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Abstract

Correlation dimension, singularity. exponents, also_scaling exponents are widely used in
multifractal chaotic series.analysis. Correlation dlmensmn and other measures of effective
dimensionality are used for characterization of data-in apphcatlons A direct use of correlation
dimension to multidimensional data classification has not been hitherto presented. There are
observations that the correlation 1ntegral is a distribution function of-distances between all
pairs of data points, and that by usmg polynomial expansion of ‘distance with exponent equal
to the correlation dimension -this : distribution is transformed into-locally uniform. The
classifier is-based-on consideration that the “influence” of nelghbor points of some class on
the probability that the-.query. point belongs to this- class s inversely proportional to its
distance to the correlation dimension - power. New classification approach is based on
summing up all thesé influences for each class. We- prove that'a resulting formula gives an
estimate of probability of class — not-a measure of membership to a class only — to which the
query point belongs. For this “assertion_ to “be valid- it is necessary that exponent of the
polynomial transformation must be ‘the correlation dimension. We also propose an “averaging
approach” that speeds up computation-of the correlation dimension especially for large data
sets. It is demonstrated that the correlatlon dlmensmn based classifier can outperform more
sophisticated classifiers. ;
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1 Introduction

Correlation dimension introduced by Grassberger and Procaccia [1] is a means for
characterizing the nature of fractals. The correlation dimension (CD) can be used for the
characterization of very general data sets usually described by some stochastic characteristics.

Each point of multivariate data including fractals can be mathematically described by a vector
or point in the so-called embedding space of some dimension. Neither data nor fractal fill the
multivariate space fully, and the measure of this “filling is measured by effective
dimensionality of the given data set or fractal especially by correlation dimension that is
derived from correlation integral. It is a common license to say that a data set is a fractal. In
fact, a finite or countable data set cannot be fractal; fractal is — or-can be — a measure on it. A
measure considered here is a distance because-the correlation dimension is defined as a
function of distances between points of.‘the data set.- Slngularlty expenents, also scaling
exponents are widely used in multifractal chaotic series analysis. In applications it can be
found that effective dimensionality, scaling exponents, and correlation dimension-are used for
characterization of data in different ways before a classification procedure is-.employed.

However, a direct application of cotrelation dimension to the approximation of 'probability of
class at a given point and for classification- [4}], [5], [6], [10] has not been presented up-to now.

Here we show that the correlation dimension can-be useful for this-approximation and for the
construction of a new classifier. The coirelation dimension. characterizes the correlation
integral and the correlation—intcgral is, in fact, a distribution-function of distances between all
pairs of data points. Thus, the approach presented here is closely related ‘to the nearest
neighbor-based methods [4], [9]. For design of-a new classifier we use or necessarily redefine
some notions from'the multifractals theory. We-found that the correlation™integral can be
decomposed to a set of newly defined probability distribution “mapping functions. The
probability distribution mapping function maps the distribution of pointsin the neighborhood
of fixed point with ‘Tespect to distance from that-point. Moreover the distribution-mapping
function can be approximated by simple polynomial function of distance r in the same way as
correlation integral (Cl(r) = Cr”with correlation dimension V) ize. in the form Cr?, where ¢ is
a distribution-mapping exponent and C-is a constant.- We show that d1str1but10n -mapping
exponent ¢ is-very close to the correlation dimension, and that the correlation dimension is
equal to mean distribution-mapping exponent.-We consider here that the “influence” of
neighbor points of some class on the probability that the query point belongs to this class is
inversely proportional to*r". Thus, weighting these influences we design a classification
approach based on summing up all these influences for each class. At this point, the method
reminds a kernel method with a rather strange kernel that has a singularity in its center and is
not fulfilling condition to have a finite integral. The sums are corrected by class priors in
cases of different numbers of points of different.-classes. We prove that a resulting formula
gives an estimate of probability of class to which the query point belongs. It is an interesting
difference to other classifiers where output variable is a measure of membership to a class, but
not a probability. An important fact for the assertion to be valid is that exponent v must be the
correlation dimension.

A related problem is an effective method for correlation dimension estimation. Unlike other
needs of correlation dimension estimation oriented to exactness of the estimate, we need a fast
approach. For correlation dimension estimation we used the Grassberger-Procaccia approach
[1] and Takens’ estimator [7] together with an “averaging approach” proposed here that
speeds up computation especially for large data sets. We found that when the correlation
integral is decomposed to a set of probability distribution mapping functions in the form Cr?
the correlation dimension can be estimated by mean distribution mapping exponent q.



We tested the new classifier on various real-life multivariate data sets. Our results
demonstrate that the polynomial projection with correlation dimension as an exponent can
convert a complex multivariate data distribution into a more tractable form.

Our results show that the decomposition of correlation integral to local functions, which are
approximated by simple polynomial, can be used-for approximation of the probability of class
at a given point and thus can be used for constructing a new type of classifier, which can, for
some data, outperform some more complex classifiers.

This study can lead to a more detailed analys1s of the relation between fractal dimension and
probability density, and also for the development of -new approaches to data analysis
including classification problems.

Next Chap. 2 describes the data space transformation that forrr'rs the basis of the method
proposed and describes the new classifier. The transformation is parameterized by correlation
dimension as shown above. Therefore, Chap: 3 deals with this particular detail, i.e. correlation
dimension estimation, and can be considered-as a “step-aside”. It can.be omitted in the first
reading supposing that there are some-ways in which the correlation d1mens1on can be
estimated. Description of some fests and d1scuss1on conclude the paper.

2 Probability of Class and Correlation Dimension

The main goal of this paper is to show that the-approxiniation of probability of class at a given
point can be expressed as a “particular dependeiice on the-correlation dimension. In this
section, we proceed from. the assumption that-the best approXmaatlon of the probability
distribution of the data is closely related to the uniformity of the space around the query point
x. This unrformrty is reachied by: the usé of expanded distances, i.e: by the use of r” instead of
distance 7~V is._the correlation dimension.- First,  we point out the notion of correlation
dimension and 1ntroduce the transformauon mentroned

"

CORRELATION DIMENSION o S

The correlatlon d1mens1on was 1ntroduced n [l] as.a character1st1c measure of strange
attractors,-which allows distinguishing between deterministic chaos and random noise. The
authors of [8] consider-the set {X;, i =1, 2, ..-N} of points of the attractor. Most pairs (X;, X))
with i #j are dynamically uncorrelated pairs of essentially random points [1]. The points lie,
however, on the attractor. Therefore, they will be spatially correlated. This spatial correlation
is measured by correlation mtegral Ci(r), Wllere r has the meaning of a distance, defined
according to

C,(r)=lim,

—o0

%x{numberof pairs(i,j):HXi —XjH<r}. (1)

In a more comprehensive form one can write
C,(n=Pr(X, - X |<r). 2)

In [1] it is shown that for small r the C; (r) grows like a power C,(r) ~ r” and that "correlation

exponent" v can be taken as a most useful measure of the local structure of strange attractor.
The authors also mention that correlation exponent (dimension) v seems to be more relevant
in this respect than the Hausdorff dimension [3] D, of the attractor. In general, there is
v <o <Dy, where o is the information dimension, and it can be found that these inequalities
are rather tight in most cases, but not in all. Given an experimental signal and v < n (degree of
freedom or dimensionality or so-called embedding dimension), we can conclude that the



signal originates from deterministic chaos rather than random noise, since random noise will
always resultin C,(r) ~ r".

