
Visual Exploration of RDF Data�

Jǐŕı Dokulil1 and Jana Katreniaková2

1 Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

jiri.dokulil@mff.cuni.cz
2 Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, Slovakia
katreniakova@dcs.fmph.uniba.sk

Abstract. We have developed and implemented [1,2] infrastructure and
RDF storage for the Semantic Web. When we filled it with data the need
for some tool that could explore the data became evident. Unfortunately,
none of existing solutions fulfills requirements imposed by the data and
users expectations. This paper presents our RDF visualizer that was
designed specifically to handle large RDF data by means of incremental
navigation. A detailed description of the algorithm is given as well as
actual results produced by the visualizer.

1 Introduction

The RDF [3] is one of data formats of the Semantic Web. In RDF the informa-
tion is encoded as a set of statements about resources. These statements may
abstractly be viewed as a graph. The data storage for RDF data is at the core of
the Semantic Web infrastructure that was created at the Faculty of Mathematics
and Physics of the Charles University in Prague [4]. Since its creation a lot of
RDF data was loaded into the storage and a query API is available to access the
data. However, not knowing the exact structure of the data even programmers
using the infrastructure find it difficult to create a meaningful query. We have
therefore decided that some kind of visualization tool is definitely necessary to
support further development.

Working with RDF data brings up several issues. Most important of them is
the size of the data. The data can be huge (millions of nodes and edges) and
contain nodes with extremely high degree (thousands or even hundreds of thou-
sands). This not only limits the possibilities of drawing the graph but also the
acceptable complexity (both time and space) of the drawing algorithm. Tradi-
tional graph-based techniques work very well for small graphs. Unfortunately, the
difficulty of finding readable layout extremely increases with the size of graph.
We have therefore focused on finding an approach that is effective both from
complexity and user point of view. One possibility to partially overcome the

� This research was supported in part by the National programme of research (Infor-
mation society project 1ET100300419) and VEGA 1/3106/06.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 672–683, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Visual Exploration of RDF Data 673

problem with large data is an incremental navigation [5]. We decided to use the
incremental navigation enhanced by our novel node merging technique so that
we can draw even nodes with large degree. To make the drawing easily readable
we proposed a triangle layout algorithm [6,7].

The structure of the paper is as follows. Section 2 gives the overview and
comparison of known layout algorithms. It also gives a detailed description of
our triangle layout. Implementation issues—including the node merging—are
described in Section 3. Closing remarks appear in Section 4.

2 Visualization Algorithm

Since the RDF data can be extremely large, some kind of incremental exploration
and visualization technique [5] is necessary. The user is given the possibility to
explore the neighborhood of the displayed subgraph by extending the displayed
part of the graph by one (or more) nodes. This way a navigation tree for the
data is created. This tree stores the nodes and edges that are currently displayed
to the user. We focus on drawing of the navigation tree. The non-tree edges can
easily be drawn as lines between corresponding vertices.

2.1 Comparison

There are more approaches to drawing of trees. One of the common techniques
is layered drawing where nodes are placed on layers that contain nodes with the
same depth. This layers can have different shapes (lines, circles, squares, . . .).
Examples include:

Vertical Layered Drawing (Fig. 1(a)). The layers are vertical lines. It is a
very simple approach with good results. The paths in the tree are very easy
to follow. The disadvantage is that it is not easy to add not-tree edges to
the graph. This approach is used by Experimental RDF Visualizer created
in HP labs [8] that avoids non-tree edges by duplicating parts of the graph
and transforming it to a tree. Another example is IsaViz [9].

Horizontal Layered Drawing. Is a variant of the vertical layered drawing. It
is rarely used because unlike vertical drawing, that offers plenty space for
node and edge labels, long node labels make this layout impractical.

Radial Drawing (Fig. 1(b)). The nodes are placed on concentric circles with
increasing diameters. The root of the tree is placed in the center. The nodes
are usually displayed as circles but as radial drawing is an extremely common
technique, there are plenty of variants. Examples of uses of this technique
include gnutellavision [10] and GViz [11].

Square Layout (Fig. 1(c)). Square layout is a variant of the radial layout
that uses concentric squares instead of circles. It is better suited for drawing
rectangular nodes [6].

Triangle Layout (Fig. 1(d)). Triangle layout was introduced as a modifica-
tion of square layout that uses only the first quadrant of the plane (with
coordinate origin in the center of the squares). It is further described in the
following parts of this paper.

