
Rule-based Analysis of Behaviour Learned by
Evolutionary and Reinforcement Algorithms

Stanislav Slušný, Roman Neruda, and Petra Vidnerová

Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodárenskou věžı́ 2, Prague 8, Czech Republic
{slusny,roman,petra}@cs.cas.cz

Abstract. We study behavioural patterns learned by a robotic agent by means of
two different control and adaptive approaches — a radial basis function neural
network trained by evolutionary algorithm, and a traditional reinforcement Q-
learning algorithm. In both cases, a set of rules controlling the agent is derived
from the learned controllers, and these sets are compared. It is shown that both
procedures lead to reasonable and compact, albeit rather different, rule sets.

1 Introduction

We study intelligent behaviours that arise as a result of an agent’s interaction with its en-
vironment. The ultimate goal of the process is to develop an embodied and autonomous
agent with a high degree of adaptive possibilities [9]. Two main approaches to tackle
this problem are currently the traditional reinforcement learning (RL) [13] and evolu-
tionary robotics (ER) [8]. Both these approaches fall into the same category of learning
algorithms that are often used for tasks where it is not possible to employ more spe-
cific supervised learning techniques. Designing an agent control mechanism is a typical
example of such a problem where an instant reward of agent actions is not available.
We are usually able to judge positive or negative behaviour patterns of an agent (such
as finding a particular spot in a maze or hitting a wall) and evaluate it on the coarser
time scale. This information is used by different learning algorithms of reinforcement
type to strengthen successful partial behaviour patterns,and in the course of adaptation
process, to develop an agent solving a given task.

The Q-learning approach considers discrete spaces of possible agent states and ac-
tions, and in the course of adaptation creates approximations of the optimal strategy —
a way to select a particular action in a given state of an agentsuch that the potential
(delayed) reward from the environment is maximized.

The ER approach attacks the problem through a self-organization process based
on artificial evolution [5]. Control mechanisms of an agent are typically based on a
neural network which provides direct mapping from agent sensors to effectors. Most
of the current applications use traditional multi-layer perceptron networks [4]. In our
approach we utilize local unit network architecture calledradial basis function (RBF)
network which has competitive performance, more learning options, and (due to its
local nature) better interpretation possibilities [11, 12].



2 Reinforcement Learning

Let us consider an embodied agent that is interacting with the environment by its sensors
and effectors. The essential assumption of RL is that the agent has to be able to sense
rewards coming from the environment. Rewards evaluate taken actions, agent’s task is
to maximize them. There has been several algorithms suggested so far. We have used
the Q-learning algorithm, which was first breakthrough of RL[14].

The next important assumption is that agent is working in discrete time steps. Sym-
bol S will denote finite discrete set of states and symbolA set of actions. In each time
stept, agent determines its actual state and chooses one action. Therefore, agent’s life
can be written as a sequenceo0a0r0o1a1r1 . . . whereot denotes observation through
the sensors,at ∈ A action and finally symbolrt ∈ R representsreward, that was
received at timet. The most serious assumption of RL algorithms is theMarkov prop-
erty, which states, that agent does not need history of previous observations to make
decision. The decision of the agent is based on the last observationot only. When this
property holds, we can use theory coming from the field ofMarkov decision processes
(MDP). The direct implication of Markov property is the equality of states and obser-
vations. The strategyπ, which determines what action is chosen in particular state, can
be defined as functionπ : S → A, whereπ(st) = at.

Now, the task of the agent is to find optimal strategyπ∗. Optimal strategy is the
one, that maximalizes expected reward. In MDP, single optimal deterministic strategy
always exists, no matter in what state has the agent started.The quantityV π(st) is
called discounted cumulative reward. It is telling us, whatreward can be expected, if
the agent starts in statest and follows policyπ: V π(st) = rt + γrt+1 + γ2rt+2 + ... =
∑

i=0 γirt+1.
Here0 ≤ γ < 1 is a constant that determines the relative value of delayed versus

immediate rewards. Optimal strategyπ∗ can now be defined as:π∗ = argmaxπ{V
π(s),

∀s ∈ S}. To simplify the notation, let us writeV ∗(s) instead of symbolV π∗

, value
function corresponding to optimal strategyπ∗: V ∗(s) = maxπ V π(s).