The correlation integral (1) or (2) can be rewritten in the form [8]

Cl(r)zlimNﬁmi > h(r (3)

N(N 1) I<i<j<N

where h(.) is Heaviside step function equal to one for: posmve argument and equal to zero
otherwise. From it :

v =lim

r—oco

me,o @)
Inr -
DATA SPACE TRANSFORMATION-

There are known facts and some 51mple con51derat10ns as follows

e The correlation 1ntegra1 is"a. dlStI'lbuthIl functlon of dlstances between-all palrs of data
points. . -

° Grassberger and Procaccia [1] have shown that correlatlon ‘integral grows like a power
C,(ry~r" ’ :

e When a new variable z =.r" is 1ntr0duced the Correlatlon 1ntegral is transformed to the
distribution function of random variable z. e

e This dlstrlbutlon functlon of random Varlable z grows linearly (for small values of z).

e Its derivative according to. Zis the d1str1but10n density-function of random variable z. This
dlstrlbutlon densny function is constant (fo‘r ‘small Values of 2).

e - Then the probablhty distribution of random variable zis uniform (for small values of z).

Thus;-a complex multwarlate distribution of pomts 1in.n-dimensional space is transformed to a
uniform (for small values. of z) distribution of a scalar variable. We use this fact when
designing a new method of approximation of probability of class at a given point and in proof

of Theorem 1. One could even say. that in the following we “measure” the distance by r".

When using a notion of distance, we, in fact, use a simple transformation from n-dimensional
to one-dimensional space. By the use of any measure of distance (instead of all coordinates in
n-dimensional space), the problems with ‘dimensionality are eliminated at the loss of
information on the true distribution-of points in the neighborhood of the query point.

THE METHOD

Let the learning set U of total N samples (points, patterns) be given. Each sample x={x,
X2yeeo Xm}; t=1,2, .. N, xg€ R; k=1, 2, ..., n corresponds to a point in n-dimensional
metric space M,, where n is the sample space dimension. For each x, € U a class function
T:R"— {1, 2, ... C}: T(x;) =c is introduced; C is the number of classes. With the class
function the learning set U is decomposed into disjoint classes U, = {x;€ U | T(x;) =c}; c e
{1,2,..,C}, le U, UNU;=0; ¢, de {1,2,..C}; c #d. Let the cardinality of set U,

beNe; Y. N.=N.

For the purpose of this paper we denote learning samples x; where i is the index of point
without respect to class to which it belongs; x; is the i-th nearest neighbor of point x. The
distance of point x; and query point x is 7;.



In the k&-NN method the resulting estimation of probability that a query point belongs to a
class is dependent on the number of points k inside the ball of radius r;. It does not matter
how the points inside the ball are distributed. Points can be concentrated in the center or
spread along the surface of the ball, the result is the same.

To intuitively describe the method presented let us consider partial influences of individual
points to the probability that point x is of class'c. Suppose, for simplicity, the same priors for
all C classes. Each point of class ¢ in the neighborhoed of point x adds a little to the
probability that point x is of class c. This influence is the larger the closer the point considered
is to point x and vice versa. With respect to the transformation introduced above it depends

also on exponent equal to correlation dimension V.

For the first (nearest) pointi=1 - p,(clx,])= Slv , e . 5)
i ' h ' '
for the second pointi =2 ﬁl (cl x,2j = Slv 6)
R ' r

(7

and so on, generally for point No. i ];1 (c |..x,i) =

Here S is constant dependent on d1men310nahty n and metrics. used

Then, we add the partlal 1nﬂuences p, (el x,i) of individual pomts of class ¢, i.e. points of U,
together by summlng up.- _ .

(clxk) Zpl(cl)u) Zl/r. 8)

x;eU, er

(The sum goes over 1ndexes i for which-the correspondmg samples of the learning set are of
class c¢.) It can be.seen that any change of distance r; of : any point x; of class ¢ from point x
will influence the probablhty that pomt xis of class C..

Let us compar-e_ formula (3) with the formula- f(_)r the k-NN method p(clx,kNN) = lcn . Here i,

Sry
denotes the number-of points of ‘class ¢.from k nearest points to point x. In practical
computation there is usually

A ! .
plclx kNN) = -, )
In a similar way, we can rewrite (8) into-a more suitable form for practical computation

D

p(c | x) =22 . (10)

Zl/ri"
i=1

(The upper sum goes over indexes i for which the corresponding samples of the learning set
are of class c.)

At the same time, all N points of the learning set are used instead of some number k.



M1
The denominator S = Z—V is, in fact, a sum of a series {1/r;"}. Terms 1/r;" of this series are
i=1 F;

reciprocals of distances between the query point and points of the learning set to the -v power.

The numerator S, = Z i (eventually S, Sz_) is the sum of series selected from {1/r"} so
x;eU. |

that it contains only terms correspondmg to, class c.

The approach described relies on the knowledge of the correlation dimension. This problem is
discussed in Section 3.

APPROXIMATION OF PROBABILITY OF CLASS AT A GIVEN POINT

The approximation of the probab1l1ty is often used in class1f1cat1on tasks [41, [71, [9], [10],
[11]. The decision that a pattern is of a given class is based on f1nd1ng a-probability with
which the pattern (sample, point or query point)’ belongs to a given class.-The h1ghest
probability usually corresponds to the appropriate class.

,

Theorem 1 .

Let the task of classification into two classes be a given. Let the size of the learning set be N

and let both classes have the same number of- samples.-Let v.1 < v<n be the correlation
dimension, and let the correlatlon integral have the form of polynomial function

Cr,c)=kr" , where k is a constant. Let ri >0 be the distance of point-x; from point x. Then,

Tl Zl,zr

Tl T limL—p(clx) ™, (1)

N—oo

Zl/r ] "'~«

Proof:
Let us consider oné-class.. Let us use a new vatiable z =r". Then, C((z, ¢) = kz is a linear

function. By the use of z.=r" .th'e space is mapped (“distorted”) so that the correlation

integral, in fact the distribution function of diStances between all pairs points of class ¢ of the
learning set, is linear as a function of variable z. Thus, the corresponding distribution density
function d(z, ¢) is constant (as a function of z) for any particular distribution of points of class
c of the learning set.

