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Abstract: A formalism for the logical description of computa-
tional agents and multi-agent systems is given. It is explained
how it such a formal description can be used to configure
and reason about multi-agent systems realizing computational
intelligence models. A usage within a real software system
Bang 3is demonstrated. A way to extend the system toward
dynamic environments with migrating agents is discussed.
Keywords: Multi-agent systems, formal description, computa-
tional intelligence.

1. Introduction

The use of distributed Multi-Agent Systems (MAS) instead of
monolithic programs has become a popular topic both in re-
search and application development. Autonomous agents are
small self-contained programs that can solve simple problems
in a well-defined domain [21]. In order to solve complex prob-
lems, agents have to collaborate, forming Multi-Agent Sys-
tems (MAS). A key issue in MAS research is how to gener-
ate MAS configurations that solve a given problem [10]. In
most Systems, an intelligent (human) user is required to setup
the system configuration. Developing algorithms for automatic
configuration of Multi-Agent Systems is a major challenge for
AI research.

Bang 3 is a platform for the development of Multi-Agent
Systems [16], [20]. Its main areas of application are compu-
tational intelligence methods (genetic algorithms, neural net-
works, fuzzy controllers) on single machines and clusters of
workstations. Hybrid models, including combinations of artifi-
cial intelligence methods such as neural networks, genetical-
gorithms and fuzzy logic controllers, seem to be a promising
and extensively studied research area [6].Bang 3— as a dis-
tributed multi-agent system — provides a support for an easy
creation and execution of such hybrid AI models.

The system applications require a number of cooperating
agents to fulfill a given task. So far, MAS are created and
configured manually. In this paper, we introduce a logical
reasoning component forBang 3. With this component,Bang 3
system configurations can be created automatically, triggered
e.g. by an incoming task request, or user interaction.

Employing agent methodology for hybrid computational in-
telligence models represent a shift from one-time execution of
a system on a given data toward pervasive computing environ-
ment, where persistent agents are distributed over a network of
computing resources. These agents can migrate and take part

in subsequent computations. They are also supposed to gather
experience about their abilities and make use of them in or-
der to better fulfill future tasks, find more suitable partners,
etc. The formal mechanisms described in this paper are one
of the possibilities how to describe and automate the composi-
tion of MAS based on given requirements and constrains. Our
approach, although different in technical manners and special-
ized on a particular domain, tackles the same problem as the
propitient MAS described in [2].

Let us finally mention that the logical description of com-
putational MAS opensBang 3 for interaction with ontology
based distributed knowledge systems like the Semantic Web
and web services [14].

The description ofBang 3by formal logics enhances the
construction, testing, and application ofBang 3-MAS in nu-
merous ways:

•System Checking
A common question in Multi-Agent System design is
whether a setup has certain properties. By the use of
formal descriptions of the agents involved in a MAS
and their interactions, properties of the MAS can be
(dis-)proved [18].

•System Generation
Starting with a set of requirements, the reasoning compo-
nent can be used to create a MAS from scratch. Partial
reconfiguration is also possible, such as when a new com-
putational agent appears and registers with the local direc-
tory services.

• Interactive System Generation
The reasoning component can also be used to create agents
in a semi-automated way by interaction. Here, the compo-
nent can act as a helper application aiding a user in set-
ting up MAS by searching for available agents, and mak-
ing partial suggestions.

•Hybrid search methods
The formal logical component can augment other search
techniques, such as evolutionary algorithm that are already
present inBang 3and can be used for MAS configura-
tion [5].

• Interaction with ontology based systems
There is a growing interest in creating common logical
frameworks (ontologies) that allow the interaction of in-
dependent, distributed knowledge based system. The most



prominent one is the Semantic Web, which attempts to
augment the World Wide Web with ontological knowl-
edge. Using formal logics and reasoning inBang 3allows
to open this world toBang 3.

2. Description of MAS by means of Logics

In order to satisfy these requirements, the logical formalism
must fulfill the following requirements:

1.It must be expressive enough to describeBang 3MAS.
2.There must be efficient reasoning methods.
3.It should be suitable to describe ontologies
4.It should interface with other ontology based systems.

