
Design and Management of Semantic Web Services using Conceptual Model

Martin Necasky, Jaroslav Pokorny
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

{martin.necasky, jaroslav.pokorny}@mff.cuni.cz

Abstract

There are emerging technologies such as SAWSDL
or WSMO that extend the current Web Services
technologies to so called Semantic Web Services by
combining the structural and semantic descriptions of
Web services. In this paper, we identify problems that
can arise when using these technologies for the
design and management of structural and semantic
descriptions of Web services. We show that using a
conceptual model instead of these technologies can
help to solve these problems. We also show how to
automatically derive the structural and semantic
description represented with SAWSDL from the
conceptual level because this representation brings
other advantages. The derivation of WSMO
representation is also possible.

1. Introduction

Web Services (WS) is a set of technologies for an
implementation of the service oriented architecture
(SOA) on the Web. Services, implemented as WS,
communicate by exchanging XML messages. Each
service provides an interface that describes its input
and output messages. Currently, WS Description
Language (WSDL) [8] is used as the interface
description language encapsulating XML Schema [6]
for describing the syntactical structure of messages.
However, it can not describe the semantics of the
messages. The semantics is handled implicitly by the
provider and clients. Therefore, the processes of
automatic discovery and composition of services are
hard to solve. Recently, researchers have proposed an
extension of the current WS called Semantic Web
Services (SWS) that should help to automate these
processes by describing the semantics with ontologies.
The provider publishes XML schemes, called source
schemes, which are the structural description of the
messages, and binds the structural description with an

ontology, called target ontology, that provides the
semantic description. The binding is called grounding
and specifies how to translate the messages between
the structural and semantic data representation.

Grounding technologies are summarized in [3].
The most recent are SAWSDL [9] and WSMO [1].
SAWSDL extends WSDL and allows to specify the
grounding in the structural description, i.e. in XML
schemes. On the other hand, WSMO allows to specify
the grounding in the semantic description, i.e. in
ontologies. The third possibility, the grounding
externalized from both descriptions, has not been
addressed yet as discussed in [3].

We suppose that providers and clients of SWS will
form communities and will share ontologies inside but
not fully between the communities. Figure 1 shows a
motivating example. There is a Sales service with two
operations Process Order and Process Payment. The
structure of input and output messages is given by the
XML schemes shown at the figure. Because the
company wants to provide the customers with the
communication independent of this structure SWS are
used. The company provides the structural description
and the grounding to several target ontologies given

1-4244-0674-9/06/$20.00 ©2006 IEEE.

Figure 1. Sales Service Architecture

by different customer communities. Suppose that each
customer provides the grounding for the ontology of
its community. The figure shows ontologies of three
hypothetical communities. Suppose that a customer
from Community A sends an order message to Sales
Service. First, the message having the structure given
by the customer is translated to the semantic
repreasentation given by Community Ontology A using
the grounding provided by the customer and then
translated to the structural representation given by
Order XML Schema of Sales Service using the
grounding provided by the company. In this structural
representation, the order message can be delivered to
and processed by Sales Service. The translations are
performed automatically.

Contribution. SAWSDL and WSMO require to
provide the grounding for each source schema and
target ontology separately. Therefore, there can be up
to M:N groundings whose design and management is
decentralized to more different structural (in the case
of SAWSDL) or semantic (in the case of WSMO)
descriptions. If there is the same concept repeated in
more XML schemes the provider must specify the
grounding for this concept repeatedly. This is hard to
design and manage. On the other hand, the provider
usually has an internal data schema describing how
the data is represented by the back-end systems. This
schema is usually conceptual. The structural
description of the service interfaces usually results
from this internal schema. In this paper, we show how
to utilize this conceptual schema for grounding
externalized from both structural and semantic
descriptions which allows to design and manage the
descriptions and grounding of all provider's services
sharing the same data domain in one conceptual
schema. This possibility has not been addressed yet by
the recent technologies. On the other hand, it must be
possible to derive SAWSDL or WSMO grounding
from the externalized grounding because these
technologies have also advantages, as shown in [3].
For our approach, we employ a conceptual model for
XML called XSEM [4].

The rest of the paper is organized as follows. In
Section 2 we describe the XSEM model. In Section 3
we show how to use XSEM as the externalized
grounding and how to derive its SAWSDL
representation. We conclude in Section 4.

2. XSEM Model

XSEM is a conceptual model for XML data. It is
composed of two parts called XSEM-ER and XSEM-H.

