
V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 659–671, 2008.
© Springer-Verlag Berlin Heidelberg 2008

3D_XML: A Three-Dimensional XML-Based Model

Khadija Ali1 and Jaroslav Pokorný2

1 Czech Technical University, Faculty of Electrical Engineering, Praha, Czech Republic
alik1@fel.cvut.cz

2 Charles University, Faculty of Mathematics and Physics, Praha, Czech Republic
jaroslav.pokorny@mff.cuni.cz

Abstract. Much research work has recently focused on the problem of
representing historical information in XML. In this paper, we describe an
ongoing work to represent XML changes. Our model is a three-dimensional
XML-based model (3D_XML in short) for representing and querying histories
of XML documents. The proposed model incorporates three time dimensions,
valid time, transaction time, and efficacy time without extending the syntax of
XML. We use XQuery to express complex temporal queries on the evolution of
the document contents. We believe that native XML databases (NXDs) present
a viable alternative to relational temporal databases when complex time
dependent data has to be manipulated and stored. So NXDs will be our choice.

Keywords: XML, 3D_XML model, transaction time, valid time, efficacy time,
XQuery, three-dimensional element, native XML databases.

1 Introduction

Recently, the amount of data available in XML [1] has been rapidly increasing. Much
research work has recently focused on adding temporal features to XML [2, 3, 5, 6, 7,
11]. Temporal information is supported in XML much better than in relational tables.
This property is attributed to the hierarchical structure of XML which is perfectly
compatible with the structure of temporal data. Recently, only few works capture the
notion of time explicitly in this context. Technically, to develop an XML temporal
data model, it is necessary to extend a XML data model by a time dimension. The
problem is that there is more XML data models (e.g. Infoset, XPath data model,
XQuery data model, etc.) and more times (usually valid and transaction times). The
main aim of this paper is to propose a temporal extension of XML. We propose a new
scheme to represent XML changes, and show how temporal queries can be supported
on this scheme.

An important issue of each data model is its implementation. There are two different
ways to store XML documents in a database: XML-enabled databases and native XML
databases (NXDs) [10]. The former map the data to existing (relational) database
systems. The latter are XML-database systems whose inner data representation is
XML-compliant. (NXDs) preserve data hierarchy and meaning of XML documents. So

660 K. Ali and J. Pokorný

(NXDs) will be our choice (particularly eXist [12]). In the following points we
summarize the motivation of this choice:

1. eXist is open-source, and free to use. It uses the numbering scheme which
supports quick identification of relationships between nodes as well as
navigation through the document tree.

2. It is schema independent. It is also very user friendly. It has been chosen best
XML database for InfoWorld's 2006 Technology of the Year awards. It’s a
worthwhile open source project for people who are interested in programming,
since it’s still incomplete.

The paper is organized as follows. After a discussion of related work in the next
section, in Section 3 we define formally a new model (3D_XML). In Section 4, we
deal with current-time (now), and show how it is supported in 3D_XML. We describe
the temporal constructs of 3D_XML in Section 5. In Section 6 we illustrate that
XQuery is capable of expressing complex temporal queries, but the expression of
these queries can be greatly simplified by a suitable library of built-in temporal
functions. Finally, in Section 7, we present our conclusions and future investigations.

2 Related Work

In the following subsections we provide a comparison of some works which have
made important contributions in providing expressive and efficient means to model,
store, and query XML-based temporal data models [2, 3, 5, 6, 7, 11] according to the
following properties: time dimension (valid time, transaction time), support of
temporal elements and attributes, querying possibilities, association to XML
Schema/DTD, and influence on XML syntax [9].

Time dimension. All the models are capable to represent changes in an XML
document by supporting temporal elements, and incorporating time dimensions. Two
time dimensions are usually considered: valid time and transaction time. There are
several other temporal dimensions that have been also mentioned in the literature in
relation to XML. In [7] a publication time and efficiency time in the context of legal
documents are proposed.

Temporal elements and attributes. Time dimensions may be applied to elements
and attributes. All the models are capable to support temporal elements. In [3] and
[11] the temporal attributes are supported. In [3] versions of an element are explicitly
associated as being facets of the same (multidimensional) element. Grouping facets
together allows the formulation of cross-world queries, which relate facets that hold
under different worlds [14].

Influence on XML syntax. Only in [3] the syntax of XML is extended in order to
incorporate not only time dimensions but also other dimensions such as language,
degree of detail, etc. So the approach in [3] is more general than other approaches as
it allows the treatment of multiple dimensions in a uniform manner.