There is a lot of research in how to use formal logics to
model ontologies. The goal of this research is to find logics that
are both expressive enough to describe ontological concepts,
and weak enough to allow efficient formal reasoning about
ontologies.

The most natural approach to formalize ontologies is the
use of First Order Predicate Logics (FOL). This approach
is used by well known ontology description languages like
Ontolingua [11] and KIF [13].

The disadvantage of FOL-based languages is the expressive
power of FOL. FOL is undecidable [9], and there are no effi-
cient reasoning procedures. Nowadays, the de facto standard
for ontology description language for formal reasoning is the
family of description logics. Description logics are equivalent
to subsets of first order logic restricted to predicates of arity
one and two [8]. They are known to be equivalent to modal
logics [1].

Description logics are used in the Semantic Web, a project
of the Internet standardization body W3C. The Semantic Web
is an extension of the current web in which information is given
well-defined meaning, better enabling computers to deal with
that information in a formal way. [4]. The Knowledge Grid
project [24], [23] builds on top of the Semantic Web to create
an intelligent environment allowing agents (both softwareand
human) to share and manage knowledge. The objectives of the
Knowledge Web are to support of team-work, problem-solving
and decision making. Description logics is also the main topic
of interest in other projects dealing with the standardization of
inter-agent communications.

For the purpose of describing multi-agent systems, descrip-
tion logics are sometimes too weak. In these cases, we want to
have a more expressive formalism. We decided to use Prolog-
style logic programs for this. In the following chapters, wede-
scribe how both approaches can be combined together.

Description logics and Horn rules are orthogonal subsets
of first order logic [8]. During the last years, a number of ap-
proaches to combine these two logical formalisms in one rea-
soning engine have been proposed. Most of these approaches
use tableaux-style reasoners for description logics and com-
bine them with Prolog-style Horn rules. In [15], Hustadt and
Schmidt examined the relationship between resolution and
tableaux proof systems for description logics. Baumgartner,
Furbach and Thomas propose a combination of tableaux based
reasoning and resolution on Horn logic [3]. Vellion [22] ex-
amines the relative complexity of SL-resolution and analytic
tableau. The limits of combining description logics with horn

rules are examined by Levy and Rousset [17]. Borgida [7] has
shown that Description Logics and Horn rules are orthogonal
subsets of first oder logic.

3. Computational Agents

An agent is an entity that has some form of perception of
its environment, can act, and can communicate with other
agents. It has specific skills and tries to achieve goals. AMulti-
Agent System (MAS)is an assemble of interacting agents in a
common environment [12].

In order to use automatic reasoning on a MAS, the MAS
must be described in formal logics. For theBang 3system, we
define a formal description for the static characteristics of the
agents, and their communication channels. We do not model
dynamic aspects of the system yet.

Bang 3 agents communicate via messages and triggers.
Messages are XML documents send by an agent to another
agent. A triggers are XML patterns with an associated func-
tion. When an agent receives a message matching the XML
pattern of one of its triggers, the associated function is exe-
cuted. In order to identify the receiver of a message, the send-
ing agent needs the message itself and a link to the receiving
agent. A conversation between two agents usually consists of
a number of messages. For example, when a neural network
agent requests training data from a data source agent, it may
send the following messages:

1.Open the data source located at XYZ,
2.Randomize the order of the data items,
3.Set the cursor to the first item,
4.Send next item.

These messages belong to a common category: Messages
requesting input data from a data source. In order to abstract
from the actual messages, we subsume all these messages
under amessage typewhen describing an agent in formal
logics.

DEFINITION 1.A message typeidentifies a category of mes-
sages that can be send to an agent in order to fulfill a specific
task. We refer to message types by unique identifiers.

The set of message types understood by an agent is called
its interface. For outgoing messages, each link of an agent is
associated with a message type. Via this link, only messages
of the given type are sent. We call a link with its associated
message type agate.

DEFINITION 2.An interface is the set of message types under-
stood by a class of agents.

DEFINITION 3.A gate is a tuple consisting of a message type
and a named link.

Now it is easy to define if two agents can be connected:
AgentA can be connected to agentB via gateG if the message
type of G is in the list of interfaces of agentB. Note that
one output gate sends messages of one type only, whereas
one agent can receive different types of messages. This is a
very natural concept: When an agent sends a message to some
other agent via a gate, it assigns a specific role to the other
agent, e.g. being a supplier of training data. On the receiving
side, the receiving agent usually should understand a number



of different types of messages, because it may have different
roles for different agents.