XSEM-ER is used for modelling the semantics of the
data. It is based on E-R. Because of special features of
XML such as irregular structure, ordering, and mixed
content, it provides some extending modelling
constructs. The hierarchical structure of the data is not
important here, only the semantics is modelled. For a
more detail we refer to [4]. Figure 2 shows an XSEM-
ER schema of the internal data representation of the
company providing Sales Service. There are strong
entity types, such as Product, modelling stand-alone
real world objects. There are also weak entity types,
such as Item, modelling real world objects whose
existence depends on other objects that are modelled
by entity types connected to the weak entity type as so
called determinants. For example, Item has two
determinants, Order and Product. Moreover, there are
relationship types, such as For, modelling
relationships between two or more objects that are
modelled by entity types connected to the relationship
type as so called participants. For example, For has
two participants, Invoice and Order. Attributes of
entity and relationship types are not shown at the
figure.

With XSEM-H we specify how the components
from the XSEM-ER are organized in the hierarchical
XML documents. XSEM-H schemes are called
hierarchical views on the XSEM-ER schema. From
each hierarchical view an XML schema is derived.
The hierarchical view serves as a binding between the
conceptual XSEM-ER schema and the derived XML
schema. Figure 3 shows three hierarchical views on
the XSEM-ER schema from Figure 2. From the views
the XML schemes Order, Invoice, and Payment
providing the structural description of Sales Service
are derived.

Figure 2. XSEM-ER Schema

Figure 3. XSEM-H Hierarchical Views

3. Architecture

Figure 4 shows an overall architecture for the
design and management of Sales Service utilizing
XSEM. A human designer first designs an XSEM-ER
schema as an internal conceptual schema (it can be an
existing E-R schema as well) (1). Then he or she
designs the hierarchical views on the XSEM-ER
schema as the conceptual description of the Sales
Service interface (2). The structural description, i.e.
the XML schemes, is then derived automatically from
the hierarchical views (3). The grounding is not
specified directly between the XML schemes and the
target ontologies. Instead it is specified only once for
each target ontology on the conceptual level, i.e.
between the XSEM-ER conceptual schema and the
target ontology (4). The grounding represention with
SAWSDL or WSMO can be derived automatically
from this central conceptual grounding (5) (in the rest
of the paper we comprehend only SAWSDL because
of the lack of the space). The solid lines at the figure
denote a manual work of the designer and the dotted
lines denote an automatic derivation. If a change must
be made in the internal data schema, it is made in the
XSEM-ER conceptual schema and then propagated
automatically to the affected XML schemes and
groundings. Also changes in the target ontologies can
be propagated automatically to the grounding. In the
following two subsections we describe the conceptual
level grounding and the derivation of its SAWSDL
representation in detail.

3.1. Conceptual Level Grounding

The grounding on the conceptual level is not
provided directly for the XSEM-ER schema but for an
ontology that is automatically derived from the
XSEM-ER schema as shown at Figure 4. We call this
ontology derived ontology. Suppose OWL as an
ontology language. We represent each entity and
relationship type from the XSEM-ER schema as an
OWL class. If an entity type T1 is a determinant of a
weak entity type or a participant of a relationship type
T2 we add an OWL object property with the domain C1

and range C2 where C1 and C2 are the OWL classes
representing T1 and T2, respectively. Simple attributes
of entity and relationship types are represented by
OWL data type properties. A complex attribute, i.e.
composed of other attributes, is represented by a class
encapsulating the attributes composing the complex
attribute and connected with the corresponding class
by an object property. Even though we can not

reconstruct the XSEM-ER schema back from the
derived ontology (for example a class can represent an
entity type, relationship type, or complex attribute) it
contains sufficient information for the grounding.

Example 1 shows a part of the derived ontology for
the XSEM-ER schema from Figure 2 in the triple
notation. The names of classes are given by the
corresponding types in the XSEM-ER schema. For

Figure 4. Semantic Web Services Design Architecture

:Customer rdf:type owl:Class .
:has_name rdf:type owl:DataTypeProperty ;

rdfs:domain :Customer;
rdfs:range xs:string .

:Product rdf:type owl:Class .
:has_code rdf:type owl:DataTypeProperty ;

rdfs:domain :Product;
rdfs:range xs:string .

:has_title rdf:type owl:DataTypeProperty ;
rdfs:domain :Product;
rdfs:range xs:string .

:Order rdf:type owl:Class .
:has_ship_date rdf:type owl:DataTypeProperty ;

rdfs:domain :Order;
rdfs:range xs:date .

:has_customer rdf:type owl:ObjectProperty ;
rdfs:domain :Order;
rdfs:range :Customer .