Querying possibilities. The model’s power depends also on supporting powerful
temporal queries. In [5] and [11] powerful temporal queries expressed in XQuery
without extending the language are supported. In [6] a valid time support is added to

 3D_XML: A Three-Dimensional XML-Based Model 661

XPath. This support results in an extended data model and query language. In [7]
querying uses combination of full text retrieval and XQuery extended by some
constructs to deal with time dimensions. The other models in [2] and [3] did not discuss
the issue of temporal queries; in [2] elements have timestamps if they are different from
the parent nodes. This fact complicates the task of writing queries in XPath/XQuery.

Association to XML Schema/DTD. A significant advantage will be added to the
model if it is not only representing the history of an XML document but also the history
of its corresponding XML schema or DTD as well. In [3], [7], and [11] the temporal
XML schema/DTD is supported by extending the existing XML schema/DTD.

3 3D_XML Formalism

We shortly introduce three time dimensions in Section 3.1 as they are usually used in
temporal databases. Then in Section 3.2 and Section 3.3, we describe our time and
data models.

3.1 Time Dimensions

Three temporal dimensions are considered; valid time, transaction time, and efficacy time.

• Valid time: the valid time of the fact is the time when the fact is valid, or true in
the modeled reality.

• Transaction time: it concerns the time the fact was present in the database as stored
data. In other words, the transaction time of the fact identifies the time when the
fact is inserted into the database and the time when that fact is removed from the
database.

• Efficacy time: it usually corresponds to the valid time, but it can be a case that an
abrogated data continues to be applicable to a limited number of cases. Until such
cases cease to exit, the data continues its efficacy [7].

We extend the above efficacy time definition by assuming that it can be a case that
valid data stops to be applicable to a limited number of cases. When such cases cease
to exit, the data stops its efficacy.

Example 1: Consider a company database. Suppose the manager mgr of Design
department is Esra from "2002-01-01" till "2006-09-25". Due to some
unexpected circumstances, another person started managing Design department
from "2002-09-08". Esra stopped managing Design department from
"2002-09-08" till "2006-09-25"; this case represents when valid data stops
to be applicable. Suppose the efficacy time start is the same as the valid time start. The
element mgr is timestamped by "2002-01-01", "2006-09-25", "2002-
01-01", and "2002-09-07" which represent valid time start, valid time end,
efficacy time start, efficacy time end, respectively. In this example, the valid time end
"2006-09-25" is greater than efficacy time end "2002-09-07". Figure 1
represents the valid time interval when Esra is a manager of Design department, its
efficacy time interval, while the last part represents the time interval when Esra
stopped managing Design department. Figure 2 depicts valid and efficacy times

662 K. Ali and J. Pokorný

relationship. Valid time is represented by a time interval (vtStart, vtEnd).
Efficacy time is represented by a time interval (etStart, etEnd). The relationship
between valid time and efficacy time falls into three categories:

1. (vtStart < etStart) or (vtEnd > etEnd); it represents a case valid
data stops to be applicable.

2. (vtStart > etStart)or (vtEnd < etEnd); it represents a case data is
applicable although it is not valid.

3. (vtStart = etStart), and (vtEnd = etEnd); it represents the normal case.

Valid time start

2002-01-01

Valid time end

2006-09-25

Efficacy time start

2002-01-01

 Efficacy time end

2002-09-07

2002-09-08 2006-09-25

The time interval when Esra stopped

managing Design department

 vtStart fact vtEnd

 etStart etEnd

Fig. 1. Valid and efficacy times of mgr in
Example 1

Fig. 2. Valid and efficacy times relationship

3.2 Time Model

In order to represent the changes in an XML document we encode this document as a
3D_XML document in which the syntax of XML is not extended to incorporate the
three time dimensions. Instead of retaining multiple instances of the XML document,
we retain a single representation of all successive versions of the document. Although
time itself is perceived by most to be continuous, the discrete model is generally used.
The time can be bounded in the past and in the future. A finite encoding implies
bounds from the left (i.e., the existence of time start) and from the right (time end). In
any specific application, the granularity of time has some practical magnitude. For
instance, the time point of business event, such as a purchase, is associated with a
date, so that a day is the proper granule for most business transactions.