674 J. Dokulil and J. Katreniaková

(a) Vertical Layered Drawing (b) Radial Drawing (c) Square Layout

(d) Triangle Layout (e) Ferris-Wheel Layout

Fig. 1. Layout algorithms

There are more approaches to drawing trees than just layered drawing, in-
cluding:

Ferris-Wheel Layout (Fig. 1(e)). The Ferris-Wheel layout is inspired by the
radial layout but only leaves that are direct neighbors of a node are displayed
on a circle around the node. Other nodes are positioned in the drawing space
without any sophisticated layout algorithm and positioning them to a ’good’
position is left to the user. To handle nodes with high degree, the user is given
the option to zoom in on one of the circles (called wheels) and gradually
explore the nodes by rotating the wheel. This approach is used in PGV [12].

Spring Embedding. Spring Embedding does not specify an exact algorithm
for positioning of the nodes. The nodes are connected by springs that either
pull them together or push them apart. Then the effect of the springs is sim-
ulated until a stable position is reached. In the basic version, the connected
nodes are connected by springs that pull them together and unconnected
nodes with ones that push them apart. By changing power or direction of
the springs, layouts with more complex characteristics can be achieved. This
approach is used for instance in RDF Gravity [13].

Although many different techniques can be used for the visualization, it is dif-
ficult to find a precise way of evaluating them. We have set up several criteria
to compare different layout techniques. Some of these criteria are requirements
imposed on the layout algorithms by the nature of the RDF data while other
criteria were set up to improve user-friendliness of the resulting application. Note

Visual Exploration of RDF Data 675

that numbers in parentheses after the criteria definitions correspond to numbers
of columns in the Table 1.

Data-imposed criteria. Based on the experience with real RDF data we can
assume that the data will contain nodes with high degree. Even such nodes
should be displayable without making the visualization unreadable to the user
(1). For the same reason the area that can be used to draw children of a node
should not be too limited (2). Although it may not always be the case, there is
a significant chance that number of nodes on each level will be much larger than
on the previous one. Thus the size of the layers increase gradually (3).

User-imposed criteria. The visualization should be well-arranged. But there is no
general understanding of what that means [14]. We have picked several criteria
we believe are important when working with RDF data.

The user should be able to easily locate ancestor and descendants of a node
(4). If the user follows a certain path through the tree, then the whole path
should at least roughly maintain the same direction (5). Last but not least, the
area required to draw the graph should not be too large (6).

Table 1. Comparison of different layout techniques

1 2 3 4 5 6
Radial Layout � part of annulus wedge � � C A
Vertical Layered Drawing B whole layer � � to the right �
Horizontal Layered Drawing B whole layer � � downwards �
Square Layout � limited � +/– � �
Triangle Layout � whole layer � � C �
Ferris-Wheel Layout � not limited 0 � � �
Spring Embedding B not limited 0 � � �
A: The radial layout is best suited for drawing circular nodes. With rectangular nodes

the available area can be used inefficiently if the nodes are placed onto the layer
in a wrong order. If incremental navigation is used, the correct order cannot be
maintained without reordering the nodes.

B: The node merging – can be used to handle nodes with high degree.
C: Although the path does not follow a direct route from the center, it generally

follows a certain direction without significant deflections.

We have evaluated the listed drawing techniques according to the selected cri-
teria. The results are summarized in the Table 1. The presented results are either
claimed by the authors of the individual algorithms or can be easily deduced by
examining the algorithms. Although this is certainly not a definitive comparison
of existing tree drawing techniques, the results show that the idea of triangle

676 J. Dokulil and J. Katreniaková

layout is worth exploring. We have created an experimental implementation.
There is currently no other implementation we are aware of.

The next part of the text gives a more detailed description of the triangle layout
algorithm and it’s properties while Section 3 is focused on the implementation.

2.2 Triangle Layout Algorithm

The purpose of the algorithm is to determine positions of the part of the graph
that is visible at the moment. The edges of the graph that the user used to reach
the visible nodes form a navigation tree T with root rT . The children of node v
are nodes that were reached by exploring edges connecting them to the node v.
The order of the children is the same as the order in which they were reached. All
nodes with the same distance from the root form a layer. A node with distance
i from the root is placed in layer li (by L(h) we denote nodes on the level h of
the tree and L(0) = {rT }). Layers are represented as lines connecting [ri, 0] and
[0, ri], where the value ri is called radius of layer li.