1. LetS be the finite set of states andA finite set of actions.
∀s ∈ S, a ∈ A : Q(s, a) = 0

2. Process sensors and obtain states

3. Repeat:
– Choose and carry out actiona
– Receive rewardr
– Obtain new states′

– Q(s, a)← r + γ maxa′ Q(s′, a′)
– s← s′

Algorithm 1: Q-learning.

The Q-learning algorithm was the first algorithm to compute optimal strategyπ∗

[14]. The key idea of the algorithm is to define the so-calledQ-values. Qπ(s, a) is



fs(x) =
h

X

j=1

wjsϕ

„

‖ x − cj ‖

bj

«

(1)

Fig. 1. A scheme of a Radial Basis Function Network,fs is the output of the s-th output unit.ϕ

is an activation function, typically Gaussian functionϕ(s) = e−s2

.

the expected reward, if the agent takes actiona in states and then follows policy
π: Qπ(s, a) = r(s, a) + γV π(s′), wheres′ is the state, in which agent occurs tak-
ing actiona in states (s′ = δ(s, a)). Q-learning algorithm (Algorithm 1) guarantees
convergence to optimal values ofQ∗(s, a), if Q-values are represented without any
function approximations (in table), rewards are bounded and every state-action pair is
visited infinitely often. To fulfil the last condition, everyaction has to be chosen with
non-zero probability. ProbabilityP (a|s) of choosing actiona in states is defined as
[6]: P (ai|s) = kQ(s,ai)/

∑

j kQ(s,aj), where constantk > 0 determines exploitation-
exploration rate. Big values ofk will make agent to choose actions with above average
values. On the other hand, small values will make agent to choose actions randomly.
Usually, learning process is started with smallk, that is slightly increasing during the
course of learning. Optimal valuesV ∗s can be obtained fromQ∗(s, a) by the equality:
V ∗(s) = maxa′ Q(s, a′).

3 Evolutionary Learning of RBF Networks

Evolutionary robotics combines two AI approaches: neural networks and evolutionary
algorithms. The control system of the robot is realized by a neural network, in our case
an RBF network. It is difficult to train such a network by traditional supervised learning
algorithms since they require instant feedback in each step, which is not the case for
evolution of behaviour. Here we typically can evaluate eachrun of a robot as a good
or bad one, but it is impossible to assess each one move as goodor bad. Thus, the
evolutionary algorithm represent one of the few possibilities how to train the network.

TheRBF network[10, 7, 1], used in this work, is a feed-forward neural network with
one hidden layer ofRBF unitsand linear output layer. The network function is given
in Eq. (1) (see Fig. 1). The evolutionary algorithms (EA) [5,3] represent a stochastic
search technique used to find approximate solutions to optimization and search prob-
lems. They work with a population ofindividualsrepresenting feasible solutions. Each
individual is assigned afitnessthat is a measure of how good solution it represents.
The evolution starts from a population of completely randomindividuals and iterates
in generations. In each generation, the fitness of each individual is evaluated. Individu-
als are stochastically selected from the current population (based on their fitness), and
modified by means of genetic operators to form a new generation.

In case of RBF networks learning, each individual encodes one RBF network. The
individual consists ofh blocks:IRBF = {B1, . . . , Bh}, whereh is a number of hidden



units. Each of the blocks contains parameter values of one RBF units,
Bk = {ck1, . . . , ckn, bk, wk1, . . . , wkm}, wheren is the number of inputs,m is the
number of outputs,ck = {ck1, . . . , ckn} is thek-th unit’s centre,bk the width and
wk = {wk1, . . . , wkm} the weights connectingk-th hidden unit with the output layer.
The parameter values are encoded using direct floating-point encoding. Concerning the
genetic operators, the standardtournament selection, 1-point crossoverand additive
mutation1 are used. The fitness function should reflect how good the robot is in given
tasks and so it is always problem dependent. Detailed description of the fitness function
is included in the experiment section.