Let us consider a query point x. Let the distance of a point i of class ¢ of the learning set be

ri. Let us consider sum Zd(riv,c)/ri" . For this sum we have

xeU,

N
Ilgno;d(ri o)l =1l]1£ncx§.p(c|x)/n =p(c|x)1l]1£nox§l/}; (12)

because there is a constant d(z, ¢) = p(c | x) for all i (uniform distribution has a constant
density).

Given the learning set, we have the space around point x “sampled” by individual points of
the learning set. Let p.(r;) be an a-posteriori probability that point i in distance r; from the



query point x is of the class ¢. Then, p.(#;) is equal to 1 if point x; is of class ¢ and p.(r;) is
equal to zero, if the point is of the other class. Then, the particular realization of

plcl x)Zl/ r’ is sum Zl/ r.’ (the sum here goes over indexes of class ¢ only). Using this
i=1 x;eU,

sum, we can rewrite the right-hand side of (12) 1nto the form

pelx) lim ler = lim Zl/r (13)

N*)m

Dividing this equation by the limit of the suni on-the left-hand side, we get
e '=p(.clx.)_- ... L " (14)

and due to the same limit transrtion in the nurnerator and in the denominator we can rewrite it
in the form (11).

.N T - . - -
P 1 . 1 . .
Note that the convergence of S = Z— and S:-= z =S the_faster the larger correlation
~i=1 1 X; eU i -
dimension V is. Usually for.- multivariate real life data correlation dimens1on is large too; in
any case larger than one. Theorem 1 states that probabihty of the class is proportional to 1/ "

and formula (3) uses-the sum-of these ratios assuming to attain a reasonable number for class
probability estimation. So it is supposed thatfor a number of samples going to 1nf1n1ty, the
sum would be convergent Clearly, let distances r; be-reordered so that ri>ri,1, i=1, 2, ...; then
ratio-'r Vilr i <1 for any v >0 and according to the daAlembert criterion the series is
convergent o : -

The question arises ‘about the speed of diminishing the tail of the series. It can be found that
condition that the distribution of random variable 1/r" has the mean may suffice, as shown in
the theorem below.*

Theorem 2

Let P(r) be the probability distribution function of neighbor distances and let there exist a
mapping of probability density of pornts X, of class ¢ in E,, E,— Ei: p(x,)= p(r)) so that

j —dP(r) <oo. Then, for v>2 S, Z— converges for N, — o as fastas N_"'2.

i=1 T¢i

For proof we use theory of U-statistics. Citing [19] let X;, X, ... be independent observations
on a distribution F. Consider a parametric function 6 = 6(F) for which there is an unbiased
estimator. Let there be a function i = h(xy, ... x,), called a “kernel”. For any kernel #, the
corresponding U-statistics for estimation of 8 on the basis of sample X, ... X,, of size n >m is
obtained by averaging the kernel & symmetrically over the observations:

U, =UX,X,) =S 3 (XX )



For example, O(F) = mean of F = jxdF (x) and h(x) = x the corresponding U-statistics is

u =UX,,.X,)=— ZX X , the sample mean. Let E( ) means mean, and E,.(.) means
i=1 ;
mean over specified distribution F. It holds

Lemma. Let r be a real number > 2. Suppose' that . |h|.r < oo. Then,

r — O(HI—(I-IZ)r )’ n— oo,

Proof of Theorem 2.

Comparing Theorem 2 with Lemma, it is easﬂy seen thatX =l/r,i= 1 25, U—statlstlcs is
the S., and condition Ex(h)" < oo holds accordlng to assumpt1on Then, SC(N ) converges for
N, —> oo as fastas N_"'?. -

Figs. 1 and 2 illustrate the convergence of sum S..above for.a particular query point for well-
known “vote” data [12]. The task is to find whether-a president-elected will be Republican or
Democrat. Data is 15-dimensional of two classes, Republican and Dem(_)crat, and classes have
a different number of samples: In the*Jearning set there are a-Republican 116 times and a
Democrat 184 times. Value 11. 46 is the estimate of correlatlon dimension here.

1.00E-04

—Democrat
——Republican

1.00E-05

1.00E-06
1.00E-07

1.00E-08 \N\\\“

1.00E-09 W“‘M’\\

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181
Learning set sample No.

Sample contribution

1.00E-10

Fig. 1. Sample contribution to sum S, for 15-dimensional data “vote” and one particular query point; correlation
dimension estimate v = 11.46. The upper line corresponds to Republican, the lower line to Democrat. Samples
are sorted according to distance 7, i.e. also the size of sample contribution to the sum S.. There are different
numbers of samples of one and the other class in the learning set.



1.00E-03

1.00E-04

o
/7]

1.00E-05

1.00E-06 /—'
/ —Democrat
—— Republican

1.00E-07

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181
Learning set sample No.
Fig. 2. Size of the total sum S. for 15-dimensional data “vote” and one particular query point; correlation

dimension estimate ¢ = 11.46. The upper line corresponds to Republican, the lower line to Democrat. Samples
are sorted according to distance r, i.e. also the size of sample contributionto_the sum S

CLASSIFIER CONSTRUCTION

In this section we show how to construct a classifier that incorporates the idea of correlation
dimension (including the approaches mentioned). First, we compute-the correlation dimension
v by the method discussed in the section dealing .with correlation dimension estimation. Then,
we simply sum up all components 1/ 1" . This is made for both classes separately. getting
numbers S, and S, for both' classes. Then, we can get the Bayes ratio or a. probébility
approximation that the point x € R, (n- d1rnons1ona1 space of real numbers) belongs to’class 1
from equations

™ -

] s, s, .
. R(x)=—"L or py(x)=—"1— . - - 15
R =5 or p( S5 . (15)
Then, for a threshold (cut) ﬁchOSen if R(x) >0 or p,(x)>8, thenx belongs to class 1, else
to class 2.

Note that we have found in practlce the 1nfluence ofthe first nearest nelghbor usually more
negative -than posnrve Therefore, the first nearest nelghbor is excluded from practical

computation. As above, we s1mp1y sum up- al.l components 1/ r” “excluding the nearest point

- =

without respect to.its class.

Generalization- -

For a different numbor of _sambles of one and the other-class formula (11) has the form

€L Dl

N
plelx)=lim e %<0 . (16)

— Zl/ V+— 21/r

1 x,eU+ 2 x€U,

It is only a recalculation of the relative representation of different numbers of samples of one
and the other class [10].