The nodes are drawn as rectangles Γ (v) that are H(v) pixels high and W (v)
pixels wide. They are labeled by URI or literal value of the node they represent
and also display a list of edges that start or end in the node (for further details
see Subsection 3.1). The rectangle Γ (v) representing node v ∈ L(i) is placed
from the outside of the line representing li (we place the lower left corner of the
vertex onto the line). The corner of the rectangle Γ (v) that lies on the layer is
denoted γ0(v) in the following text, while the opposite corner is denoted γ1(v).
The radius ri of each level is computed so that ri+1 > ri and to make sure there
is enough space to place all nodes that belong to the layer li.This is influenced by
the fact that we place descendants of node v into a so called angle of influence of
the node v. The angle of influence is actually defined by two angles that define
lower and upper boundary where all descendants (even indirect ones) must fit.
This way each path in the tree is given a certain direction to follow, which
was one of the user-imposed criteria defined in the previous section. Having
α1(v), α2(v) ∈ 〈0, 90〉 and radius r the vertical range (height of the available
space in pixels) available to node v is

D(v) = r.

(
sin α1(v)

sin α1(v) + cos α1(v)
− sin α2(v)

sin α2(v) + cos α2(v)

)

We fit the successors of v into this vertical range. Let v1 . . . vk be the children
of the vertex v and let vi have a size of H(vi) × W (vi). If the minimal distance
between vertices is δ, then the minimal required vertical space for the children
of v is Σk

i=1(H(vi) + δ). Hence the inequality D(v) > Σk
i=1(H(vi) + δ) should

hold.
The layout algorithm first displays the root on the coordinate origin (i.e.

r0 = 0). For each depth h of the tree (beginning with h = 1) the algorithm
works as follows (see also Fig. 2):

Visual Exploration of RDF Data 677

(a) The vertical range (b) Vertical range distribution

Fig. 2. Layout algorithm – explanation

Let rcont be such radius, that triangle [rcont, 0], [0, 0], [0, rcont] completely con-
tains all vertices in layers l1 . . . lh−1. For each vertex v ∈ L(h − 1) the angle of
influence has already been computed. Let v1 . . . vk be the children of v and
H(v1) . . . H(vk) their heights. From the inequality D(v) > Σk

i=1(H(vi) + δ) we
compute the minimal required radius rmin for the children of v. Let r be the
maximum of the minimal required radii and the radius rcont. The vertices from
L(h) will be placed on layer with radius r. Radius r of the square and the angle
of influence of vertex v determine the vertical range D(v) for the sub-tree rooted
in v. The distance δ(v) between children of v has to be recomputed from the
inequality D(v) > Σk

i=1(H(vi) + δ(v)). Now, having global parameter r – radius
of the layer and for each vertex v ∈ L(h − 1) the parameter δ(v), we can com-
pute the display coordinates of children of v and their angles of influence. More
formally, for each vi with height H(vi) we determine the angle of influence of vi

and the coordinates of γ0(vi).
The angle of influence of the node v is divided among the children of v ac-

cording to a function f : V → 〈0, 1〉 where Σk
i=1f(vi) = 1.

Layout algorithm(T)
1 γ0(rT) ← [0, 0] //P lace the root vertex rT to the coordinates origin
2 α1(rT) ← 0, α2(rT) ← 90
3 for each h in {1, 2, . . .}
4 do
5 for each v in L(h − 1)
6 do COUNT(rmin(v))
7 r ← max{rcont, max{rmin(v) | v ∈ L(h − 1)}}
8
9 for each v in L(h − 1)

10 do COUNT(δ(v))
11 D(v) ← r ·

(
sin α2(v)

sin α2(v)+cos α2(v) − sin α1(v)
sin α1(v)+cos α1(v)

)
12 for each v in L(h − 1)
13 do α1(v0) ← α2(v), γ ← α2(v)
14 for i = 1 to k

678 J. Dokulil and J. Katreniaková

15 do
16 yaux ← r · sin γ

sin γ+cos γ
− H(vi) − δ(v)