DEFINITION 4.A connection is described by a triple consisting
of a sending agent, the sending agent’s gate, and a receiving
agent.

Next we defineagentsandagent classes. Bang 3is object
oriented. Agents are created by generating instances of classes.
An agent derives all its characteristics from its class definition.
Additionally, an agent has a name to identify it. The static
aspects of an agent class are described by the interface of the
agent class (the messages understood by the agents of this
class), the gates of the agent (the messages send by agents of
this class), and the type(s) of the agent class. Types are nominal
identifiers for characteristics of an agent. The types used to
describe the characteristics of the agents should be ontological
sound.

Table 1. Concepts used to describe multi-agent system.

Concepts
mas(C) C is a Multi-Agent System
class(C) C is the name of an agent class
gate(C) C is a gate
m type(C) C is a message type

Table 2. Roles used to describe multi-agent system.

Roles
type(X,Y) Class X is of type Y
hasgate(X,Y) Class X has gate Y
gatetype(X,Y) Gate X accepts messages of type Y
interface(X,Y) Class X understands mess. of type Y
instance(X,Y) Agent X is an instance of class Y
hasagent(X,Y) Agent Y is part of MAS X

class(decisiontree)
type(decisiontree, computationalagent)
hasgate(decisiontree, datain)
gatetype(datain, training data)
interface(decisiontree, controlmessages)

Fig. 1. Example agent class definition.

DEFINITION 5.An agent class is defined by an interface, a set
of message types, a set of gates, and a set of types.

DEFINITION 6.An agent is an instance of an agent class. It is
defined by its name and its class.

4. Describing multi-agent systems

A Multi-Agent System can be described by three elements:
The set of agents in the MAS, the connections between these
agents, and the characteristics of the MAS. The characteristics
(constraints) of the MAS are the starting point of logical rea-
soning: InMAS checkingthe logical reasoner deduces if the
MAS fulfills the constraints. InMAS generation, it creates a
MAS that fulfills the constraints, starting with an empty MAS,
or a manually constructed partial MAS.

DEFINITION 7.Multi-Agent Systems (MAS)consist of a set
of agents, a set of connections between the agents, and the
characteristics of the MAS.

Description logics know concepts (unary predicates) and
roles (binary predicates). In order to describe agents and Multi-
Agent Systems in description logics, the definitions 1 to 7 are
mapped onto description logic concepts and roles as shown in
Table 1 and Table 2.

An example agent class description is given in figure 1.
It defines the agent class “decisiontree”. This agent class
accepts messages of type “controlmessage”. It has one gate
called “datain” for data agent and emits messages of type
“training data”.

In the same way, A-Box instances of agent classes are de-
fined:

instance(decision tree, dt instance)

An agent is assigned to a MAS via role “hasagent”. In the
following example, we define “dtinstance” as belonging to
MAS “my mas”:

has agent(my mas, dt instance)

Since connections are relations between three elements, a
sending agent, a sending agent’s gate, and a receiving agent,
we can not formulate this relationship in traditional description
logics. It would be possible to circumvent the problem by
splitting the triple into two relationships, but this wouldbe
counter-intuitive to our goal of defining MAS in an ontological
sound way. Connections between agents are relationships of
arity three: Two agents are combined via a gate. Therefore, we
do not use description logics, but traditional logic programs in
Prolog notation to define connections:

connection(dt instance, other agent, gate)

Constraints on MAS can be described in Description Log-
ics, in Prolog clauses, or in a combination of both. As an ex-
ample, the following concept description requires the MAS
“dt MAS” to contain a decision tree agent:

dt MAS ⊒ mas ⊓ has agent.(∃instance.decision tree)

An essential requirement for a MAS is that agents are con-
nected in a sane way: An agent should only connect to agents
that understand its messages. According to definition 4, a con-
nection is possible if the message type of the sending agent’s
output gate matches a message type of the receiving agent s
interface. With the logical concepts and descriptions given in
this section, this constraint can be formulated as a Prolog style
horn rule. If we are only interested in checking if a connection
satisfies this property, the rule is very simple:

connection(S,R,G)←
instance(R, RC)∧
instance(S, SC)∧
interface(RC, MT)∧
hasgate(SC, G)∧
gatetype(G, MT)



The first two lines of the rule body determine the classes
RC andSC of the sending agentS and the receiving agentR.
The third line instantiatesMT with a message type understood
by RC. The fourth line instantiatesG with a gate of classSC.
The last line assures that gateG matches message typeMT .

