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Abstract

There are emerging technologies such as SAWSDL 
or  WSMO  that  extend  the  current  Web  Services  
technologies  to so called  Semantic  Web Services  by  
combining the structural and semantic descriptions of  
Web services. In this paper, we identify problems that  
can  arise  when  using  these  technologies  for  the  
design  and  management  of  structural  and  semantic  
descriptions  of  Web services.  We show that  using  a 
conceptual  model  instead  of  these  technologies  can  
help to  solve  these  problems.  We also  show how to  
automatically  derive  the  structural  and  semantic  
description  represented  with  SAWSDL  from  the  
conceptual  level  because  this  representation  brings  
other  advantages.  The  derivation  of  WSMO 
representation is also possible.

1. Introduction

Web Services (WS) is a set of technologies for an 
implementation  of  the  service  oriented  architecture 
(SOA)  on  the  Web.  Services,  implemented  as  WS, 
communicate  by exchanging  XML  messages.  Each 
service provides an  interface that  describes its  input 
and  output  messages.  Currently,  WS  Description 
Language  (WSDL)  [8] is  used  as  the  interface 
description language encapsulating XML Schema  [6] 
for  describing  the  syntactical  structure  of messages. 
However,  it  can  not  describe  the  semantics  of  the 
messages. The semantics is handled implicitly by the 
provider  and  clients.  Therefore,  the  processes  of 
automatic  discovery and  composition  of services  are 
hard to solve. Recently, researchers have proposed an 
extension  of  the  current  WS  called  Semantic  Web 
Services (SWS)  that  should  help  to  automate  these 
processes by describing the semantics with ontologies. 
The provider  publishes XML schemes, called  source  
schemes,  which  are  the  structural  description of the 
messages, and binds the structural description with an 

ontology,  called  target  ontology,  that  provides  the 
semantic description. The binding is called grounding  
and  specifies how to translate  the messages between 
the structural and semantic data representation.

Grounding  technologies  are  summarized  in  [3]. 
The  most  recent  are  SAWSDL  [9] and  WSMO  [1]. 
SAWSDL extends  WSDL and  allows to  specify the 
grounding  in  the structural  description,  i.e.  in  XML 
schemes.  On the other hand, WSMO allows to specify 
the  grounding  in  the  semantic  description,  i.e.  in 
ontologies.  The  third  possibility,  the  grounding 
externalized  from  both  descriptions,  has  not  been 
addressed yet as discussed in [3].

We suppose that providers and clients of SWS will 
form communities and will share ontologies inside but 
not fully between  the communities. Figure 1 shows a 
motivating example. There is a Sales service with two 
operations  Process Order  and  Process Payment.  The 
structure of input and output messages is given by the 
XML  schemes  shown  at  the  figure.  Because  the 
company  wants  to  provide  the  customers  with  the 
communication independent of this structure SWS are 
used. The company provides the structural description 
and  the grounding  to several  target  ontologies given 
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Figure 1. Sales Service Architecture



by different customer communities. Suppose that each 
customer provides the grounding  for the ontology of 
its  community. The figure shows ontologies of three 
hypothetical  communities.  Suppose  that  a  customer 
from  Community  A  sends an order  message to  Sales  
Service. First, the message having the structure given 
by  the  customer  is  translated  to  the  semantic 
repreasentation given by Community Ontology A using 
the  grounding  provided  by  the  customer  and  then 
translated  to  the  structural  representation  given  by 
Order  XML  Schema  of  Sales  Service using  the 
grounding provided by the company. In this structural 
representation, the order message can be delivered to 
and  processed by Sales Service.  The translations are 
performed automatically.