Our assumptions

• The time domain T is linear and discrete. A time constant t = [a, b], is either a time
instant or a time interval. In a time instant constant, a = b, whereas in an interval
constant b > a. It is clear that the time constant is represented with the beginning
and ending instants, in a closed representation. In other words a and b are included
in the interval. A bounded discrete representation as integer count of the instants
since the origin is our option.

• We limit our event measures to dates (granularity = one day).
• now is a special symbol, such that t < now for every t ∈T, representing current

time. We will highlight supporting now in 3D_XML in Section 4.

 3D_XML: A Three-Dimensional XML-Based Model 663

• The valid time constant vt = [vtStart, vtEnd], vtStart, and vtEnd represent the valid
time start and valid time end, respectively. The efficacy time constant et = [etStart,

etEnd], etStart, and etEnd represent the efficacy time start and efficacy time end,
respectively. The transaction time constant tt = [ttStart, ttEnd], ttStart, and ttEnd
represent the transaction time start and transaction time end, respectively.

Definition 1. Valid time of an element/attribute in 3D_XML document D is
represented as n valid time constants vt1, vt2,…, vtn, where each vti represents a time
constant when the element/attribute is valid. Each vti, is called the ith version of D. For
each pair (vti, vtj), i, j∈ [1, n] and i ≠ j, the following constraint is held:

vti ∩ vtj = ø (valid time constants disjunction)

Definition 2. Efficacy time of an element/attribute in 3D_XML document D is
represented as n efficacy time constants et1, et2,…, etn, where each eti represents a time
constant when the element/attribute is efficient. For each pair (eti, etj), i, j∈ [1, n] and
i ≠ j, the following constraint is held:

eti ∩ etj = ø (efficacy time constants disjunction)

The efficacy time usually corresponds to valid time; in this case,
elements/attributes are retrieved by their valid time. Otherwise, if efficacy time is
different from valid time, elements/attributes will be retrieved by their efficacy time.

Definition 3. (Inheritance constraints). An element e with a valid time constant vt and
an efficacy time constant et having m children e1, e2, …, em, where child ei has k valid
time constants vti1, vti2, …, vtik, and q efficacy time constants eti1, eti2,…, etiq, is
consistent if the following conditions hold:

 ∪ vtij vt (valid time inheritance constraint)
 1≤ j ≤ k

 ∪ etij et (efficacy time inheritance constraint)
 1≤ j ≤ q

Data manipulation system of 3D_XML (left as future work) preserves the above
constraints, i.e. inheritance /disjunction constraints, via user-defined functions.

3.3 Data Modeling

A time-varying XML document records a version history, which consists of the
information in each version, along with timestamps indicating its lifetime.

Definition 4. A three-dimensional XML document (3D_XML document in short) is an
XML document in which the three time dimensions, valid time, transaction time, and
efficacy time are applied to at least one element/attribute.

Definition 5. A three-dimensional element/attribute (3D_XML element/attribute in
short) is an element/attribute whose content depends on all the three time dimensions.

We will show how temporal elements and temporal attributes can be represented in
3D_XML. A temporal element can be specified in DTD notation as one of the
following two structures:

664 K. Ali and J. Pokorný

(1) <!ELEMENT element_name+>
 <!ATTLIST element_name vtStart CDATA #REQUIRED

 vtEnd CDATA #REQUIRED
 ttStart CDATA #REQUIRED
 ttEnd CDATA #REQUIRED
 etStart CDATA #REQUIRED
 etEnd CDATA #REQUIRED>

(2) <!ELEMENT element_name+>
 <!ATTLIST element_name inherits CDATA #REQUIRED>

We can infer from the above two structures the following observations:

1. A temporal element is represented with one or more elements having the same
name; each element represents one version.

2. The three time dimensions are added to a temporal element as attributes. For
instance, vtStarti, vtEndi, ttStarti, ttEndi, etStarti, and
etEndi represent valid time start, valid time end, transaction time start,
transaction time end, efficacy time start, and efficacy time end, respectively, in the
ith version, i ∈ [1, n]. The absence of the above three time dimensions implies that
the element inherits them from one of its ancestors; the optional special attribute
inherits = (1, 2, …, n) represents the first ancestor (parent), second ancestor
(parent of parent),…, and the root, respectively.

In [2] elements have timestamps if they are different from the parent nodes. This fact
complicates the task of writing queries in XPath/XQuery. We preferred to keep track of
timestamps of such kind of elements having their timestamps are not different from the
parent (or ancestor) nodes by a special attribute inherits representing the ancestor’s
level. The advantage of this approach is obvious; it facilitates the task of writing
powerful queries in XQuery, beside supporting a more effective implementation.