For more than two classes, say C classes, the equation is

10



—Zl/r

c xeU, S (17)

Al

k xeU,

p(clx)=1lim

N—oo

3 Correlation Dimension Estimation_

For the approximation of probability of class at a given point and classification described
above, a fast and reliable method for correlation dimension estimation is needed. Methods for
the estimation of correlation dimension v try ‘somehow estimating a limit (4).-Methods differ
by approaches used and also by some kind of heuristics “that usually ‘eptimize the size of
radius r to get a realistic estimation of correlation dimension [2], [13]. :

THE LINEAR REGRESSION

The oldest approach is based on the estimation. of the slope of correlation integral in log-log
coordinates [1]. First, a proper part.of the correlation. integral is selected, e.g. the leftmost half
of the correlation integral ‘graph. Then, standard “one dimensional” regression is used for the
slope, i.e. correlation dimenston, computatlon The error- of “this method grows with
dimensionality. and lessens with the size of the learmng set. “The -method proposed by
Camastra and-Vinciarelli [8] compensates for the influence of the limited size of the learning
set at the cost of extenswe computatlon : e

The complexity-of this approach follows from neceSSIty

e To compute N(N-1)72-distances, each representlng n- multiplieations, n-1 additions. Square
Toot is not necessary as one can work Wlth dlstances squared

e Sort N(N-1)/Z items

e To compute standard “two-dimensional™ linear .reg_ression with 7N(N-1)/2 points, in fact
shortest distances. 77 is a fraction (typically Y2 or 1/3) of shortest distances used.

Thus, the total complexity in the number of multlphcatlons is nN(N-1)/2 + (nN(N- 1)/2) that
is O(N6 ) for large N.

TAKENS’ ESTIMATOR

One of the most cited estimators of the correlation dimension is Takens' estimator [71, [13]. It
can be written in the form

N,
Vv, (r)=N,(N,logry, — > logr,)™" . (18)
p=1

where N, is the number of pairs considered, r, are distances between randomly chosen points
which are smaller than r, and ry, is the largest of all r,. As in the previous case, it means that
we use some proper part of all pairs that have the shortest distances, and then we apply the
formula above.

It was shown by Takens [7] that his estimation is unbiased and error converges to zero
with1/. /N, . In our tests we have found that results are quite good.

The complexity of this approach follows from necessity for each class
* to compute N(N-1)/2 distances, each representing n multiplications, n-1 additions.
® sort N(N-1)/2 items; the number of (smallest) pairs considered N,=nN(N-1)/2.

® to compute and sum up N, times the log 7, .

11



Thus, the total complexity in the number of multiplications is nN(N-1)/2 + N,(N, 1og(N,)) =
nN(N-1)/2 + (77N(N—1)/2)2 log(nN(N-1)/2) that is O(N410g(N)) for large N.

AVERAGING APPROACH TO CORRELATION DIMENSION ESTIMATION

The basic problem of correlation dimension estimation is the large number of pairs that arise
even for a moderate learning set size, as seen from the complexity considerations above.
There is the obvious fact that the correlation integral is the probability distribution of
distances of all pairs of points of the learning set. The idea of the correlation dimension
estimation described below is based on, the observation that distances between all pairs of
points can be divided into groups, each group associated with one (fixed) point of the learning
set. It appears that these distances between pairs of points are, in fact, distances of neighbors
of that fixed point. We call the cortesponding distribution function a probability distribution
mapping function. We consider this function-as a kind of map of probability distribution in
the neighborhood of a fixed point, and it was introduced-e. g. in [14], see definitions below. A
core notion of a distribution mapping-exponent in this ‘mapping is a.slightly. redefined
singularity or scaling exponent."The scaling-considered here is related to distances between
pairs of points in a multivariate space. Thus, it is closer.to the correlation dimension by
Grassberger and Procaccia [1] than to ‘the box countmg or_other fractal or multifractal
dimension definitions [20]. " -

Definition 1 _ . - . _ .
The probability -distribution méppjng function D(x, i) of the 'n"eighborhood of the query point
x is the functi_é_n D(x,r)= J p(z)dz Where r.is the distance from thie- query point and B(x, r)

i B(x,r) )
is a ball Wrth center x.and radrus r

Note: It can be seen that for a fixed x, the functron D(x r) r> 0 grows monotonically from
zero-to one. Function ‘D(x, r) for a frxed x is one- drmensronal analog to the probability
drstrrbutron function., b

One can write the probability distribution mapping furfc'ti@n in the form
D(x.r)= thZh(r ' (19)
j l
where A(.) is the Heaviside step functron.

For a finite number of points, we have the empirical probability distribution mapping function
A . . 1 N1
D(x.r) =7 ; h(r=r;). (20)

We show, in this section, that the correlation integral is the mean of the distribution mapping

functions and that the correlation dimension v can be approximated by the mean of the
distribution mapping exponents g, as shown in the theorem below:

Theorem 3

Let there be a learning set of N points (samples). Let the correlation integral be Ci(r) and let
D(x;, r) be the distribution mapping function corresponding to point x;. Then, Ci(r) is a mean
of D(x;, r):

=

C(r)= lim L D(x;,r) 21
i=1

N —>oo

12



Proof

Let h(x) be a Heaviside step function and /; be the distance of k-th neighbor from point x;.
Then, the correlation integral is

N N-1

c,(r)zltig;mzz;z(r—lg) _ (22)

i=l j=1
and also
N N-1 ) )
C,(r) = lim VD A D = )| . (23)
i=1 _/:1 . §
Comparing (23) with (19), we get (21) d1rectly

The probability distribution mapping functlon can‘'be — in analogy to correlation 1ntegral
approximated by a simple polynonnal as follows.

Definition 2

The power approximation of the probablhty dlStI'lbuthIl mapping function D(x, r) is the
D(x,r) -
%rq
mapping exponent (DME).

function r? such -that™ — const “for- r—>0+ The exponent q is the distribution

With respect to (4) and (21)-the correlation-dimension can be approx1mated by the mean of
distribution mapplng exponents gi: :

N :
=i a . N, (24)

o

2\~

Thus;-the correlation dimension is; in fact, an a\'ierage of all distribution mapping exponents
computed. for all points of the data set. When all-points of the data set are used, the number of
distances between pairs of points is the same as in-the Grassberger-Procaccia algorithm [1]
for assessing the-correlation dimension. We have found that for sufficiently good estimation
of the correlation dimension we canuse part of the data set only, for each point to estimate the
distribution mapping exponent, and take the'.average. The part of the data set may be some
number of points randomly selected from the data set.

Now a problem arises how many-points a_re'.necessary for an appropriate assessment of the
correlation dimension. The distribution mapping exponent varies from point to point. Suppose

arelative variation p = o7V, where Vis a mean, i.e. the correlation dimension.