17 γ ← arctg yaux
r−yaux

18 y(vi) ← yaux + δ(v)
2

19 x(vi) ← r − y(vi)
20
21 α2(vi) ← α1(vi−1)
22 yaux ← r · sin α2(vi)

sin α2(vi)+cos α2(vi)
− f(vi) · D(v)

23 α1(vi) ← arctg yaux
r−yaux

2.3 Vertical Range Distribution

The angle of influence of a node is divided among its children according to the
function f . Let v be a node and u1 . . . uk children of v. The only constraint for
the function f imposed by the algorithm is that Σk

i=1f(ui) = 1. The choice of
the function greatly affects the behavior of the visualization algorithm. In [6] we
proposed the following definition of f .

f(ui) =
H(ui) + δ∑k

j=1(H(uj) + δ)

In the following text we use rreq
i (v) to denote the minimal radius of layer li

such that all children of node v ∈ L(i − 1) fit into the angle of influence of the
node v. We also use rreq

i for max{rreq
i (v) | v ∈ L(i − 1)}.

Consider a tree (see Figure 3) Tk,p = (V, E) where all nodes are of the same
size (H and W) and

V = {v0,1} ∪ {vi,j | i ∈ {1 . . . p} ∧ j ∈ {1 . . . k}}
E = {(vi,1, vi+1,j) | i ∈ {0 . . . p − 1} ∧ j ∈ {1 . . . k}}

On every level of the tree, there is a critical node v such that rreq
i+1(v) = rreq

i+1.
Clearly v0,1 . . . vp−1,1 are critical nodes. We denote vi,1 as vi in the following text.

For a critical node vi the angle of influence covers
(∏i−1

j=0 k
)−1

of the total
vertical range of level li+1. We need to place k children of vi into this fraction
of the vertical range. Thus rreq

i+1 of the level li+1 is rreq
i+1 = rreq

i+1(vi) = H.
∏i

j=0 k.

(a) Tk,p = (V, E) (b) Tree T3,3

Fig. 3. Example of a tree that requires large area

Visual Exploration of RDF Data 679

The number of nodes in the tree Tk,p is N = k.p + 1, so the radius of lp is

rp ≥ rreq
p = H · kp = H ·

(
N − 1

p

)p

So the area required to draw the graph grows exponentially with the number
of nodes. This is not a good result from the theoretical point of view and it was
also confirmed by the implementation of the algorithm using real-world data.

A better choice seems to be such function f where the value of f(ui) is the
number of nodes of T (ui) (the tree rooted in ui) divided by the number of
nodes of T (v). In the following text we will prove, that this function produces
better drawings of the tree. The number of the nodes of T (v) is denoted N(v)
while N denotes the number of nodes in the whole tree. First, we compute
H = max{H(v) + δ | v ∈ V } and W = max{W (v) + δ | v ∈ V } and use them
as the heights and widths of all nodes in the graph and use δ = 0.

Lemma 1. Every node v is assigned at least N(v)
N of the vertical range available

to the whole layer that the v is positioned on.

Proof. For the root rT the statement holds (N(v)
N = 1).

Let v be a child of rT . Then v is assigned N(v)
N−1 of the vertical range and

N(v)
N−1 > N(v)

N so the statement holds.

Let v be a child of u. We already know, that u was assigned at least N(u)
N of the

vertical range. This vertical range is divided among the children of u. The node v

is assigned N(v)
N(u)−1 of the range of u, which totals to N(u)

N
N(v)

N(u)−1 = N(u)
N(u)−1

N(v)
N .

Since N(u)
N(u)−1

N(v)
N > N(v)

N the statement holds. 	

Lemma 2. For every node v ∈ L(i − 1) the required radius rreq
i (v) is at most

N · H.

Proof. The node v is assigned at least N(v)
N of the vertical range. The range has

to be divided among the children of v which means at most N(v) − 1 nodes.
Height of each child is H so the total height of the children of v is at most
H · (N(v) − 1). The N(v)

N fraction of the whole vertical range has to cover the
height of the children and since the total vertical range is equal to the radius ri

the value of ri must be big enough for ri
N(v)

N ≥ H(N(v) − 1) to hold. This is
equivalent to ri ≥ H N(v)−1

N(v) N . The value ri = N · H fulfills this condition. The
condition ri ≥ max{rreq

i (v) | v ∈ L(i)} implies rreq
i (v) ≤ ri = H · N . 	