To declare a temporal attribute, the following DTD syntax is used:

<!ELEMENT temporal_Attribute+>
<!ATTLIST temporal_Attribute name CDATA #REQUIRED

value CDATA #REQUIRED
vtStart CDATA #REQUIRED
vtEnd CDATA #REQUIRED
ttStart CDATA #REQUIRED
ttEnd CDATA #REQUIRED
etStart CDATA #REQUIRED
etEnd CDATA #REQUIRED>

We infer from the above form:

• A temporal attribute can be supported in our 3D_XML model by representing it by
a special empty element temporal_Attribute. Representing time
dimensions is similar to time dimensions in temporal elements.

• The name and value of the temporal attribute are represented by special attributes
name and value. The transformation from a temporal_Attribute element
to an attribute is simple and can be implemented in XQuery.

 3D_XML: A Three-Dimensional XML-Based Model 665

Example 2: Assume that the history of an employee is described in a 3D_XML
document called employee1.xml as shown in Figure 3, where we shortened
Start and End substrings to S and E, respectively, due to the space limitations. The
element employee has five subelements: emp_no, name, dept, job and salary.

1. emp_no, name, and dept inherit their time dimensions, i.e. valid time,
transaction time, and efficacy time from the first ancestor (parent); this fact is
represented by assigning 1 to the attribute inherits (inherits = "1").

2. Notice that salary contains a temporal attribute currency. Let us assume that
the salary is paid in crown before "2015-01-01", and in euro after that date due
to the expected change of currency in Czech Republic. Notice that the used
currency crown will be valid till 2014-12-31; valid time end of
temporal_Attribute element (with the value crown) is 2014-12-31.

3. Anas’s job is changed from Engineer to Sr Engineer on 2005-09-02.
Subsequently, his salary is changed from 60000 to 90000, in the same date. In this
case the old version of salary (salary=60000) is definitely no longer
applicable, hence efficacy time has been stopped to "2005-09-01" like validity.

<employee vtS="2000-01-01" vtE="now" ttS="2000-01-01"
ttE="now" etS="2000-01-01" etE="now">
<emp_no inherits=”1”>111</emp_no>
<name inherits=”1”>Anas</name>
<dept inherits=”1”>Design</dept>
<job vtS="2000-08-31" vtE="2005-09-01" ttS="2000-08-31"

 ttE="2005-09-30" etS="2000-08-31" etE="2005-09-01">
 Engineer</job>
<job vtS="2005-09-02" vtE="now" ttS="2005-10-01"
 ttE="now" etS="2005-09-02" etE="now">Sr Engineer</job>
<salary vtS="2000-08-31" vtE="2005-09-01" ttS="2000-08-
 31" ttE="2005-09-30" etS="2000-08-31" etE="2005-09-
 01">60000

<temporal_Attribute name="currency" value="crown"
 vtS="2000-08-31" vtE="2014-12-31" ttS="2000-09-01"
 ttE="now" etS="2000-08-31" etE="2014-12-31"/>
<temporal_Attribute name="currency" value="euro"
 vtS= "2015-01-01" vtE="now" ttS="2000-09-01"
 ttE="now" etS="2015-01-01" etE=="now"/>

</salary>
<salary vtS="2005-09-02" vtE="now" ttS="2005-10-01"
 ttE="now" etS="2005-09-02" etE="now">90000

<temporal_Attribute name="currency" value="crown"
 vtS="2000-08-31" vtE="2014-12-31" ttS="2000-09-01"
 ttE="now" etS="2000-08-31" etE="2014-12-31"/>
<temporal_Attribute name="currency" value="euro"
 vtS="2015-01-01" vtE="now" ttS="2000-09-01"
 ttE="now" etS="2015-01-01" etE=="now"/>

</salary> </employee>

Fig. 3. employee1.xml: information about an employee encoded in 3D_XML

666 K. Ali and J. Pokorný

4 Supporting for “now”

Now-relative data are temporal data where the end time of their validity follows the
current time. Now-relative data are natural and meaningful part of every temporal
database as well as being the focus of most queries [13]. Different approaches are
used to represent current time in XML temporal databases. A common approach is to
represent current time as unrealistic large date most often used “9999-12-31“. Due to
the nature of XML and native XML databases to store all data as text, it is possible to
represent current time by words such as “now“ or “UC“ or “∞“; “UC“ means
(untilchanged). We express a right-unlimited time interval as [t, now]; although
“now“ is often used in temporal database literature for valid time, we will use it for all
the three time dimensions. Usage of the following user-defined function check-now
ensures that the temporal query yields the correct answer when a right-unlimited time
interval [t, now] is included in the query.