The central limit theorem states that, under fairly common conditions, the sum of a large
number of random variables will have an approximately normal distribution. Then, suppose
that X;=¢q; - v, ..., X, = g, - v be independent and identically d1str1buted random variables,
all with the same arbltrary distribution, with zero mean and variance ¢°; and that Z is their

mean scaled by \/7 , that is,
n g

Then, as n increases, the probability distribution of Z will tend to the normal distribution with
zero mean and variance o°. From it follows that variable z = Z/ \/; has variance 0'2 =c’/n,

and random variables ¢; have the relative standard deviation O'q/VZ (O'/V)/\/; . Now
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supposing relative standard deviation of the distribution mapping exponent to be
p=ov =0.1 and after n =100 trials we have mean within £1 % around value of the
correlation dimension estimated by Grassberger-Procaccia’s algorithm with probability 68 %
or within £3 % around this value with probability 99.7 %. The value p= o/v=0.1 will be
discussed at the end of the third paragraph of the next Chapter. The method of averaging need
not be limited to the Grassberger-Procaccia algorlthm We use it analogically for Takens’
algorithm as well. ;

4 Performance Analysis
COMPLEXITY ESTIMATION
Learning

Learning represents approx1mat10n of the correlation dimension. When learmng k,samples are
selected from a learning set and for cach of -therh the" distribution “mapping .exponent is
computed. For each such-computation the learning set i searched once, distances are
computed, and then sorted and the slope, i.e. the distribution' mapping exponent; is computed.
Thus, there are nN multiplications, NInN excharige operations, computations of logarithms
and solving the regression equation.. Supposing multiplication-as the most frequent and the
most time-consuming operation the computatlonal complex1ty of learning is roughly

proportional to kaN . .. - o .

The value of k, must be set up in advance. We haye found k,= - 100 .suffici'ent One can change
it to any value up to N In the latter case, the computatlonal complex1ty of learning is

proportional to N>

Thus, the coriiputational complex1ty 1s much lesser than computational complexity of linear
regression and Takens’ approaches to correlatlon dimension :computation especially for k;
small, as discussed abové. Sensitivity of classification ¢ error. to error in correlation dimension
estimation is rather low as discussed below.. ’ -

Recall — class estimation "

Computation for one sample given consists of computing according to the formula (15) and
its variants (16) and-(17). In"the end, it is a-sum of N elements. Each element is a reciprocal of
the v-th power of distance, and computatlon of the distance takes n multiplications. On the
whole, the complexity of one sample recall is proportional to nN, i.e. to the size of the
learning set. : !

SENSITIVITY OF CLASSIFICATION ERROR T_O. ERROR IN CD ESTIMATION

For error sensitivity to the value of correlation dimension no particular threshold € was used.
Instead, we use a more general classification quality measure here, the size of area under the
ROC (Receiver operating characteristics [15]) curve (the AUC) of dependence of
“sensitivity”, i.e. the acceptance of class 1 samples (often called signal) on “specificity”, i.e
on the suppression of class 0 samples (often called background, i.e. background error). It
holds that the larger the area under the curve (AUC, classification efficiency) the better
classification in a general sense. The ideal case is unit area, i.e. ROC curve going through
point (0, 1), which means 100 % sensitivity (signal efficiency) and 100 % specificity, i.e. zero
background error.
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Fig. 3. General classification efficiency AUC as the function of the estimated value g of correlation dimension v
for data “Higgs”. Data dimensionality is 23, note.that 6.5 is valueof the correlation dimension, i.e. the optimal
value of g. ' o )

In Fig. 3 the classification efficiency as the function of the value g of estimated correlation
dimension v for data “Higgs” [16] is shown. These.data have estimated correlation dimension
v=6.5. For this value of ¢, the minimal- error is 0.472, thevalue of error is 0.481 for
q =n =23. This is rather a small difference, only 1.93 %, showmg that error in correlation
dimension estimate need not be critical. : :

THE CORRELATION DIMENSION AND- SPREAD OF THE DME

In Table 1 and Fig. 4 features-of six different data’ sets and correspendlng distribution-
mapping exponents-are summarized, Data- sets orlglnate from the. UCI Machine Learning
Repository [12]. Note that mean dlstrlbutlon mapplng exponent is, in-fact, the correlation

dimension. It can be- ‘seen that .

— Mean DME (in fact, an est‘imate of correlation dimension)is:much smaller than dimension
for all data Varylng from a little more than 6.2 % (data Ionosphere) to nearly 49.5 % (data
RKB). - -

— DME of a data set liesin a rather narrow, band normahzed mean squared variation,
sigma/mean, o/ varies from 7.357 % to less than 19 %.

—  Note that lines for Heart, Gerrman, and Higgs data look suspiciously similar but these data
come from very different independent Sources. ",

Table 1.

Parameters of DME distribution for different data sets and color notation for Fig. 4. Data sets
are from UCI MLR [12].

Data Higgs | German | Heart | Adult RKB [[onosphere
Color Red |Aquamarine| Violet | Green Blue Coral
Entries 6508 1000 270 15037 | 6341 151

15



Dimension 23 20 13 14 10 33
Max DME 2.17589 | 3.2249 |2.75272|7.66802 | 6.54623 | 2.40971
min DME 0.782672| 2.0181 1.79976 | 2.88812 | 1.68963 | 1.47318
Mean DME 1.750632| 2.713477 |2.416463|5.27807 |4.944528| 2.056234
sigma DME 0.171495| 0.213795 |0.177784|0.835889(0.915318| 0.285874
sigma/Mean 0.09796 | 0.07879 |0.07357 | 0.1584 | 0.1851 | 0.1390
Mean ratio of DME to dimension| 0.07611 | 0.1357 0.1_859 0.3770 | 0.4945 | 0.06231

0.3

0.25
. 1
9 0.2 =
(]}
3
(o0
£ 0.15 A /
2 2
E -
& 0.1 ra \

0.05 T \\\\

0 4/!;' T N
0 0.25 0.5 0.75 1 1.25 1.5

DME/mean

Fig. 4. Histograms of distribution inapping exponent for si-x diffgr_ent data sets. Histograms
are normalized by mean vatue of the DME and have a unit area. For legend see Table 1.

Here we cannot conclude-that data-are generally multifractals as the scaling exponent, DME
varies from point to point of the set. These variations usually lie in a rather narrow band and
thus mean DME, i.e. the correlation dimension, may suffice for characterization of the fractal
nature of data. : '

In Fig. 4 it is seen that relative standard deviation -of the DME does not exceed 25 %, and
typical value can be estimated as 15 %. From analysis of the averaging method of correlation
dimension estimation then follow estimates for given numbers of random trials, as stated in
Table 2.

Table 2. Error of CD estimation by averaging method as function of relative standard
deviation o/v of DME and reliability level given by 1 to 3 sigma.

