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Data Semantics
Data semantics = establishing and maintaining some
relationship between an information source (viewed
as a model), and its intended subject matter.
Data semantics essential in database design, data
integration and data exchange
We’ll advance a couple of proposals for data
semantics that are more complex than the standard
ones that are based on conceptual modeling (in ER,
UML, OWL) of the domain
Look at some consequence for data mapping &
exchange
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I. Modeling & the Mapping Continuum
[BoMy SemDb04]

Two intriguing suggestions for a more
careful look at the notion of modeling

Ladkin’s view of modeling for a purpose

B.C.Smith’s notion of chains of models

©2008  A Borgida  PrahaCU -- 5

What is a “Model” in general?

“ M is a model of subject S for purpose P ”  [Ladkin97]

Oft en, t he purpose is “answering cer tain kinds of
questions (about the subject)”
Why do we build models? Because it  is easier t o
answer t hose questions about the model than about
the subject.

Subject SModel M 
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What is a Model? (cont’d)
So for every modeling situation, we need

 methods for building/changing t he model
 asking and answering quest ions in the model
 a way t o t ranslat e applicable ques tions about
t he subject  mat t er int o quest ions about  t he
model (“mapping1” )
 conversely, a way t o t ranslat e result s of  t he
query on t he model t o answers about  t he
subject (“mapping2”)

Application to Information Systems:
Example: a classroom & scheduling database as
a model of  a part  of t he (act ual) universi ty
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 The Correspondence Continuum

Meaning is rarely a simple mapping from symbol
to ‘object’; instead, it often involves a continuum
of (semant ic) correspondences from symbol to
(symbol to)*  object [Brian Cantwell Smith’87 ]
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Application to Data Semantics:
Lineal Semantic Mappings
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More generally...

Subject
matter

ER Schema
for student info

Rel Schema
for 

CS Students

Rel Schema
for 

ECE Students

Rel Schema
for Grad 

CS students

XML DTD
for CS-ECE 

Students

XML Schema
for CS Grad

Students

ER Schema
for admin info
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Data Semantics - take 1

The complete meaning of data in a model includes
the composition of the semantic mappings  relating it
to roots.
Of course, keeping around the semantic mapping will
be expensive; but the alternative is the mess of
legacy data!

Every (non-root) model comes with an explicit 

semantic mapping to some other model(s)
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Lot’s of Related Work

Data Integration
Ontology Integration
Model and mapping management
Peer data management
Data provenance
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Where do we get Mappings?

The mapping  could/should be saved during design.

Other mappings must be discovered and specified.
Tools may be needed to do the later:

Some use heurist ics based on structure and
naming
Others, including Clio [Miller+00]  [Popa+0 2]
discover complex mappings between two
schemas, given a set of simple
“correspondences” between their elements.
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Clio: Discovering Schema Mappings

 DB1:
      Educator:
         ename
      Student:
         sname
      Course:
         ctitle
         instructor
      Enroll:
         sname
         ctitle

DB2:              
     Professor:
        pname
        rank
     Student:
        name
        age
     Teach:
         student
         prof

corresp.1

corresp.2

DB2: teach(S,P) :-
DB1: course(C, P),
DB1: enroll(C, S)

OUTPUT:

INPUT:
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The Clio Approach

Schema1 Schema2

?
Clio’s thesis: it  is easier for users to specify
correspondences, and have tools support discovery
of the actual, more complex, mapping.
Clio relies on co-occurrence of attributes and
foreign key constraints to discover heuristically
“reasonable” mappings. (“grow islands using lossless
joins”.
Extended to deal with mapping XML schemas
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Applying the idea to the data
semantic continuum

Currently, Clio can discover mappings between
relational and/or XML models
What if we add conceptual models/ontologies?
(Joint work with Yuan An and Renée Miller)
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Situation 1

Relational/XML Schema

Conceptual Schema/
Ontology

?

Our prototype tool exploits richer semantics in the
conceptual schema (“object”, association
cardinality, IsA hierarchy, disjointness,... )
Also, uses theory of relational schema design from
ER diagrams as basis of heuristics

Useful for
data integration 
and service
composition
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For Example…
DB
       Educator:

ename
edept

        Student:
sname
sdept

        Department:
dtitle

Professor
 named

advisedBy1
Student
 named*

*
appointedTo

Department
named

1

*

*

TAfor

Onto

DB:Student(sname,sdept) →
O:Student(x), O:Professor(y), O:Department(z),
named(x,sname), named(y,ename), named(z,dtitle),
advisedBy(x,y), appointedTo(y,z).