declare function check-now ($d)as xs:date
{if ($d = "now") then xs:date(current-date())
 else xs:date($d)};

As “now” can only appear as a time end of an interval, in case of valid and efficacy
time intervals it means a fact is valid and efficient until now, respectively, while in the
case of transaction time interval it means no changes until now.

5 Temporal Constructs

For simplicity, in all the following temporal constructs, we omitted the above user-
defined function check-now.

5.1 Get Time Dimensions

The user-defined functions: get_vtStart, get_vtEnd, get_etStart,
get_etEnd, get_ttStart, and get_ttEnd retrieve valid time start, valid
time end, efficacy time start, efficacy time end, transaction time start, and transaction
time end, respectively. The absence of the above time dimensions implies that the
element inherits them from one of its ancestors; note that the level of the ancestor is
identified by the special attribute inherits. Because of space limitation, we define
only get_vtStart. The other functions can be defined in a similar way.

declare function get_vtStart ($s)
{ let $g := string($s/@inherits)
 return if ($g)
 then xs:date($s/ancestor::node()[$g]/@vtStart)
 else xs:date($s/@vtStart)};

5.2 Fixed Duration

XML and XQuery support an adequate set of built-in temporal types, including date,
dayTimeDuration, making the period-based query convenient to express in XQuery.
A user-defined function fixedDuration is defined as follows:

 3D_XML: A Three-Dimensional XML-Based Model 667

declare function fixedDuration($node, $length as
xdt:dayTimeDuration)
{let $dur := get_vtEnd($node)- get_vtStart($node)
 return (if ($dur eq $length) then true()
 else false())};

It checks the length of the valid time interval of the element ($node), and returns true
if this length equals a given length ($length), and false otherwise.

5.3 Valid/Efficient Times Relationships Constructs

Here we focus on the temporal constructs related to Valid/efficacy times relationship.

declare function valid-notEfficient($a)
{if (get_etStart($a) > get_vtStart($a) or get_etEnd($a)<
 get_vtEnd($a)) then true()else false()};
valid-notEfficient is a user-defined function which checks if the element

($a) is valid but not efficient (if $a/@etStart > $a/@vtStart or
$a/@etEnd < $a/@vtEnd (see Figure 1 and Figure 2)).

5.4 Snapshot Data

Snapshot data – in the literature of databases – in the simplest sense, is the
database state in a specific time point. The time point can be the current date
(now), or any time point in the past, it can also be in the future, if it is expected
that some facts will be true at a specified time after now. Next, we define the
snapshot function dataShot which can be used to construct snapshots of 3D-
XML documents.
declare function dataShot ($e, $v)
{ if (get_vtStart($e)<= xs:date($v) and
 get_vtEnd($e) >= xs:date($v))
 then element {name($e)}
 {$e/text(),$e/@* except
 $e/@*[string(name(.))="vtStart" or string(name(.))=
 "vtEnd" or string(name(.))="etStart" or
 string(name(.))="etEnd" or string(name(.))="ttStart"
 or string(name(.))= "ttEnd"], for $c in $e/*
 return dataShot ($c, $v)} else () };

Here dataShot is a recursive XQuery function that checks the valid time interval
of the element and only returns the element and its descendants if vtStart <= $v
<= vtEnd. (vtStart, vtEnd) represent valid time interval of the element
($e) , while $v represnts a specific time point. Note that except is an XQuery
function discarding the attributes: vtStart, vtEnd, etStart, etEnd,
ttStart, and ttEnd from the query’s result.