Contribution. SAWSDL  and  WSMO  require  to 
provide  the  grounding  for  each  source  schema  and 
target ontology separately. Therefore, there can be up 
to M:N groundings whose design and management is 
decentralized to more different structural  (in the case 
of  SAWSDL)  or  semantic  (in  the  case  of  WSMO) 
descriptions.  If there is the same concept repeated in 
more  XML  schemes  the  provider  must  specify the 
grounding for this concept repeatedly. This is hard to 
design and manage.  On the other hand,  the provider 
usually has  an  internal  data  schema  describing  how 
the data is represented by the back-end systems. This 
schema  is  usually  conceptual.  The  structural 
description  of  the  service  interfaces  usually  results 
from this internal schema. In this paper, we show how 
to utilize  this  conceptual  schema  for  grounding 
externalized  from  both  structural  and  semantic 
descriptions which  allows to design  and  manage the 
descriptions  and  grounding  of all  provider's  services 
sharing  the  same  data  domain  in  one  conceptual 
schema. This possibility has not been addressed yet by 
the recent technologies. On the other hand, it must be 
possible  to  derive  SAWSDL  or  WSMO  grounding 
from  the  externalized  grounding  because  these 
technologies have also advantages,  as  shown in  [3]. 
For our approach,  we employ a conceptual model for 
XML called XSEM [4].

The  rest  of the  paper  is  organized  as  follows. In 
Section 2 we describe the XSEM model. In Section 3 
we  show  how  to  use  XSEM  as  the  externalized 
grounding  and  how  to  derive  its  SAWSDL 
representation. We conclude in Section 4.

2. XSEM Model

XSEM is a conceptual  model for XML data.  It  is 
composed of two parts called XSEM-ER and XSEM-H. 

XSEM-ER is used for modelling the semantics of the 
data. It  is based on E-R. Because of special features of 
XML such as irregular structure, ordering, and mixed 
content,  it  provides  some  extending  modelling 
constructs. The hierarchical structure of the data is not 
important  here, only the semantics is modelled. For a 
more detail we refer to [4]. Figure 2 shows an XSEM-
ER schema of the internal  data  representation of the 
company providing  Sales  Service.  There  are  strong 
entity types,  such  as  Product,  modelling  stand-alone 
real  world objects.  There are also weak entity types, 
such  as  Item,  modelling  real  world  objects  whose 
existence depends on other objects that  are modelled 
by entity types connected to the weak entity type as so 
called  determinants.  For  example,  Item has  two 
determinants, Order and Product. Moreover, there are 
relationship  types,  such  as  For, modelling 
relationships  between  two  or  more  objects  that  are 
modelled by entity types connected to the relationship 
type as so called  participants.  For  example,  For  has 
two  participants,  Invoice  and  Order.  Attributes  of 
entity  and  relationship  types  are  not  shown  at  the 
figure.

With  XSEM-H we  specify  how  the  components 
from the XSEM-ER are organized in the hierarchical 
XML  documents.  XSEM-H  schemes  are  called 
hierarchical  views  on  the  XSEM-ER schema.  From 
each  hierarchical  view an  XML schema  is  derived. 
The hierarchical view serves as a binding between the 
conceptual  XSEM-ER schema and  the derived XML 
schema.  Figure  3 shows three hierarchical  views on 
the XSEM-ER schema from Figure 2. From the views 
the  XML  schemes  Order,  Invoice,  and  Payment 
providing  the  structural  description  of  Sales  Service  
are derived.