:has_item rdf:type owl:ObjectProperty ;
rdfs:domain :Order;
rdfs:range :Item .

:Item rdf:type owl:Class .
:has_product rdf:type owl:ObjectProperty ;

rdfs:domain :Item;
rdfs:range :Product .

:has_order rdf:type owl:ObjectProperty ;
owl:inverseOf :has_item .

:has_price rdf:type owl:DataTypeProperty ;
rdfs:domain :Item;
rdfs:range xs:decimal .

Example 1. Derived Ontology

example there is a class Customer resulting from the
entity type Customer. The name of a property
representing a participant or determinant is the name
of the participant or determinant, respectively,
preceded by 'has_'. For example, because the entity
type Customer is a determinant of Order we derive an
object property has_customer. Properties representing
attributes are named in the same way.

With the XSEM-ER schema translated to the
derived ontology a grounding between the XSEM-ER
schema and a target ontology is a mapping between
the derived and target ontology. A mapping for each
target ontology must be specified. For this we can
profitably utilize existing languages for a mapping
between ontologies such as [5]. In [2] a survey of
mapping languages is provided. We can also use OWL
constructs for a basic mapping. Therefore, we do not
need to provide any extending constructs to ontology
languages. Provided the mapping between the derived
and target ontology we can find for each component in
the XSEM-ER schema a corresponding concept in the
target ontology, i.e. the mapping serves as the
conceptual level grounding.

3.2. SAWSDL Grounding Representation

SAWSDL extends XML Schema and WSDL with
three attributes. The attribute modelReference is used
to specify an association between an XML schema
component and a concept in a semantic model. The
attributes liftingSchemaMapping and lowering-
SchemaMapping are used to specify XSLT mappings
between the structural and semantic representations.

Firstly, we show the derivation of XML schemes
from hierarchical views. If a node is the root node or
the edge going to the node has a label then it is
translated to a complex type definition. Otherwise it is
translated to a group. The content of the complex type
or group, respectively, is given by the attributes of the
node and the edges going from the node. Each
attribute and labeled edge is translated to an element
declaration with the corresponding type. An edge
without a label is translated to a reference to the group
representing the child node of the edge. Example 2
shows an XML schema derived from the first
hierarchical view at Figure 3. There is an element
declaration order for the root node from the view with
the corresponding complex type definition Order. It
contains an element declaration corresponding to an
attribute shipDate of Order and element declarations
corresponding to the edges going from the root node.
These element declarations are named with the labels

of the edges, i.e. customer and item. The translation
continues recursively to the descendant nodes. The
only difference is in the translation of the edge going
from Item to Product which has no label. This can not
be translated to an element declaration because we do
not have a name for it. Therefore, we merge the
content corresponding to Product with the content
corresponding to Item. However, we need to
distinguish which element declarations belong to
Product and which to Item on the schema level.
Therefore, we use a mechanism of XML Schema
groups as shown by the example.

Secondly, we show the derivation of the grounding
for XML schemes derived from hierarchical views.
There are two possibilities. The simpler possibility is
to derive the grounding to the derived ontology. Then
we can use a semantic reasoner to dynamically
translate between the semantic representations given
by the derived and target ontology using the mapping
between them. The second possibility is to derive the

<xs:element name="order" type="Order"/>
<xs:complexType name="Order"

sawsdl:modelReference="d_ont#Order"
sawsdl:liftingSchemaMapping="Order.xslt">

 <xs:sequence>
 <xs:element name="shipDate" type="xs:date"

sawsdl:modelReference="d_ont#has_ship_date"/>
 <xs:element name="customer" type="Customer"

sawsdl:modelReference="d_ont#has_customer"/>
 <xs:element name="item" type="Item"

maxOccurs="unbounded"
sawsdl:modelReference="d_ont#has_item"/>

 </xs:sequence>
</xs:complexType>
<xs:complexType name="Customer"

sawsdl:modelReference="d_ont#Customer">
 <xs:sequence>
 <xs:element name="name" type="xs:string"

sawsdl:modelReference="d_ont#has_name"/>
 <xs:group name="Product" />
 </xs:sequence>
</xs:complexType>
<xs:complexType name="Item"

sawsdl:modelReference="d_ont#Item">
 <xs:sequence>
 <xs:element name="price" type="xs:decimal"

sawsdl:modelReference="d_ont#has_price"/>
 <xs:group name="Product" />
 </xs:sequence>
</xs:complexType>
<xs:group name="Product"

sawsdl:modelReference="d_ont#Product">
 <xs:sequence>
 <xs:element name="code" type="xs:string"

sawsdl:modelReference="d_ont:has_code" />
 <xs:element name="title" type="xs:string"

sawsdl:modelReference="d_ont:has_title" />
 </xs:sequence>
</xs:group>

Example 2. XML Schema with SAWSDL Grounding

grounding for each target ontology separately. In this
paper we show only the first possibility.