The following paragraphs show two examples for logical
descriptions of MAS. It should be noted that these MAS types
can be combined, i.e. it is possible to query for trusted, com-
putational MAS.

Computational MAS:A computational MAS can be defined
as a MAS with a task manager, a computational agent and a
data source agent which are interconnected.

compMAS(MAS)←
type(CAC, computationalagent)∧
instance(CA, CAC)∧
hasagent(MAS, CA)∧
type(DSC, datasource)∧
instance(DS, DSC)∧
hasagent(MAS, DS)∧
connection(CA, DS, G)∧
type(TMC, taskmanager)∧
instance(TMC, TM)∧
hasagent(MAS, TM)∧
connection(TM, CA, GC)∧
connection(TM, DS, GD)

Trusted MAS:We define that an MAS is trusted if all of its
agents are instances of a “trusted” class. This examples uses
the Prolog predicatefindall. findall returns a list of all
instances of a variable for which a predicate is true. In the
definition of predicateall_trusted the usual Prolog syntax
for recursive definitions is used.

trustedMAS(MAS)←
findall(X, hasagent(MAS,X), A))∧
all trusted(A)

all trusted([])← true
all trusted([F|R])←

instance(F,FC)∧
type(FC, trusted)∧
all trusted([R])

5. Implementation

The above described concepts and algorithms are implemented
within the Bang 3software system as the BOA agent. This
agent works with ontological description files of the three
kinds:

• the Description Logics description of agent hierarchies,
their gates, interfaces and message types,

• the Prolog clauses describing more complicated properties
and concepts, such as the form of computational MAS, or
the notion of trust,

• the time-dependent information about available agents
gathered at the time of particular task from directory ser-
vices agent.

5.1 Computational multi-agent systems

In this section we give examples of a MAS scheme describ-
ing the computational MAS definition from section 4. A typ-
ical computational MAS configuration is shown on figure 2.
There are two more complicated computational agents, the
RBF neural network (RBF) and the Evolutionary algorithm
(EA) agent, that cooperate with each other within a compu-
tational MAS. Each of these two agents can itself be seen as a
MAS employing several simpler agents to solve a given task. In
the case of the RBF network, typically an unsupervised learn-
ing (vector quantization), and a supervised learning (gradient,
matrix inverse) agent is needed. The evolutionary algorithm
agent makes use of fitness (shaper) and probabilities manager
(tuner). The cooperation of RBF and EA is more intricate and
takes place via the fitness and chromosome agents.

Fig. 2. Example of a more complicated computational MAS
consisting of a Task Manager agent, Data Source agent, and a
suite of cooperating computational agents (an RBF network

agent and Evolutionary algorithm agent with necessary
additional agents).

5.2 MAS descriptions

Descriptions of the above shown — and similar — multi-
agent systems are generated by the BOA agent in a formal
description language. This description is then sent to the MAS
manager agent, which is able to take care of physical creation
of the whole system. This includes creating suitable agents,
linking their gates and interfaces, sending them appropriate
initialization messages, etc. There are more possibilities during
the creation of agents, it is possible to create new ones by
constructing them. Other way is to try to reuse existing agents
that are free at the moment, and yet another possibility is tofind
suitable agents by means of ontology services. All three ways
of incorporating agents into schemes are accounted for in the
description formalism. The creation of the computational MAS
is typically followed by an (automated) trial and evaluation on
a particular data set.

Another way of BOA work, which is currently being devel-
oped, is an integration with GUI MAS designer, where BOA
invalidates connections that are not correct, and suggestssuit-
able partners for a connection. This way of work considers a



graphical tool which assists the user to design a valid MAS
scheme in a WYSIWYG manner. Since the queries for the va-
lidity of connections and partners are rather simple, the time re-
quirements are sensible considering the real-time performance.