4 Experimental Framework

In order to compare performance and properties of describedalgorithms, we conducted
simulated experiment. Miniature robot of e-puck type [2] was trained to explore the
environment and avoid walls. E-puck is a mobile robot supported by two lateral wheels
that can rotate in both directions and two rigid pivots. The sensory system employs
eight active IR sensors distributed around the body. Sensors return values from interval
[0, 4095]. Effectors accept values from interval[−1000, 1000]. The higher the absolute
value, the faster is the motor moving in either direction.

Table 1.Sensor values and their meaning.

Sensor value Meaning Sensor value Meaning
0-50 NOWHERE 1001-2000 NEAR
51-300 FEEL 2001-3000 VERYNEAR
301-500 VERYFAR 3001-4095 CRASHED
501-1000 FAR

Instead of4095 raw sensor values, learning algorithms worked with5 preprocessed
perceptions (see Tab. 1). Effector’s values were processedin similar way: instead of
2000 values, learning algorithm was allowed to choose from values [-500, -100, 200,
300, 500]. To reduce the state space even more, we grouped pairs of sensors together
and back sensors were not used at all. Agent was trained in thesimulated environment
of size 100 x 60 cm and tested in more complex environment of size 110 x 100 cm. We
used Webots [15] simulation software.

In the first experiment, we have used Q-learning algorithm asdescribed in Section 2.
Each state was represented by a triple of perceptions. For example, the state [NEAR,
NOWHERE, NOWHERE] means, that the robot sees a wall on its left side only. Action
was represented by a pair [left speed, right speed].

Learning process was divided into episodes. Each episode took at most 1000 sim-
ulation steps. At the end of each episode, agent was moved to one from 5 randomly
chosen positions. Episode could be finished earlier, if agent hit the wall. The learning
process was stopped after 10000 episodes. Parameterγ was set to0.3.

1 Additive mutation changes the values by adding small value randomly drawn from〈−ǫ, ǫ〉.



Fig. 2. Simulated environments for agent training and testing: a) Agent was trained in the sim-
ulated environment of size 100 x 60 cm. b) Simulated testing environment of size 110 x 100
cm.

In the second experiment the evolutionary RBF networks wereapplied to the same
maze-exploration task (see Fig. 2). The network has 3 input units, 5 hidden Gaussian
units, and 2 output units. The three inputs correspond to thecoupled sensor values (two
left sensors, two front sensors, two right sensors), which are preprocessed in the way
described in Tab. 1. The two outputs correspond to the left and right wheel speeds and
before applying to robot wheels they are rounded to one of 5 valid values.

Fitness evaluation consists of two trials, which differ by agent’s starting location
(the two starting positions are in the opposite ends of the maze). Agent is left to live
in the environment for 800 simulation steps. In each step, a three-component score is
calculated to motivate agent to learn to move and to avoid obstacles:

Tk,j = Vk,j(1 −
√

∆Vk,j)(1 − ik,j). (2)

The first componentVk,j is computed by summing absolute values of motor speed
(scaled to〈−1, 1〉) in thek-th simulation step andj-th trial, generating value between
0 and 1. The second component(1 −

√

∆Vk,j) encourages the two wheels to rotate in
the same direction. The last component(1 − ik,j) encourage obstacle avoidance. The
valueik,j of the most active sensor (scaled to〈0, 1〉) in k-th simulation step andj-th
trial provides a conservative measure of how close the robotis to an object. The closer
it is to an object, the higher is the measured value in range from0.0 to 1.0. Thus,Tk,j

is in range from0.0 to 1.0, too. In thej-th trial, scoreSj is computed by summing
normalized trial gainsTk,j in each simulation stepSj = 1

800

∑800
k=1 Tk,j . To stimulate

maze exploration, agent is rewarded, when it passes throughone of predefined zones.
There are three zones located in the maze. They can not be sensed by an agent. The
reward∆j ∈ {0, 1, 2, 3} is given by the number of zones visited in thej-th trial. The
fitness value is then computed asF =

∑K

j=1 ∆j +
∑K

j=1
Sj

K
, whereK = 2 is the

number of trials.