The SAWSDL grounding of an XML schema to the
derived ontology consists of two parts. Firstly, each
component in the XML schema must be bounded with
the corresponding concept from the derived ontology
using modelReference. Each complex type declaration
or group resulting from a node in the hierarchical
view is bounded with the class in the derived ontology
corresponding to the node. For example, the complex
type declaration resulting from the node Order is
bounded with the class Order from the derived
ontology at Example 2. Further, each element
definition resulting from an attribute or edge is
bounded with the corresponding property in the
ontology. For example, the element definition
shipDate is bounded with the property has_ship_date
and customer is bounded with has_customer.

Secondly, the lifting and lowering XSLT mappings
are generated automatically for the XML schema from
the corresponding hierarchical view. We show how to
generate the lifting schema. It transforms source XML
messages from the structural to semantic
representation given by the derived ontology. The
semantic representation is serialized in RDF/XML.
For each node in the hierarchical view we create an
XSLT template matching the corresponding elements
in the source XML messages. This template
transforms the matched elements to their semantic
representation. We start with a template matching the
root of the source XML message. Its semantic
representation in the RDF/XML serialization is an
element with the name of the corresponding class
from the derived ontology. Each property is
represented by a child element with the name of the
property. If it is a data type property, its value is
extracted with an XPath expression from the source
XML message. If it is an object property its value is
constructed recursively.

Example 3 shows a sample template from the
XSLT mapping derived from the first hierarchical

view at Figure 3. It matches the root element order.
According to the derived ontology, the element is
transformed to its semantic representation serialized
in RDF/XML as an element Order. The child
elements of order, i.e. shipDate, customer, and item,
correspond to properties that are serialized to the child
elements of the element Order, i.e. has_ship_date,
has_customer, and has_item, respectively. The value
of the first property is retrieved with an XPath
expression. The value of the other two properties are
reconstructed with corresponding templates that are
derived from the hierarchical view in the same way.

4. Conclusions

In this paper we showed how to use a conceptual
model for XML data as a technology for binding
structural and semantic descriptions of Semantic Web
Services. We showed that the specification of the
binding on the conceptual level has advantages when
designing and managing Semantic Web Services. We
also showed how to automatically translate the
conceptual level binding to the representation using
existing technologies, concretely SAWSDL, because
these technologies have other advantages that may be
required by clients and providers of services.

Acknowledgement. This paper was supported by the
National programme of research (Information society project
1ET100300419).

[1] C. Feier, J. Domingue, ”WSMO Primer”, Final Draft,
April 2005, http://www.wsmo.org/TR/d3/d3.1/v0.1/.
[2] Y. Kalfoglou and W.M. Schorlemmer, ”Ontology
Mapping: The State of the Art”, Semantic Interoperability
and Integration, Schloss Dagstuhl, Germany, 2005.
[3] J. Kopecky, D. Roman, M. Moran, D. Fensel, "Semantic
Web Services Grounding", AICT/ICIW, IEEE Computer
Society, 2006, p. 127.
[4] M. Necasky, "XSEM - A Conceptual Model for XML",
In Proc. of Asia Pacific Conference on Conceptual
Modelling, Ballarat, Australia. CRPIT, 67, 2007, pp. 37-48.
[5] F. Scharffe, J. Bruijn, "A language to specify mappings
between ontologies", Proceedings of the First International
IEEE Conference on Signal-Image Technology and
Internet-Based Systems, 2005, pp. 267-271.
[6] W3C. "XML Schema Part 0: Primer Second Edition",
Recommendation, October 2004.
[7] W3C. "XSL transformations (XSLT) version 2.0",
Candidate Recommendation, November 2005.
[8] W3C, ”Web Services Description Language (WSDL)
Version 2.0”, Working Draft, March 2007.
[9] W3C, ”Semantic Annotations for WSDL and XML
Schema”, Candidate Recommendation, January 2007.

<xsl:template match="/order">
 <Order>
 <has_ship_date><xsl:value-of select="shipDate"/>
 </has_ship_date>
 <has_customer>
 <xsl:apply-templates select="customer"/>
 </has_customer>
 <has_item><xsl:apply-templates select="item"/>
 </has_item>
 </Order>
</xsl:template>

Example 3. Structural to Semantic Mapping