Figure 2. XSEM-ER Schema

Figure 3. XSEM-H Hierarchical Views



3. Architecture

Figure  4 shows  an  overall  architecture  for  the 
design  and  management  of  Sales  Service utilizing 
XSEM. A human designer first designs an XSEM-ER 
schema as an internal conceptual schema (it can be an 
existing  E-R  schema  as  well)  (1).  Then  he  or  she 
designs  the  hierarchical  views  on  the  XSEM-ER 
schema  as  the  conceptual  description  of  the  Sales  
Service  interface (2).  The  structural  description,  i.e. 
the XML schemes, is then derived automatically from 
the  hierarchical  views  (3).  The  grounding  is  not 
specified directly between the XML schemes and the 
target ontologies. Instead it is specified only once for 
each  target  ontology  on  the  conceptual  level,  i.e. 
between  the  XSEM-ER  conceptual  schema  and  the 
target  ontology (4).  The grounding represention with 
SAWSDL  or  WSMO  can  be  derived  automatically 
from this central conceptual grounding (5) (in the rest 
of the paper  we comprehend only SAWSDL because 
of the lack of the space).  The solid lines at the figure 
denote a manual work of the designer  and the dotted 
lines denote an automatic derivation. If a change must 
be made in the internal data schema, it is made in the 
XSEM-ER  conceptual  schema  and  then  propagated 
automatically  to  the  affected  XML  schemes  and 
groundings. Also changes in the target ontologies can 
be propagated automatically to the grounding.  In  the 
following two subsections we describe the conceptual 
level  grounding  and  the  derivation  of its  SAWSDL 
representation in detail.

3.1. Conceptual Level Grounding

The  grounding  on  the  conceptual  level  is  not 
provided directly for the XSEM-ER schema but for an 
ontology  that  is  automatically  derived  from  the 
XSEM-ER schema as shown at Figure 4. We call this 
ontology  derived  ontology.  Suppose  OWL  as  an 
ontology  language.  We  represent  each  entity  and 
relationship  type  from the  XSEM-ER schema  as  an 
OWL class. If an entity type T1 is a determinant  of a 
weak entity type or a participant of a relationship type 
T2 we add an OWL object property with the domain C1 

and range  C2 where C1 and  C2 are the OWL classes 
representing T1 and T2, respectively. Simple attributes 
of  entity  and  relationship  types  are  represented  by 
OWL data  type properties.  A complex  attribute,  i.e. 
composed of other attributes, is represented by a class 
encapsulating  the  attributes  composing  the  complex 
attribute and  connected with the corresponding  class 
by  an  object  property.  Even  though  we  can  not 

reconstruct  the  XSEM-ER  schema  back  from  the 
derived ontology (for example a class can represent an 
entity type, relationship type, or complex attribute)  it 
contains sufficient information for the grounding.

Example 1 shows a part of the derived ontology for 
the  XSEM-ER  schema  from  Figure  2 in  the  triple 
notation.  The  names  of  classes  are  given  by  the 
corresponding  types  in  the  XSEM-ER  schema.  For 

Figure 4. Semantic Web Services Design Architecture

:Customer rdf:type owl:Class .
:has_name rdf:type owl:DataTypeProperty ;

rdfs:domain :Customer;
rdfs:range xs:string .

:Product rdf:type owl:Class .
:has_code rdf:type owl:DataTypeProperty ;

rdfs:domain :Product;
rdfs:range xs:string .

:has_title rdf:type owl:DataTypeProperty ;
rdfs:domain :Product;
rdfs:range xs:string .

:Order rdf:type owl:Class .
:has_ship_date rdf:type owl:DataTypeProperty ;

rdfs:domain :Order;
rdfs:range xs:date .

:has_customer rdf:type owl:ObjectProperty ;
rdfs:domain :Order;
rdfs:range :Customer .

:has_item rdf:type owl:ObjectProperty ;
rdfs:domain :Order;
rdfs:range :Item .

:Item rdf:type owl:Class .
:has_product rdf:type owl:ObjectProperty ;

rdfs:domain :Item;
rdfs:range :Product .

:has_order rdf:type owl:ObjectProperty ;
owl:inverseOf :has_item .

:has_price rdf:type owl:DataTypeProperty ;
rdfs:domain :Item;
rdfs:range xs:decimal .

Example 1. Derived Ontology



example there is a class Customer  resulting from the 
entity  type  Customer.  The  name  of  a  property 
representing a participant or determinant  is the name 
of  the  participant  or  determinant,  respectively, 
preceded by 'has_'.  For  example,  because the  entity 
type Customer is a determinant of Order we derive an 
object property  has_customer.  Properties representing 
attributes are named in the same way.