5 Experimental Results

Table 2 contains states with biggest and smallest Q-values and their best action. The
states with biggest Q-values contain mostly perception NOWHERE. On the other side,
states with smallest Q-values contain perception CRASHED.

Learned behaviour corresponds to obstacle avoidance behaviour. The most inter-
ested are the states, which contain perception ”NEAR”. Expected rules ”when obstacle
left, then turn right” can be found. States without perception ”NEAR” were evaluated
as safe — even if bad action was chosen in this state, it could be fixed by choosing good
action in next state. Therefore, these actions do not tell usa lot about agent’s behaviour.
On the other side, action with perception VERYNEAR leaded tothe crash, usually.
Agent was not able to avoid the collision.

Table 2.5 states with biggest and smallest Q-values and their best actions

State Action Q-value
left front right
NOWHERE NOWHERE VERYFAR [500, 300] 5775.71729
NOWHERE NOWHERE NOWHERE [300, 300] 5768.35059
VERYFAR NOWHERE NOWHERE [300, 500] 5759.31055
NOWHERE NOWHERE FEEL [300, 300] 5753.71240
NOWHERE VERYFAR NOWHERE [500, 100] 5718.16797

CRASHED CRASHED CRASHED [300, 500] -40055.38281
CRASHED NOWHERE CRASHED [300, 300] -40107.77734
NOWHERE CRASHED VERYNEAR [300, 500] -40128.28906
FAR VERYNEAR CRASHED [300, 500] -40210.53125
NOWHERE CRASHED NEAR [200, 500] -40376.87891

The experiment with evolutionary RBF network was repeated 10 times, each run
lasted 200 generations. In all cases the successful behaviour was found, i.e. the evolved
robot was able to explore the whole maze without crashing to the walls. Table 3 shows
parameters of an evolved network with five RBF units. We can understand them as rules
providing mapping from input sensor space to motor control.However, these ‘rules’
act in accord, since the whole network computes linear sum ofthe corresponding five
Gaussians.

The following Tab. 4 shows rules from actual run of the robot in the train arena.
The nine most frequently used rules are listed. It can be seenthat this agent represents a
typical evolved left-hand wall follower. Straight movement is a result of situations when
there is a wall far left, or both far left and right. If the robot sees nothing, it rotates left-
wise (rule 2). The front collision is avoided by turning right, as well as a near proximity
to the left wall (rules 6–8).

The evolved robot was then tested in the bigger testing maze.It behaved in a con-
sistent manner, using same rules, demonstrating generalization of the behaviour trained
in the former maze.



Table 3.Rules represented by RBF units (listed values are original RBF network parameters after
discretization).

Sensor Width Motor
left front right left right
VERYNEAR NEAR VERYFAR 1.56 500 -100
FEEL NOWHERE NOWHERE 1.93 -500 500
NEAR NEAR NOWHERE 0.75 500 -500
FEEL NOWHERE NEAR 0.29 500 -500
VERYFAR NOWHERE NOWHERE 0.16 500 500

Table 4.Most important rules represented by trained RBF network andtheir semantics.

Sensor Motor
left front right left right
FEEL NOWHERE NOWHERE 500 500 straight forward
NOWHERE NOWHERE NOWHERE 100 500 turning left
VERYFAR NOWHERE NOWHERE 500 500 straight forward
FEEL NOWHERE FEEL 500 500 straight forward
NOWHERE NOWHERE FEEL 100 500 turning left
FAR NOWHERE NOWHERE 500 300 turning right
FEEL FEEL NOWHERE 500 300 turning right
NEAR NOWHERE NOWHERE 500 100 turning right

Both approaches where successful in finding the strategy formaze exploration. The
200 generations of evolutionary learning needed on average8822 fitness evaluations
(corresponds approx. 14 115 RL epochs). To acquire the desired behaviour, RBF net-
works needed from 529 to 2337 fitness evaluations.