No. of trials 10 100 1000

o/v lo 20 30 lo 20 30 lo 20 30

Probable margins 15%
Largest margins 25%

4.74% 9.49% 14.23%
7.91% 15.81% 23.72%

1.50% 3.00% 4.50%
2.50% 5.00% 7.50%

0.47% 0.95% 1.42%
0.79% 1.58% 2.37%
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TESTS WITH SYNTHETIC DATA

Synthetic data are two dimensional and consist of thrée two dimensional normal distributions
with identical a-priori probabilities. If x4 denotes vector of means and C, is the covariance
matrix, there is s :

Class A: i = (2, 0.5), =(1,0;0, 1)(1dent1ty matrlx)
Class B: u = (0,2),, C, —(1 0.5; 0.5, 1)
Class C: u = (0, -1), =(1,-0.5;-0.5, 1).

Fig. 5 shows results obtained by different methods for different leammg sets of sizes from 8
to 256 samples and a testing set of 5000-samples all from the same distributions and mutually
independent. Each point was.-0btained by averaging over 100 different runs. For 1-NN-method
with L, (Euclidean) metri¢cs and variants of the LWM method by Paredes and" Vidal [11] in
Fig. 5 the values were adopted from the’ literature cited.

In Fig. 5 it is seen that the use of the" method presented-here outperforms all other
methods shown and fer-large number of samples approaches fast to the Bayes limit.

0.22
0.21 —

0.2 .
0.19 - ——1-NN (L2)

K“\‘M +—e— o
0.18 PW
’ \ —=—CPW
e — — -Bayes limit
0.17 .\NA \\9 —+—5-NN L1
S ——5-NN L2
0.16 —= e LR%L2
—e—LR%iL1
0.15 \ + . —+— LRsqrtL1
—— LRsqrtL2

Classification error

0.14 —
0.13
0.12

8 16 32 64 128 256

Learning set size (samples)

Fig. 5. Comparison of classification errors of synthetic data for different approaches. On horizontal axis there
is learning set size, on vertical axis classification error. In legend 1-NN (L2) means 1-NN method with
Euclidean metrics, CW, PW, and CPW are three methods by Paredes and Vidal [11]. “Bayes” means the Bayes
limit. 5-NN means k-NN method with five nearest neighbors. Black lines mean the method presented here. LR
means standard linear regression, Y2 means the use of the first half of the samples; sqrt means that the square root
of the number of samples is used for correlation dimension estimation. L1 and L2 denote Manhattan and
Euclidean metrics used.

Note that L; (Manhattan) or L, (Euclidean) metrics does not give significantly different
results. Also selection of a part of DMF — in fact the part of nearest neighbors from all
possible neighbors — used for correlation dimension estimation (one half and of the square
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root of number of samples) does not result in a significant difference for 16 and more samples
of the learning set.

TESTS OF CLASSIFICATION ACCURACY WITH REAL-LIFE DATA FROM UCI MLR

Experiments described below follow procedures described by Paredes and Vidal [11] as truly
thorough tests. Paredes and Vidal prepared a corpus of data sets suitable for use with any
classifier. The data sets are available on the Internet [17] and originate from the Machine
Learning Repository, see [12]. We used all the data sets of this corpus. Each task consists of
50 pairs of training and testing sets correspondlng to 50-fold cross validation.

In Tables 3 and 4 classification accuracy is glven for dlfferent tasks-and different classifiers.
Table 3 corresponds to eight variants of the method presented here. In the headings of these
eight double-columns LR means standard linear regression, TA meéans Takens’ estimator. Y2
means the use of the first half of the samples; sqrt means that the square root of the number of
samples is used for correlation dimension- estimation. L1 and L2 denotes metrics. used —
Manhattan or Euclidean. The columns w1th headlng o show the standard deviation of the error
estimate at the left column. :

In Table 4 the first five double.columns glvé mean errors and standard deviations for the
I-NN method, the k~-NN_method with k equal to the square root of the number of samples of
the learning set, the Bayes method ‘with ten ‘bins histograms; perceptron neural network
implemented in Statistica-12 system, and'SVM according to Joachims [21],122], respectively.
The heading SVM best means the-best result obtained with one-of-four kernels, linear,
polynomial, Gaussian, and RBF: The last four columns in Table.4 correspond to four variants
(CDM, CW, PW, and CPW).of the Learning Weighted Metrics (LWM) and show results by
[11], [18]. Here-data for-some tasks and standard deviations are not available (N/A).
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Table 3. Classification accuracy of eight variants of the method-described here for different tasks. Results can be compared with results of other classifiers

shown in Table 3. For explanation of columns headings see text.

TAVL2 c

Dataset | IR%12 G IR%LI G IRsql2 G LRsqill G TAKLI G TAsqil2 G TAsqill G
Australian 18.23% 0.0266  16.79% 0.0285 14.20% 0.0286 - 12.54% 0.0286 22.66% 0.0395 16.57% 0.0280  18.90% 0.0298  18.25% 0.0329
Balance 25.17% 0.0700  26.82% 0.0689 24.99% 0.0717 ~-.27.27% 0.0717 2605% 0.0701 26.93% 0.0716  26.22% 0.0697  26.88% 0.0719
Cancer 3.85% 0.0172 453% 00194  398% 00198 - 478% 0.0198 3.90% 70,0181  4.63% 0.0205 3.73% 0.0143 420% 0.0473
Diabetes 2540% 0.0332  25.63% 0.0350 24.73% 00341 24.45% 00341 2583% 0.0327 25.77% 0.0324  26.08% 0.0340  26.02% 0.0332
DNA 32.12% 0.0467  25.63% 0.0436 30.69% 0.0441  26.98% 0.0441 32.29%.0.0468 2555% 0.0436  27.15% 0.0445  26.90% 0.0444
German 29.71% 0.0287  31.16% 0.0226 27.90% 0.0242 2816% 0.0242 29.66% 0.0269 30.96% 0.0241  30.73% 0.0277  31.64% 0.0249
Glass 3250% 0.0869  29.96% 0.0811 3524% 0.0649 32:18% 0.0649 -28.59% 0.0359-25.88% 0.0628  31.80% 0.0320  30.33% 0.0386
Heart 19.56% 0.0517  20.63% 0.0551 17.96% 0.0526. 18.70%.0.0526 19.48% 0.0529 20.52% 0.0553. 20.67% 0.0487  21.11% 0.0543
Ionosphere 18.06% 00399  1349% 0.0446, 1621% 00431 '1544% 0.0431 18.17% 00403 13.52% "0.0458 1684% 00371  12.33% 0.0397
Iris 591% 00694  791% 04031  591% 04057  7.91% 01057 591% 0.0839 691% 01057 ,° 591% 00839  691% 0.1057
Led17 259% 0.0083  577% 0.0119 . 032% 0.0128.. 042% 0.0128 243% 0.0099 5.70% 0.0121 445% 00120  691% 0.0136
Letter 503% 00218  480% 00214 10.18% 00331 i1.03% 0.0831  498%-0.0217 475% 00213  11.78% 00322  12.40% 0.0329
Liver 39.68% 0.0697  38.55% 00727 40.17% 0.0609. 39.80% -0.0809 39.83% 0.0595 3826% 0.0645  39.68% 0.0593  38.87% 0.0579
Monkey1 6.74% 0.0733  634% 0.0894._ 1039% 0,0847 - 10.85% 0.0847.._6.79% 0.0726 “-629% 0.0698  630% 0.0675  7.76% 0.0963
Phoneme 1324% 0.0141  1292% 0.0141 19,19% 0.0189  18.71% ~0.0189 1315% 0.0143 12.86% 0.0141  1576% 0.0146  14.86% 0.0178
Satimage 9.80% 0.0297 9.35% 00291 13.90%_0.0290" 13.45% 00290 9.95% 0.0299- 9.60% 0.0295  9.35% 0.0291 9.30% 0.0290
Segmen 514% 0.0138 < 423% 0.0101 - 8.17% 0.0137 “648% 0.0137 27.61% 0.0239™-4821% 0.0197  27.58% 0.0240  27.64% 0.0249
Sonar 2441% 00820  2370% 0.0908 2743% 0.1282 24.63% 0.1232 4228% "0.042337.67% 0.1210  46.58% 0.0063  45.85% 0.0183
Vehicle 28.54% 0.0274  29.02%.0.0297 “-3149% 0.0353 30.53% 0.0353 28.89% 0.0274 28.96% 0.0319  47.17% 0.0540  32.99% 0.0366
Vote 9.19% 0.0336 7.69% 00287 10.11% 0.1490  9:65% 0.1490 9.i2% 0.0332 7.72% 0.0295  17.15% 0.1699  17.16% 0.1572
Vowel 5.12% 0.0202  4.18% “0.0176%. 13.79% 0.0173 12.81%"07917__3- 481% 0.0189 3.98% 0.0175 10.76% 0.0273  6.59% 0.0194
Waveform21 | 15.93% 0.0120  1569% 0.0125. 1529% 0.0122 ~1532% 0.0122 "4531% 00116 1521% 00122  17.85% 0.0127  17.42% 0.0122
Waveformd0 | 1648%. 0.0095 1585% -0.0085 16.83%.0.0082 “-16.15% -0.0082 166[% 0.0092 1600% 0.0087  1867% 0.0104  17.18% 0.0088
Wine 4.99% 4.03% 6.39%. 00259  5.09% 0.0259-.5.10% 0.0820 359% 0.0266  6.89% 0.0824  3.71% 0.0244