For every layer li of the tree, the radius rreq
i required to fit all children is lesser

than N · H . The actual radius of layer li is one of the following

– rreq
i if ri−1 + (H + W) < rreq

i

– (H + W) · i if the path to the root contains no layer j where rreq
j = rj .

– rreq
j +(i − j − 1) · (H +W) where lj is the first layer on the path to the root

where rreq
j = rj .

680 J. Dokulil and J. Katreniaková

The maximal number of layers is N − 1. For the last layer lp, the rp is one of
the values:

– rreq
p ≤ N · H (inequation holds due to Lemma 2)

– (H + W) · p ≤ (H + W) · N since p ≤ N − 1.
– rreq

j +(p− j −1) · (H +W) ≤ rreq
1 +(p−2) · (H +W) ≤ N ·H +N · (H +W)

(Lemma 2 and p ≤ N − 1).

Thus rp ≤ N · H + N · (H + W) = N(2 · H + W). The area required to
draw the graph grows quadratically with the number of nodes but also with the
value of H and W . Since for rooted trees the layered drawings have quadratic
area requirement [15], the area is optimal. The widths of the nodes are limited
by the length of the longest label in the data. The heights are limited by the
highest node degree present in the data. Although both of these numbers could be
potentially very large (causing H and W to be large), for practical reasons they
can be limited by much lower threshold (only first part of the labels and some
of the edges are displayed). The user may still be given another way of accessing
the complete information. This approach is used in our implementation.

3 Implementation

We have implemented the proposed algorithm using the Semantic Web infras-
tructure developed at the Faculty of Mathematics and Physics of the Charles
University in Prague [4,1,2].

The layout algorithm is implemented independent of the data-source and the
user interface. At the moment, there is only a SDL-based user interface. This
interface displays the drawing to the user and enables him or her to scroll through
the whole drawing (it may not fit on the screen) and expand edges by clicking
their label in a merged node. For implementation reasons, the drawing is turned
upside down, so the origin of the coordinate system is in the upper left corner
and the y-axis grows downwards.

3.1 Node Merging

We use our novel technique called node merging to help the user navigate the
graph. Vertex does not contain only its label but also list of incoming and out-
going edges. This allows us to present the neighbors of the vertex to the user
without using too much space. Important advantage of this approach is the fact
that the user picks only the neighbors he or she is interested in and the view is
then extended only by these vertices. This way we eliminate problem that a RDF
node can have thousands (or even hundreds of thousands) of neighbors. Without
node merging we would either have to display all of the neighbors which would
hardly create a well-arranged and readable drawing of graph or the algorithm
would have to pick only a few of the neighbors to display. If node merging is used

Visual Exploration of RDF Data 681

Fig. 4. Example of a two-layered tree

and the number of neighbors is small, the neighbors can be displayed directly in
the vertex. If the number is higher, the list of neighbors is displayed in a separate
window with the option to filter the displayed entries, which allows handling of
even nodes with large number of neighbors.

Node merging is also useful for displaying certain special type of nodes. RDF
data usually contain nodes representing certain object with outgoing edges rep-
resenting its properties, e.g. a person together with his or her name, date of birth,
etc. Merged node for the person will contain the name and other information
directly so the user can see them without expanding the neighbors. Furthermore
a lot of drawing space is conserved since the user will probably be interested in
these values and would expand all of the neighbors which may mean adding tens
of vertices.

3.2 Animation

When the users expands an edge so that a new node is displayed a drawing of
the new tree has to be computed and displayed. To improve the user’s experience
the transition between the old drawing and the new drawing is animated in real-
time. This not only ‘looks nice’ but more importantly it helps the user maintain
connection between objects in the old and the new drawing. Using animation
between time-slices to show how nodes and edges are moved to the new positions
may also assist in preserving the mental map over time [16].

682 J. Dokulil and J. Katreniaková

Fig. 5. Example of a large tree

The animation is a simple linear transition of rectangles that represent nodes
and lines that represent edges.

3.3 Examples

We have tested the application using the data described in [17]. Figures 4 and 5
are screenshots of some of the visualizations produced by the system.

Darker nodes represent URIs while white nodes are literals. In the list of
incoming and outgoing edges, the black can be clicked and new node is displayed,
the gray ones represent edges that are already expanded.

