standard nearest neighbor method (Cover and Hart, 1967, [4]).

e ParedBest — the best results obtained by three variants of method by Paredes and Vidal
[51, [6].

e SVMbest — the best results obtained with support vector machlne (Joachlms [16]) using
four types of kernels. :

e DMEbest — the best results obtalned with the method presented here W1th different DME
estimations.

VI. Discussion

Our model of the polynomial expansion of the data-space comes from the demand to have a
uniform distribution” of points, at least locally- We introduced the distribution mapping
exponent as redefinition of the singularity or scaling exponent.from the point of view of
distances of near points. There is- an interesting relationship ‘between the correlation
dimension and the distribution mapplng exponent, The former is-a global feature of the fractal
or data generating process; the latter is a local feature of the data set and is closely related to a
particular quéry po;nt On the other hand,"if-linear regression were used, the computational
procedure is almost ‘the same in both cases. Not. surprisingly, the mean value of the
distribution mapping exponent over all samples is not far’ fr@m the correlation dimension. Our
experiments demonstrate that the s1mplest classifier.based on’the ideas introduced here can
outperform other rethods for some-data-sets. On the other. hand, the target of this paper was
to present basically new-approach to probability density estimation and classification.

-

TABLE L CONDENSED. COMPARISON OF FIVE TYPES:OF METHODPS INCLUDING DME METHOD PRESENTED HERE. IN
BOLD THE BEST RESULT (CLASSIFICATION ERROR) FOR EACH PARTICULAR DATA SET IS SHOWN.

N

Dataset Ba.yes 1-NN Pal:'edBestSVMbestIDMEbest
Australian * [14.88% |34.29% _3"1.91% 35.99% | 14.20%
Balance 15.17%22.05%. 13.68% | 33.17% | 24.85%

Cancer 2.68% 4.83_% 341% |16.32% | 3.69%
Diabetes 25.19% 32.7.6% 29.60% | 29.64% | 24.75%
IDNA 6.66% (23.44%| 3.71% | 0.00% | 28.33%
German 24.97%|33.74%| 29.79% | 27.25% | 27.64%
Glass 47.37%|30.81%| 30.75% | 32.63% | 34.47%
Heart 18.44%|41.48%| 38.15% | 37.22% | 17.96%
lonosphere | 9.26% |14.07%| 5.87% | 18.52% | 15.58%
Iris 9.82% | 591% | 491% | 5.55% | 591%
Led17 0.00% (24.92%| 0.02% | 11.52% | 0.32%
Letter 28.98%| 4.35% | 3.25% | 2.68% | 5.73%
Liver 39.42%39.25%| 38.14% |35.54% | 40.09%

Monkeyl  [28.01%(29.47%| 0.04% | 2.94% | 8.22%
Phoneme  [21.47%(11.50%| 11.60% | 14.39% | 16.49%
Satimage 19.15%|10.55%| 9.25% |24.30% | 11.95%
ISegmen 9.85% | 430% | 3.76% |34.27% | 6.48%
Sonar 31.46%(22.62%| 19.42% |19.67% | 24.25%




Vehicle 38.40%(35.08% | 29.95% |26.23% | 29.37%
Vote 9.70% | 8.13% | 5.35% |22.64% | 9.28%
Vowel 26.64%| 1.37% | 1.33% | 8.54% | 6.66%
Waveform21|19.26%|21.91%| 18.30% 26.34(7{;; 15.05%
Waveform40{20.31%|23.34%| 24.55% | 32.25% |"16.49%
Wine 5.50% |27.05%} 19.46% | 8.85% |'5.04%
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