0.0280

0.0312
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Table 4. Results of other classifiers. For explanation of columns headings see text. N/A in some entries denotes that corresponding data is not available
from the reference [11]. Note also, that standard deviation ¢ is.not available for CDM, CW, PW, and CPW classifiers.

Dataset INN G  SqtNN X Bajes G NewNet G SyMbest o | cDM | cw | Pw | cPw

Australian 20.73% 0.0297 1550% 0.0232 13.88% 0.0249 . 14.88% 0.0288 - 35.99% 0.0804 18.19% 17.37% 16.95% 16.83%

Balance 23.61% 0.0545  32.06% 0.0861 15.17% 0.0398- 5.65% 0.0340 33,17% 0.1768 35.15% 17.98% 13.44% 17.60%
Cancer 5.07% 0.0161 325% 0.0110 2.68% 0.0121 - 3.30% 0.0125  16.34% 0.1634 8.76% 3.69% 3.32% 3.53%
Diabetes 29.48% 0.0302 26.46% 0.0336 24.19% 0.0315  23.95% _0.6402 729.64% 0.0646 32.47% 30.23% 27.39% 27.33%
DNA 25.72% 0.0437  34.06% 0.0474 6.66%" 0.0249 5.73% 0.0233 N/A- N/A "~ 1500% 472% 649% 4.21%
German 3276% 0.0268 3090% 0.0318 2497% 0.0289 2537% 0.0297 27.25% 0.0405 32.15% 27.99% 28.32% 27.29%
Glass 3272% 0.0811  42.10% 0.0980 47.37% 0,0651 39.94% 0.0761. 32.63% 0.0920 32.90% “28.52% 26.28% 27.48%
Heart 25.11% 0.0540 16.89% 0.0496 17.44% 0.0519 19.12% 0.0587 37.22% 0.0581 22.55% 22.34% 18.94% 19.82%
fonosphere | 14.05% 0.0385  14.70% 0.0382 926% 0.0353 10.99% 0.0356 18.52% 0.1655 N/A - NA “NA  NA
Tris 5919% 00962  791% 00787 9.82%-0.0923  8.00% 0.0919  655% 01437 NA NA NA  NA
Led17 11.50% 0.0158  0.12% 0.0015  0.00% 0.0006. 0.18% "0.0030 I1.52% 0.1001 NA NA NA NA
Letter 480% 0.0214 1870% 0.0390 28.98% 0.0454 25:88% 0.0438  2.68% 0.0161 630% 3.15% 4.60% 4.20%
Liver 39.59% 0.0597  41.48% 0.0595 39.42% 0.0601-. 30.91% 0.0534 ~3554% 0.0697 3932% 40.22% 36.22% 36.95%
Monkeyl 201% 0.0385  927% 00878 28.01% 0.1090 = 057% 0.0103-. 294% 00548~ N/A NA NA  NA

Phoneme | 11.83% 00132 2071% 0.0173 2147% 0.0218 1684% 00223 1439% 0.0199 NA NA NA NA
Satimage | 10.65% 0.0308 1520% 0.0359 19.15%, 0.0393 14.75% 0.0354 24.30% 0:0429. 1470% 11.70% 8.80% 9.05%

Segmen 381% 00123 1141% 0.03757-9.85% 0.0258 546% 0.0155 4648% 0.3389> NA NA NA  NA
Sonar 18.37% 0.0695 “32.51% 0.0756 31.46% 0.0916 27.98% 0.0865 19:67“.70- 0.0593  N/A N/A N/A N/A
Vehicle 30.51% 0.0263  31.51% 0.0264" 38._4%)% 0.030."'1 19.76% 0,0304 28.23% 0.1631 32.11% 29.38% 2931% 28.09%
Vote 8.74% 00269 " -9.60% 0.0334 9.70% 0.0347  605% 0.0264 2264% 01777 697% 661% 551% 526%
Vowel 1.19% 0.0107  46.68% - 0._0425 26.64% 0.0517  26.94% 0"0506 - 13.64%* 0.0976 1.67% 136% 1.68% 124%

Waveform21 | 23.73% 00125  1471% 0.0113 1926% 0.0086 °15.54% 00116 “2694% 015177 NA NA NA NA
Waveformd0 | 28:22% 0.0147 © 1634%. 0.0098 20.31%-0.0092 “15.93% 0.0098 32:25% 0.2068 N/A NA NA  NA