4 Conclusion and Future Work

We have designed and implemented a visualization tool to supplement the se-
mantic web infrastructure. The visualization is capable of handling even very
large data. We believe it will aid in development of applications that use the
infrastructure.

The visualizer could be extended to generate queries based on the displayed
data (e.g. by making a query pattern that mirrors the currently displayed graph
but literals are converted to query parameters) creating a kind of query by ex-
ample system.

There is still room for improvement in the visualizer itself, especially handling
of non-tree edges. Although it is not a significant issue the number of intersec-
tions between edges and nodes can be further reduced or even eliminated.

Visual Exploration of RDF Data 683

References

1. Dokulil, J., Tykal, J., Yaghob, J., Zavoral, F.: Semantic Web Repository And In-
terfaces. In: UBICOMM 2007 (includes SEMAPRO 2007), pp. 223–228. IEEE, Los
Alamitos, California (2007)

2. Dokulil, J., Tykal, J., Yaghob, J., Zavoral, F.: Semantic Web Infrastructure.
In: First IEEE International Conference on Semantic Computing, Los Alamitos,
California, pp. 209–215 (2007)

3. Carroll, J.J., Klyne, G.: Resource description framework: Concepts and abstract
syntax. W3C Recommendation (2004)

4. Yaghob, J., Zavoral, F.: Semantic web infrastructure using datapile. In: Proceedings
of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and
Itelligent Agent Technology, pp. 630–633. IEEE, Los Alamitos (2006)

5. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in
information visualization: A survey. IEEE Trans. Vis. Comput. Graph 6(1), 24–43
(2000)

6. Dokulil, J., Katreniaková, J.: Visualization of large schemaless RDF data. In:
UBICOMM 2007 (includes SEMAPRO 2007), pp. 243–248. IEEE, Los Alamitos,
California (2007)

7. Dokulil, J., Katreniaková, J.: Vizualizácia RDF dát pomocou techniky zlučovania
vrcholov. In: Proc. of ITAT 2007: Information Technologies-Applications and The-
ory, Seňa, Slovakia, PONT, pp. 23–28 (2007)

8. Sayers, C.: Node-centric rdf graph visualization. Technical Report HPL-2004-60,
HP Laboratories Palo Alto (April 2004)

9. Pietriga, E.: IsaViz: A Visual Authoring Tool for RDF, http://www.w3.org/2001/
11/Isaviz/

10. Yee, K.P., Fisher, D., Dhamija, R., Hearst, M.A.: Animated exploration of dynamic
graphs with radial layout. In: INFOVIS, pp. 43–50 (2001)

11. Wood, J., Brodlie, K., Walton, J.: gViz - Visualization Middleware for e-Science. In:
VIS 2003. Proceedings of the 14th IEEE Visualization 2003, p. 82. IEEE Computer
Society, Washington, DC, USA (2003)

12. Deligiannidis, L., Kochut, K.J., Sheth, A.P.: User-Centered Incremental RDF Data
Exploration and Visualization. In: ESWC 2007 (submitted, 2006)

13. Goyal, S., Westenthaler, R.: RDF Gravity (RDF Graph Visualization Tool),
http://semweb.salzburgresearch.at/apps/rdf-gravity/user doc.html

14. Huang, W., Eades, P.: How people read graphs. In: Hong, S.H. (ed.) APVIS. CR-
PIT, vol. 45, pp. 51–58. Australian Computer Society, Australia (2005)

15. Reingold, E., Tilford, J.: Tidier Drawings of Trees. IEEE Transactions on Software
Engineering SE-7, 223–228 (1981)

16. Purchase, H.C., Hoggan, E., Görg, C.: How Important Is the ”Mental Map”? – An
Empirical Investigation of a Dynamic Graph Layout Algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007)

17. Dokulil, J.: Transforming Data from DataPile Structure into RDF. In: Proceedings
of the Dateso 2006 Workshop, Desna, Czech Republic, pp. 54–62 (2006)

http://www.w3.org/2001/11/Isaviz/
http://www.w3.org/2001/11/Isaviz/
http://semweb.salzburgresearch.at/apps/rdf-gravity/user_doc.html

	Visual Exploration of RDF Data
	Introduction
	Visualization Algorithm
	Comparison
	Triangle Layout Algorithm
	Vertical Range Distribution

	Implementation
	Node Merging
	Animation
	Examples

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