668 K. Ali and J. Pokorný

5.5 Interval Comparison Operators

A small library of interval comparison operators is defined to help users with interval-
based queries. Due to space limitation we define only three interval comparison
operators: Tcontains, Toverlaps, and TmeeTs, respectively.

declare function Tcontains ($x, $y)
if (get_vtStart($x)) <= get_vtStart($y) and
get_vtEnd($x)>= get_vtEnd($y))then true() else false()};

Tcontains returns true if one element contains another one and false otherwise;
it checks if the valid time interval $x contains the valid time interval of $y.

declare function Toverlaps($x, $y)
{if (get_vtStart($x) <= get_vtEnd($y) and
 get_vtStart($y) <= get_vtEnd($x))
 then true() else false() };

 Toverlaps checks if the element ($x) overlaps the element ($y).
declare function TmeeTs ($x as xs:date, $y as xs:date)
{let $d := $y - $x
 return if(compare($d,"P1D")=0)then true()
 else false()};

TmeeTs is a user-defined function checks if the first date ($x) precedes the
second date($y) by one day; "P1D" is a duration constant of one day in XQuery.
Note that compare is an XQuery function returning -1, 0, or 1, depending on
whether the value of ($d) is respectively less than, equal to, or greater than one day.

5.6 Break Construct

The valid time constants, efficacy time constants belonging to an element/attribute
may appear either with breaks, or without breaks. An occurrence of a break implies
that there exist at least two versions of the element/attribute, i and i+1, such that their
valid time constants are not adjacent.

Definition 6 (Breaks). An element e with a valid time constant vt and an efficacy time
constant et, is said to have breaks if there exist at least two versions of vt, i and i+1,
such that: vtStarti+1 - vtEndi is greater than one day ("P1D"), (i ∈ [1, n-1], n
represents the number of versions). If no such versions exist, the element e is said to
have no breaks.

declare function Tbreak($g)
{ let $c := count($g) - 1
 let $o := for $i in (1 to $c)
 let $j := $i +1

 return if (TmeeTs(get_vtEnd($g[$i]),
 get_vtStart($g[$j])))
 then() else ”break”
 return count ($o)};

 3D_XML: A Three-Dimensional XML-Based Model 669

The function of Tbreak is to check if the temporal element($g) has breaks. It
calls TmeeTs to check every two consecutive versions of the element ($g).
Tbreak returns the number of breaks if exist. TmeeTs is defined in Section 5.5.

6 Temporal Queries with XQuery

In all next temporal queries, we omitted the user-defined function check-now.
Note that, collection C1 consists of XML documents as employee1.xml.

Query 1. Find the employees (their names) who when worked as Engineer, their
salaries were 60000 at any time during that period.

for $j in collection ("C1")//employee/job[.="Engineer"]
for $s in collection ("C1")//employee/salary[.="60000"]
where $j/../emp_no = $s/../emp_no and Toverlaps($j,$s)
return $j/../name

Query 1 checks if the time interval of the job element with value Engineer
overlaps the valid time interval of the salary element with value 60000.
Toverlaps is defined in Section 5.5

Query 2. Retrieve employees assigned as Sr Engineer but they actually started work
in the new position later, return also the inefficient period’s length.

for $s in collection ("C1")//job[.= "Sr Engineer"]
let $diff := get_etStart($s) - get_vtStart($s)
where (valid-notEfficient ($s))
return if (days-from-duration($diff)>0)

 then <name inefficient_period="{$diff}">
 {data($s/../name)} </name> else ()

Query 2 returns the employee name along with the inefficient period length if
valid-notEfficient returns true. Note that days-from-duration is an
XQuery function which returns an xs:integer representing the days component in the
canonical lexical representation of the value of $diff.

Query 3. The next query returns the average of Ebtehal’s salaries (paid in crown).
for $d in collection ("C1")//employee[name="Ebtehal"]
return <avg>{avg($d//temporal_Attribute[@value="crown"
 and Tcontains(., ..)]/..)} </avg>

Query 3 checks if the valid time interval of temporal_Attribute element
(with the value crown) contains the valid time interval of its parent (salary); note
that temporal_Attribute is special empty subelements representing the
temporal attribute of an element, so the parent covering constraints is not considered
here.

Query 4. Return employee’s names who have one break in their employment
histories (fired and rehired) and their salaries have been changed for the first time at
any time when they are assigned in “Design“ department as “Sr Engineer“.

670 K. Ali and J. Pokorný

for $t in collection ("C1")//employee/job[.= "Engineer"]
for $dep in collection("C1")//employee/dept[.="Design"]
where $t/../emp_no = $dep/../emp_no
return if (Tcontains($dep, $t) and Toverlaps($dep/../
salary[1],$t)and Tbreak($dep/../job)= 1) then $dep/../
name else ()

Query 4 shows how a complex query can be greatly simplified by using a number
of user-defined functions, i.e., Tcontains, Toverlaps, and Tbreak.