6 Conclusion

We have presented experiments with RL and ER algorithms training a robot to explore
a maze. It is known from the literature, and from our previousworks, that this problem
is manageable by both RL and ER learning with different neural representations of
the control mechanism. Usually, in such a successful learning episode, an agent with
general behavioural pattern emerges that is able to explorepreviously unseen maze in
an efficient way.

In this work we have focused on comparison of rules derived bytraditional RL
approach and by the evolved neural networks. We have chosen the RBF network archi-
tecture with local processing units. These networks are easily to interpret in terms of
rules than traditional perceptron networks. A simple analysis shows that both RL and
ER resulted in a rules that are reasonable, and easy to interpret as higher-level behaviour
traits. The RL approach shows rational obstacle avoidance,while the neuro-evolution
approach comes with more compact individuals that can be clearly classified as left-
hand wall followers (or right-hand wall followers, respectively).



As we have seen, different learning approaches can lead to different behaviours.
Agents trained by evolutionary algorithms usually show simple behaviours. Often,
changing basic environment constraints (dimensions of environment, for example) can
make learned strategy fail [8]. In our experiment, learned strategy is simple (it can be de-
scribed by several rules) but effective. Agent learned by Q-learning algorithm showed
more complex behaviour. It can cope with situations, in which agent trained by ER
would fail. However, effective wall following strategy wasnot discovered.

In our further work, we would like to take advantages of both approaches. The
basic learning mechanism will be evolutionary algorithm. Behavioural diversity could
be maintained by managing population of agents that use different learning approaches
(RBF networks and reinforcement learning). In both algorithms used, experience can be
expressed as a set of rules. Taking this into account, genetic operators could be designed
to allow simple rules exchange mechanisms.

7 Acknowledgements

This research has been supported by the the project 1ET100300419 of the Program In-
formation Society (of the Thematic Program II of the National Research Program of the
Czech Republic) “Intelligent Models, Algorithms, Methodsand Tools for the Semantic
Web Realization” and by the Institutional Research Plan AV0Z10300504 ”Computer
Science for the Information Society: Models, Algorithms, Appplications”.

References

1. D.S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks.
Complex Systems, 2:321–355, 1988.

2. E-puck, online documentation. http://www.e-puck.org.
3. D.B. Fogel.Evolutionary Computation: The Fossil Record. MIT-IEEE Press, 1998.
4. S. Haykin.Neural Networks: a comprehensive foundation. Prentice Hall, 2nd edition, 1999.
5. J. Holland.Adaptation In Natural and Artificial Systems. MIT Press, 1992.
6. T. Mitchell. Machine Learning. McGraw Hill, 1997.
7. J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units.Neural

Computation, 1:289–303, 1989.
8. S. Nolfi and D. Floreano.Evolutionary Robotics — The Biology, Intelligence and Techology

of Self-Organizing Machines.The MIT Press, 2000.
9. R. Pfeifer and Ch. Scheier.Understanding Intelligence. The MIT Press, 2000.

10. T. Poggio and F. Girosi. A theory of networks for approximation and learning. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1989. A. I. Memo No.
1140, C.B.I.P. Paper No. 31.

11. S. Slušný and R. Neruda. Evolving homing behaviour forteam of robots.Computational In-
telligence, Robotics and Autonomous Systems. Palmerston North : Massey University, 2007.

12. S. Slušný, R. Neruda, and P. Vidnerová. Evolution of simple behavior patterns for au-
tonomous robotic agent.System Science and Simulation in Engineering. - : WSEAS Press,
pages 411–417, 2007.

13. S. Richard Sutton and G. Andrew Barto.Reinforcement Learning: An Introduction. The
MIT Press, 1998.

14. C. J. C. H. Watkins. Learning from delayed rewards.Ph.D. thesis, 1989.
15. Webots simulator. on-line documentation http://www.cyberbotics.com/.