INPUT:

OUTPUT:
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For Example…
DB
       Educator:

ename
edept

        Student:
sname
sdept

        Department:
dtitle

Professor
 named

advisedBy1
Student
 named*

*
appointedTo

Department
named

1

*

*

TAfor

Ont

DB:Student(sname,sdept) →
O:Student(x), O:Professor(y), O:Department(z),
named(x,sname), named(y,ename), named(z,dtitle),
advisedBy(x,y), appointedTo(y,z).

INPUT:

OUTPUT:

DB:Student(sname,sdept) → Student(x), Department(z),
named(x,sname),named(z,dtitle),TAfor(x,z).

Not output: shortest path!
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General Strategy

1. Mark concept nodes having attribute(s)
corresponding to table T’s column(s).

2. Create a “skeleton tree” of marked nodes which
have correspondences to the key columns of table
T, by finding cheapest spanning tree of the
“appropriate kind”

3.  Connect other marked nodes to the skeleton by
shortest paths that are “function-like” (cardinality
upper bound 1) - (Because key uniquely determines
these values in the table)

4. Translate resulting tree into Datalog formula by
recursive descent. (Can also be translated to OWL!)



©2008  A Borgida  PrahaCU -- 21

(Partial) Analysis of Relational Table
Types (for UML model recovery)

Notation:
underscored italic columns form table key;
 red columns are foreign keys

T(b,h...) -- an entity’s table; ‘skeleton’ is b’s node

T(b,h,...) -- an entity table, merged with a functional
(N-1, 1-1) relationship; ‘skeleton’ is b’s node

T(b,h,...) -- subclass; ‘skeleton’ is b’s node

T(b,c,h,...) -- ‘weak entity’ table; skeleton is c’s node

T(b,c,h,...) -- N-M relationship table; skeleton is a
shortest non-functional path between b’s & c’s node
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Interesting Complication

DB
       Employee:

  ename
...

        Hierarchy:
above
under

Emp
 hasName advises

*

*

Ont

INPUT:

advisor

advisee

Reflexive relationship!
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Solution: duplicate node

DB
       Employee:

  ename
...

        Hierarchy:
en1
en2 Emp_Copy

 hasName

advises
*

* Ont

INPUT:

advisor

advisee

Emp
 hasName

DB:Hierarchy(en1,en2) →
O:Emp(x), hasName(x,en1),
O:Emp(y), hasName(y,en2), 
advises(x,y)

OUTPUT:
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Yet another solution!

DB
       Employee:

  ename
...

        Hierarchy:
en1
en2 Emp_Copy

 hasName

advises

*

* Ont

INPUT:

advisor

advisee

Emp
 hasName

DB:Hierarchy(en1,en2) →
O:Emp(x), hasName(x,en2),
O:Emp(y), hasName(y,en1), 
advises(x,y).

OUTPUT:
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Somewhat reassuring
If we treat EER diagrams as notation for logic (entity

classes = unary predicates; relationships and
attributes = binary predicates) then the standard
relational schema design rules found in textbooks
assign a specific formula to each table.
Theorem 1 (“completeness”) For any specific table
T1 derived from E1, one of the formulas returned by
our algorithm is the one assigned by the above
design rules.
Theorem 2 (“soundness”)  If the algorithm returns a
semantic formula, there was a way of deriving that
table from E1 with that semantics.

 The algorithm works in other cases too, but of course
not in all ‘denormalized’ schemas.
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Experience

Implemented tool: MapOnto

To measure the usefulness of the tool, we want to
know how much can a user benefit from its use.

Suppose that MapOnto returns formula f  instead of
the desired correct formula g.  If there are

n atoms in the returned formula f;

m atoms in the correct formula g;

c  atoms in common to f and g

 Then tool user needs to delete n-c atoms from f and
add m-c atoms to g.

Labor savings=1- ((n-c)+(m-c))/m
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Experimental Results: labor savings
for XML Schema semantics
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Situation 2

 DB Schema1 DB Schema2

?
The original problem for Clio only used db schemas
and correspondences as inputs to seek mappings.

ConcSchema1 ConcSchema2

Suppose we also were given semantic mappings
for DB schemas.
 Can we help Clio produce better results?
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For Example…

       D1_T( did ,
     addr )

        P1_T( pid ,
    name )

        memb(did,pid)
        head( did, pid)
        dean(did,pid)

DB2        D2_T( d# ,
    lze )

        P2_T( p# ,
     ne )

         
        foo( d#, p#)         

DB1

{∃∃∃∃ d#,p# . d2_T(d#,Addr),p2_T(p#,Name),foo(d#,p#) }
       :- d1_T(did,Addr),p1_T(pid,Name), ???(did,pid).  