Fig. 3. The BOA agent generates a MAS configuration
description and sends it to the MAS manager agent, which

takes care of MAS creation and run. They both query the BOS
ontology services agent.

Figure 4 demonstrates the above described ideas on the ac-
tual implementation of the agents hierarchy description inthe
RACER Lisp-like syntax. For the sake of simplicity, only the
Decision Tree and RBF Neural Network are shown with sev-
eral intermediate concepts missing. The complete description
is included in [19].

5.3 Dynamic system configuration

So far, the system is used mainly in a static environment where
the goal is to create a suitable MAS in order to fulfill a specified
task, and execute it. This can be either a one-shot behavior,or
a repeated task, such as in the case of evolutionary algorithm
used for MAS optimization (cf. Conclusion). However, the
system already contains two types of information:

• the static ontology descriptions, and possible more com-
plicated constrains,

•and the dynamic information about currently available
agents.

Thus, the BOA agent also keeps track of two types of data:
the static and dynamic information. While the static informa-
tion is typically downloaded once at BOA startup, the dynamic
information about available agents and their types is retrieved
from the directory services agents every time there is a new
task to be solved. Thus, the BOA can work with all the agents
currently available in the system (including the ones that mi-
grated in recently), provided they register with the directory
services agent.

6. Conclusion

We have shown how formal logics can be used to describe
computational MAS. We presented a logical formalism for the
description of MAS. In this, we combined Description Logics
with traditional Prolog rules. The system we implemented al-

(implies iAgentStdIface (and

(some message_type agentLifeManagement)

(all message_type agentLifeManagement)))

(implies igToYellowPages (and

(some message_type yellowPageRequest)

(all message_type yellowPageRequest)))

(implies Father (and (some interface iAgentStdIface)

(all interface iAgentStdIface)

(some gate igToYellowPages)

(all gate igToYellowPages)))

...

;;Decision Tree

(implies aDecisionTree (and Classifier

IterativeComputation

Father

classInBang))

;;Neural Networks

(implies NeuralNetwork Approximator)

;;RBF Network

(implies RBFNetworkAI (and NeuralNetwork

IterativeComputation

classInBang

SimpleTaskManager

Father

(some gate igSolveRepresentatives)

(some hide igCommonCompControl)

(all hide igCommonCompControl)

(some gate igSolveLinEqSystem)

(all gate (or igSolveRepresentatives

igSolveLinEqSystem))

(some interface igRunNetworkDemo)

(all interface igRunNetworkDemo)))

Fig. 4. Example of agent ontology description in the RACER
Lisp-like formalism.

Fig. 5. The BOA agent refreshes its dynamic information
about available agents from DF agent before solving every
task, thus taking even currently arrived agents into account.

lows the practical application of these technologies. We have
demonstrated how this approach works in practice within the
hybrid computational environmentBang 3.

So far, we have achieved a partial support for dynamic
environments with migrating agents. The constrain parts and
ontological description of agents and their properties is still
static, but the MAS creation reflects dynamic changes in the



system. Further research will be put in the development of
formal descriptions of dynamic aspects of MAS. In particular,
this means to work with ontological description of tasks and
to gather knowledge about computational agents performance.
Currently within Bang 3, there is a BDI-based mechanism
that supports local decisions of a computational agent based
on its previous experience. This will blend smoothly with our
approach, which in turn allows to provide more suitable MAS
solutions. In particular, if there are more agents satisfying the
constrains, we will be able to sort them according to their past
performance in the required context. Thus, better partnersfor
an agent can be supplied. Further in the future we plan to
employ proactive mechanisms for an agent (again BDI-based),
which will be allowed to improve its knowledge in its free
time, such as trying to solve benchmark tasks and recording
the results.

The hybrid character of the system, with both a logical com-
ponent and soft computing agents, also makes it interestingto
combine these two approaches in one reasoning component.
In order to automatically come up with feasible hybrid solu-
tions for specific problems, we plan to combine two orthogo-
nal approaches: a soft computing evolutionary algorithm with
a formal ontology-based model. So far, in [5] we have tried the
isolated evolutionary approach, and the results, althoughsat-
isfiable, are difficult to scale up to larger configurations. We
expect synergy effects from using formal logics to aid evolu-
tionary algorithms and vice versa.
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