With  the  XSEM-ER  schema  translated  to  the 
derived ontology a grounding between the XSEM-ER 
schema and  a target  ontology is a mapping  between 
the derived and target ontology. A mapping for each 
target  ontology must  be  specified.  For  this  we  can 
profitably  utilize  existing  languages  for  a  mapping 
between  ontologies  such  as  [5].  In  [2] a  survey of 
mapping languages is provided. We can also use OWL 
constructs for a basic mapping.  Therefore, we do not 
need to provide any extending constructs to ontology 
languages. Provided the mapping between the derived 
and target ontology we can find for each component in 
the XSEM-ER schema a corresponding concept in the 
target  ontology,  i.e.  the  mapping  serves  as  the 
conceptual level grounding.

3.2. SAWSDL Grounding Representation

SAWSDL extends XML Schema and WSDL with 
three attributes. The attribute  modelReference is used 
to  specify an  association  between  an  XML schema 
component  and  a concept  in  a  semantic  model.  The 
attributes  liftingSchemaMapping and  lowering-
SchemaMapping are used to specify XSLT mappings 
between the structural and semantic representations.

Firstly,  we show the  derivation  of XML schemes 
from hierarchical views. If a node is the root node or 
the  edge  going  to  the  node  has  a  label  then  it  is 
translated to a complex type definition. Otherwise it is 
translated to a group. The content of the complex type 
or group, respectively, is given by the attributes of the 
node  and  the  edges  going  from  the  node.  Each 
attribute and labeled edge is translated to an element 
declaration  with  the  corresponding  type.  An  edge 
without a label is translated to a reference to the group 
representing  the  child  node of the  edge.  Example  2 
shows  an  XML  schema  derived  from  the  first 
hierarchical  view at  Figure  3.  There  is  an  element 
declaration order for the root node from the view with 
the  corresponding  complex  type definition Order.  It 
contains  an  element  declaration  corresponding  to an 
attribute  shipDate  of  Order and element  declarations 
corresponding to the edges going from the root node. 
These element declarations are named with the labels 

of the edges, i.e. customer  and item.  The translation 
continues  recursively  to  the  descendant  nodes.  The 
only difference is in the translation of the edge going 
from Item to Product which has no label. This can not 
be translated to an element declaration because we do 
not  have  a  name  for  it.  Therefore,  we  merge  the 
content  corresponding  to  Product with  the  content 
corresponding  to  Item.  However,  we  need  to 
distinguish  which  element  declarations  belong  to 
Product  and  which  to  Item  on  the  schema  level. 
Therefore,  we  use  a  mechanism  of  XML  Schema 
groups as shown by the example.

Secondly, we show the derivation of the grounding 
for  XML schemes  derived  from  hierarchical  views. 
There are two possibilities. The simpler possibility is 
to derive the grounding to the derived ontology. Then 
we  can  use  a  semantic  reasoner  to  dynamically 
translate  between the  semantic  representations  given 
by the derived and target ontology using the mapping 
between them. The second possibility is to derive the 

<xs:element name="order" type="Order"/>
<xs:complexType name="Order" 

sawsdl:modelReference="d_ont#Order"
sawsdl:liftingSchemaMapping="Order.xslt">

 <xs:sequence>
  <xs:element name="shipDate" type="xs:date"

sawsdl:modelReference="d_ont#has_ship_date"/>
  <xs:element name="customer" type="Customer"

sawsdl:modelReference="d_ont#has_customer"/>
  <xs:element name="item" type="Item" 

maxOccurs="unbounded" 
sawsdl:modelReference="d_ont#has_item"/>

 </xs:sequence>
</xs:complexType>
<xs:complexType name="Customer" 

sawsdl:modelReference="d_ont#Customer">
  <xs:sequence>
    <xs:element name="name" type="xs:string"

sawsdl:modelReference="d_ont#has_name"/>
    <xs:group name="Product" />
  </xs:sequence>
</xs:complexType>
<xs:complexType name="Item" 

sawsdl:modelReference="d_ont#Item">
  <xs:sequence>
    <xs:element name="price" type="xs:decimal"

sawsdl:modelReference="d_ont#has_price"/>
    <xs:group name="Product" />
  </xs:sequence>
</xs:complexType>
<xs:group name="Product"

sawsdl:modelReference="d_ont#Product">
 <xs:sequence>
   <xs:element name="code" type="xs:string"

sawsdl:modelReference="d_ont:has_code" />
   <xs:element name="title" type="xs:string"

sawsdl:modelReference="d_ont:has_title" />
 </xs:sequence>
</xs:group>

Example 2. XML Schema with SAWSDL Grounding



grounding for each target ontology separately. In this 
paper we show only the first possibility.