INPUT:
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For Example…
Department

hasAddress

1
memOf

Professor
hasName

*

headOf
1 1

1
hasDean

1

Dto

lze

De
ne

foo
1

1

       D1_T( did ,
     addr )

        P1_T( pid ,
    name )

        memb(did,pid)
        head( did, pid)
        dean(did,pid)

DB2        D2_T( d# ,
    lze )

        P2_T( p# ,
     ne )

         
        foo( d#, p#)         

DB1

INPUT:

foo is semantically more like hasDean than headOf
or memOf   (see cardinality, partOf)
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Extensions: ontology mapping?

Schema1 Schema2

ConcSchema1 ConcSchema2

?

? ?

?
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II. An Intentional Dimension for
Data Semantics

Tradit ionally, data semantics deals with
“what/when” questions: objects, inter-relationships,
groupings and constraints on them.
But to achieve real understanding, humans also rely
on  “how” and especially “why” questions: How is
the data used? Why was the data gathered?
Recent progress in Requirements Engineering
(“GORE”) has shown how goals and (organizational)
actors fit  in.
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Example...
Consider the relational schema

Grades(crs#, st#,test1,test2,finalGrade)

Part of the data semantics ought to be what are
grade scales (%? letter?) , how is final grade
computed (weighted sum and scale?) .
Richer semantics would also describe the workflow
of TAs and professors which results in these data
values; and the motivation for choosing this
(“multiple tests provide better evaluation”)
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This has been made precise:
i*, Tropos [Mylopoulos, Yu,...]

( Institutional) actors
Goals, and their analysis (decomposition,
means/ends)
Softgoals (e.g., non-functional requirements such
as accuracy, security, cost ) and how they
motivate choices between alternatives
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Do a good job

Actors, Goals and Softgoals

Professor

Give 
course

Teach
material

Select
text

Evaluate
Student

MinimizeEffort

Do research

Give
2 tests

Give one
final exam

Accurately
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Do a good job

Analysis of alternatives

Professor

Give 
course

Teach
material

Select
text

Evaluate
Student

MinimizeEffort

Do 
research

Give
2 tests

Give one
final exam

+

-

+

Accurately

-
+
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give exam
compute

final grade

prepare record
grade

Task Analysis and Database Design

crs# st#   exam   finalGrade

Use one final
exam 
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GORE Database Design Methodology
(joint work with Lei Jiang and T.Topaloglou)

1. Find stakeholders, their goals & softgoals
2. Analyze goals and sof t goals; f ind (alt ernat ive)

ways of  fulf illing each goal; evaluat e t hese wit h
respect to softgoals; for some alternatives, define
tasks to achieve t hem

3. Ident ify (concerned) objects for goals and t asks;
develop a domain terminology describing
understanding (using ontologies and goals)

4. Ident ify query, persistence,... requirements
5. Design database conceptual schema f rom 3 and 4
6. Alternatives are chosen and justif ied by reference

to goals or  so ft goals.
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Data semantics - take 2
Keep this information
Also keep history of decisions (for evolution)

These are part of data semantics! (Just like

data provenance.)

There are precise, formal notations for recording and
reasoning with these (formal Tropos, “satisficing”)
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Potential application to data exchange

Suppose there are 2 databases for departments
which decided to use different grading schemes

DB1: grades1 (crs#, st#,test1,test 2,finalGrade)
DB2: grades2 (crs#, st#,exam,finalGrade)

If loading data from DB1 to DB2

we can deduce that accuracy in finalGrade is likely
gained, while loading data in the opposite
direction is not! Might help decide where to load
data.

(Scientific database evolution & loading)

grades2(f(crs#),g(st#),_,_,FG)

:- grades1(crs#,st#,_,FG)  
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Related Ideas
Hippocratic Databases [Agrawal02]
Why questions in data provenance [Buneman]
Data semantics in systems involving workflows and
processes.
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Discussion

Data semantics is and will remain a core problem
for databases
Ultimately, the meaning of data needs to be t ied
down to the intentions of its designers and users.
This (should) affect data mapping and exchange



©2008  A Borgida  PrahaCU -- 44

References
[Ladkin97] Ladkin, P.: "Abstraction and Modeling”, Research
Report RVS-Occ-97-04, University of Bielefeld, 1997
[BoMy94] Borgida, A. and J. Mylopoulos: “Data Semantics
Revisited”, SWDB 2004
[Miller00] Miller, R., Haas, L., Hernadez, M.: “Schema Mapping
as Query Discovery”, VLDB 2000
[Popa0 2] Popa, L., Velegrakis, Y., Miller, R., Hernandez, M.,
and R. Fagin: “Translating Web Data.”, VLDB 2002
An, Y., Borgida, A. and J. Mylopoulos, “Inferring Complex
Semantic Mappings Between Relational Tables and Ontologies
from Simple Correspondences”, ODBASE 2005 /JoDS 06/
ICDE07)
Jiang, L., Borgida, A., Topaloglou, T., and J. Mylopopulos
“Goal-driven database design”, ReqEng 2006,  ReqEng 07,