Wine 5.42% ~0.0290 "6.15% 00413 450% 00308  5.12% 0.0373-..27.77% 0.0805 2.60% 144% 135% 124%
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5 Discussion

The main goal of this paper was to show that the correlation dimension of the approximation
of probability of class at a given point could be expressed as a particular dependence on
correlation dimension. We used the assumption that the best approximation of the probability
distribution of the data is closely related to the uniformity of the space around the query point
x. This uniformity is reached by the use-of expanded dlstances i.e. by the use of 7" instead of
distance r ; vis the correlation dimension. -’

The other distance-based or kernel-based approaches have to-tune weights of distances — if
possible — or to tune parameters of kernels used to get optimal results. Based on our theory,
the classifier proposed needs no tuning because we have found that it is-a correlation
dimension as a suitable exponent in polynomial transformation of distances. In. most of
classifiers the output variable coiresponding to a class is a measure of the membershlp of the
query point to the class. In our case, the output variable that expresses a class is an-estimate of
probability of the membership of the query point to the. class.

Designing a classifier;"we con31der partlal 1nﬂuences of individual points to the probability
that point x is of class c. We state here that the™ mﬂuenc -of neighbor points of some class
on the probability that the query point belongs to. this class is 1nversely proportional to rY, vis
the correlation dimension. Thus, weighting these influences, we-design a clas51flcat10n
approach based an sumrming up-all these influences for each class. For example, in the case of
two classes. we get two sumnis, S0, Si. Rat10 So/(So + S7) is.an estimate of probability that the
query point belongs to class 0. The sums are corrected (multiplied) by class priors in cases of
different numbers of peints-of different classes in the. leammg set as it is common in most of
classifiers, and follows from Bayes theorem. . At the point-of summing up influences, the
method reminds of a-kernel method with rather strange Kernel that has a singularity in its
center and not fulfllhng cond1t10n to have finite integral. ™

There are imp(')rtant findings. We have found that oorrelation dimension plays an essential
role as an exponent in polynomial data space projection that finally allows handling with one-
dimensional uniform distribution. This projection may be useful for solving different
problems. We have shown here an application for approximation of probability of class at a
given point and for the construction of a new classifier. The classifier has no true learning
phase. In the "learning phase" an estimate of the correlation dimension is computed. When it
is assumed that the correlation dimension is constant, the learning set may change
dynamically or may be enlarged or updated without necessity relearn the classifier.

The crucial point of the idea of polynomial transformation of distances is the correlation
dimension. Thus, the estimate of the correlation dimension is an essential part of the method.
There is lot of papers dealing with correlation dimension estimation. We have shown in Chap.
4 that result, i.e. that classification quality is not too sensitive to this estimate. In the case of a
small learning set the estimation of the correlation dimension by Grassberger-Procaccia or by
Takens’ approach are sufficiently fast. The complexity of these approaches grows
quadratically with learning set size, and for large learning sets they are rather time-
consuming. An approximate but fast averaging approach to correlation dimension estimation
can be used with success in this case.

The averaging approach is based on finding that the correlation integral is a mean of
distribution mapping functions, as proved in Theorem 3. Supported by this theorem and
finding that the distribution mapping exponent has rather narrow spread, as shown in Fig. 4,
we assume that also the correlation dimension is a mean of distribution mapping exponents
for all points of the learning set. Using all points of the learning set, it is, in fact, the
Grassberger-Procaccia method. To speed up computation we propose to use only 100 random
points to state 100 distribution mapping exponents and use the mean as an estimate of the
correlation dimension. The number 100 follows from observation (see Fig. 4) that ratio DME
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to mean DME has standard deviation approx. 0.15 (max 0.25), and thus standard deviation of
estimate of mean DME that approximates the correlation dimension v is 0.15v (0.25v). Using
100 observations, the standard deviation of mean estimate lessens to 0.015v (0.025v). In
practice, user may consider this standard deviation too large and use a larger number of points
to diminish it. Comparing numbers according to Table 2 with Fig. 3, it can be seen that 100
trials suffice not to degrade the classification accuracy, even 10 trials may suffice in many
cases.

The classifier presented here was tested .with 24 data sets from the Machine Learning
repository and it was shown in Tables 3 and 4 that the classifier outperforms all other methods
in four cases from the 24 data sets mentioned. Note that there are four other classifiers (1-NN,
Bayes, CPW, and NeurNet) that outperform.others.in four cases. The Sqrt-NN outperforms
others in two cases, and PW and SVM in one case of all 24 data sets used for testing. The
classification errors for the best and the second best classifier for a task differ usually a little;
we found one exception — for:task Balance the NeurNet has-error 5:65 %, whereas PW
13.44 % and all others between 14 % and 35 %. At the right part of Table 3 it is seen that the
use of one half of samples is generally a little*better than.the use of the square.root of the
number of samples. At the same time, L. metrics appears slightly better.than L, metrics
especially when Takens! estimatoi-is used. On the other hand, due to small differences in
most of the cases one need not see any special advantage of 'L, metrics over L, metrics.

As to accuracy of stating classification_errors “given in.Table 3 and in Table 4, the error
estimates are ratio of ‘the number of badly.recognized testing samples to total number of
testing samples. Where possible, the standard-deviatioir-is given next right at the error
estimate. It can be seen that the standard deviations of error estiiates depend, to larger extent,
on the task solved, and 1ess-on the type of classifier or on the corfesponding value of error
estimate. Testing the classifier on practical data.we found that the influence of the first nearest
neighbor is_usually more negative than positive. It means that the classifier has a tendency to
overestimate the class probability of the query point to the advantage of class of the nearest
neighbor. It is also motivated by the fact that polynomial transformation used transforms
general distribution of points around the- ciilery point to one-dimensional uniform distribution
of variable z.= r'.“This variable- expresses the- distance of the k-th neighbor. In one-
dimensional umform dlStHbuthIl it holds that the distribution of the k-th neighbor has Erlang
distribution Erl(4, k). For the first neighbor-it is the exponential distribution that has relative

standard deviation o/u equal to one, whereas for larger k it is equal to 1/~/k and diminishes
with k. Cases where 7y is relativelyivery small making the “weight” of the first neighbor too
large are rather frequent,. and then the first nearest neighbor is excluded from practical
computation, as mentioned in-Chap. Classifier Construction.

The core of this paper is transformation z =7", i.e. transformation of distance r to a variable

that is parameterized by exponent v, the correlation dimension. The classifier proposed and
averaging method for correlation dimension estimation demonstrates a practical power of this
transformation. By this simple “expansion” of distance a distribution of points around a fixed
point is transformed into uniform distribution that is easy to deal with. Here it was used for
designing a classifier. The same transformation may also be used for study of other problems,
e.g. complex problem of distribution function of neighbor’s distances in point processes.
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