The SAWSDL grounding of an XML schema to the 
derived  ontology consists  of two parts.  Firstly,  each 
component in the XML schema must be bounded with 
the corresponding  concept from the derived ontology 
using modelReference. Each complex type declaration 
or  group  resulting  from  a  node  in  the  hierarchical 
view is bounded with the class in the derived ontology 
corresponding to the node. For example, the complex 
type  declaration  resulting  from  the  node  Order is 
bounded  with  the  class  Order from  the  derived 
ontology  at  Example  2.  Further,  each  element 
definition  resulting  from  an  attribute  or  edge  is 
bounded  with  the  corresponding  property  in  the 
ontology.  For  example,  the  element  definition 
shipDate is bounded with the property has_ship_date 
and customer is bounded with has_customer. 

Secondly, the lifting and lowering XSLT mappings 
are generated automatically for the XML schema from 
the corresponding hierarchical view. We show how to 
generate the lifting schema. It transforms source XML 
messages  from  the  structural  to  semantic 
representation  given  by  the  derived  ontology.  The 
semantic  representation  is  serialized  in  RDF/XML. 
For each node in  the hierarchical  view we create an 
XSLT template matching the corresponding elements 
in  the  source  XML  messages.  This  template 
transforms  the  matched  elements  to  their  semantic 
representation.  We start with a template matching the 
root  of  the  source  XML  message.  Its  semantic 
representation  in  the  RDF/XML  serialization  is  an 
element  with  the  name  of  the  corresponding  class 
from  the  derived  ontology.  Each  property  is 
represented by a child element  with  the name of the 
property.  If  it  is  a  data  type  property,  its  value  is 
extracted  with  an  XPath  expression  from the  source 
XML message. If it  is an object property its value is 
constructed recursively.

Example  3 shows  a  sample  template  from  the 
XSLT  mapping  derived  from  the  first  hierarchical 

view at  Figure 3. It matches the root element order.  
According  to  the  derived  ontology,  the  element  is 
transformed  to  its  semantic  representation  serialized 
in  RDF/XML  as  an  element  Order.  The  child 
elements of order,  i.e.  shipDate,  customer, and  item, 
correspond to properties that are serialized to the child 
elements  of  the  element  Order,  i.e.  has_ship_date, 
has_customer,  and  has_item,  respectively. The  value 
of  the  first  property  is  retrieved  with  an  XPath 
expression. The value of the other two properties are 
reconstructed  with  corresponding  templates  that  are 
derived from the hierarchical view in the same way.

4. Conclusions

In  this  paper we showed how to use a conceptual 
model  for  XML  data  as  a  technology  for  binding 
structural and semantic descriptions of Semantic Web 
Services.  We  showed  that  the  specification  of  the 
binding on the conceptual level has advantages when 
designing and managing Semantic Web Services. We 
also  showed  how  to  automatically  translate  the 
conceptual  level  binding  to  the  representation  using 
existing  technologies,  concretely  SAWSDL,  because 
these technologies have other advantages that may be 
required by clients and providers of services.
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<xsl:template match="/order">
  <Order>
    <has_ship_date><xsl:value-of select="shipDate"/>
    </has_ship_date>
    <has_customer>
      <xsl:apply-templates select="customer"/>
    </has_customer>
    <has_item><xsl:apply-templates select="item"/>
      </has_item>
  </Order>
</xsl:template>

Example 3. Structural to Semantic Mapping