7 Conclusions and Future Work

In this paper, we have introduced a new scheme to represent XML changes without
extending the syntax of XML. NXDs represent a suitable storage platform when
complex time dependent data has to be manipulated and stored, so we chose to
implement temporal queries directly in NXDs (particularly DBMS eXist). Although
NXDs provide many functionalities to support XML data (particularly temporal XML
data), supporting efficiently temporal queries/updates is a challenging issue. XQuery
is natively extensible and Turing-complete [8], and thus any extensions needed for
temporal queries can be defined in the language itself. This property distinguishes
XML temporal querying from that one in relational temporal languages, e.g. TSQL.
So, any syntax extension of XQuery towards temporalness, e.g. τXQuery [4], makes
only queries easier to write. We conclude that XML provides a flexible mechanism to
represent complex temporal data without extending the current standards [9]. The
future work is directed to add more temporal constructs in order to support more
powerful temporal queries. Many research issues remain open at the physical level,
including the support of updates on historical data. Updates will be a real area of
future investigation. Also, in order to improve the performance of our system, we plan
to evaluate the effectiveness of the temporal queries.

Acknowledgement. This paper was partly supported by the National programme of
research (Information society project 1ET100300419).

References

1. W3C: Extensible Markup Language (XML) 1.1. 3rd edn. W3C Recommendation
(February 04, 2004), http://www.w3.org/TR/xml11/

2. Buneman, P., Khanna, S., Tajima, K., Tan, W.: Archiving scientific data. In: Proc. of
ACM SIGMOD Int. Conference, pp. 1–12 (2002)

3. Gergatsoulis, M., Stavrakas, Y.: Representing Changes in XML Documents using
Dimensions. In: Proc. of 1st Int. XML Database Symposium, pp. 208–221 (2003)

4. Geo, D., Snodgrass, R.: Temporal slicing in the evaluation of XML queries. In: Proc. of
VLDB, Berlin, Germany, pp. 632–643 (2003)

5. Wang, F., Zaniolo, C.: XBIT: An XML-based Bitemporal Data Model. In: Proc. of 23rd
Int. Conference on Conceptual Modeling, Shanghai, China, pp. 810–824 (2004)

 3D_XML: A Three-Dimensional XML-Based Model 671

6. Zhang, S., Dyreson, C.: Adding Valid Time to XPath. In: Proc. of 2nd int. Workshop on
Database and Network Information Systems, Aizu, Japan, pp. 29–42 (2002)

7. Grandi, G., Mandreoli, F., Tiberio, P.: Temporal Modelling and Management of
Normative Documents in XML Format. Data and Knowledge Engineering 54(3), 227–254
(2005)

8. Kepser, S.: A Simple Proof of the Turing-Completeness of XSLT and XQuery. In: Proc. of
Extreme Markup Languages, Montréal, Québec (2004)

9. Ali, K., Pokorný, J.: A comparison of XML-based Temporal Models. In: SITIS 2006.
Proc. of 2nd int. conference on Signal-Image Technology & Internet–based Systems,
Hammamet, Tunisia, December 17-21, pp. 1–12 (2006)

10. Bourret, R.: Going native: making the case for XML Databases,
http://www.xml.com/pub/a/2005/03/30/native.html

11. Wang, F., Zaniolo, C.: Temporal Queries in XML Document Archives and Web
Warehouses. In: Proc. of 10th Int. Symposium on Temporal Representation and Reasoning,
pp. 47–55 (2003)

12. eXist Home page, http://exist.sourceforge.net/
13. Stantic, B., Governatori, G., Sattar, A.: Handling of Current Time in Native XML

Databases. In: Proc. of 17th Australian Database Conference, pp. 1–8 (December 2005)
14. Gergatsoulis, M., Stavrakas, Y., Doulkeridis, C., Zafeiris, V.: Representing and querying

histories of semistructured databases using multidimensional OEM. Inf. Syst. 29(6),
461–482 (2004)

	3D_XML: A Three-Dimensional XML-Based Model
	Introduction
	Related Work
	3D_XML Formalism
	Time Dimensions
	Time Model
	Data Modeling

	Supporting for “now”
	Temporal Constructs
	Get Time Dimensions
	Fixed Duration
	Valid/Efficient Times Relationships Constructs
	Snapshot Data
	Interval Comparison Operators
	Break Construct

	Temporal Queries with XQuery
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

