
Prague08 © A.Borgida 1

An opinionated look at

Description Logics

Alex Borgida
Dept. of Computer Science

Rutgers University

Prague08 © A.Borgida 2

Outline

1. Motivation

2. Fundamental notions of DLs + syntax

3. Formal Properties

4. An Application of DLs

5. Importing Knowledge from DL KBs

>>

Prague08 © A.Borgida 3

Motivation

Conceptual models are needed in

• artificial intelligence (meaning of natural language

sentences, representing knowledge in general)

• database design (Entity Relationship diagrams)

• software engineering (requirements, UML)

• in the age of the Internet:

– information integration

– finding and composing web services

Prague08 © A.Borgida 4

Motivation (cont’d)

“How are Sean Lennon and Mick Jagger connectd?”

 http://www.pumpthemusic.com/oracle/index_post.php

Prague08 © A.Borgida 5

Graphical representation
Sean Lennon is the child of John Lennon

John Lennon composed Imagine

Imagine was composed by Paul McCartney

Paul McCartney collaborated minorly on Band Aid

Band Aid was a minor collaboration between David Bowie

David Bowie collaborated on David Bowie & Mick Jagger

David Bowie & Mick Jagger was a collaboration between Mick Jagger

Sean Lennon John Lennonis_child_of Imaginecomposed

Paul McCartney

composed_by

BandAid collab_minorly_on

David Bowie

was_minor_collab_of

Bowie & Jaggercollab_on

Mick Jagger

was_collab_between

Prague08 © A.Borgida 6

Not entirely new idea

farmer owns donkey

beats

SUBSTANCE
material immaterial

BODY SPIRIT
animate inanimate

LIVING MINERAL
sensitive insensitive

ANIMATE PLANT
rational irrational

HUMAN ANIMAL

 Plato...

Porphyry 3rd AD.

“If a farmer owns a donkey
then he beats it”

C.S.Peirce 1890’s

SEMANTIC NETWORKS
in Artificial Intelligence/Cognitive Science

Quillian 1966
...

Prague08 © A.Borgida 8

What we say to computers

Sean Lennon John Lennon
is_child_of

Imaginecomposed

Paul McCartney

composed_by

collab_minorly_on

David Bowie

was_minor_collab_of

Bowie & Jagger

collab_on

Mick Jagger

was_collab_between

BandAid

Prague08 © A.Borgida 9

What computers “hear”

!"#$ %"$$&$ '&($ %"$$&$
)*+,()-.+&/

01#2)$",&13&*".

4#5- 6,7#89$":

,&13&*".+;:

<#$.=).

,&--#;+1)$&8-:+&$

>#?). <&@)"

@#*+1)$&8+,&--#;+&/

<&@)" A '#22"8

,&--#;+&$

6),B '#22"8

@#*+,&--#;+;"9@""$

Prague08 © A.Borgida 10

What we would like computers to understand

!"#$ %"$$&$ '&($ %"$$&$

)*+,()-.+&/

01#2)$",&13&*".

4#5- 6,7#89$":

inverse(,&13&*".)

<#$.=).

,&--#;+1)$&8-:+&$

>#?). <&@)"

<&@)" A '#22"8

,&--#;+&$

6),B '#22"8

inverse(,&--#;+1)$&8-:+&$)

inverse(,&--#;+&$)

4CD!EF

kindOf

aKindOf

Prague08 © A.Borgida 11

Outline

1. Motivation

2. Fundamental notions of DLs + syntax

3. Specification of reasoning + some formal properties

4. Applications of DLs

>>

Prague08 © A.Borgida 12

Description Logics

• A precise notation for representing “noun phrases”
[Brachman 70’s: KL-ONE]

Fundamental ontology: conceptual model is populated by

– individuals

– related by binary relationships (called roles & features)

– grouped into classes (concepts)

So we need the ability to describe concepts, relationships,

individuals.

First Order Logic would be fine, but it is impossible to reason
with it decidably.

Prague08 © A.Borgida 13

Description Logics (cont’d)

Fundamental observation 1: In addition to primitive
concepts, such as PERSON , CHAIR, ... there are defined
concepts
– some have names:

! “person with age between 13 and 17” ! TEENAGER

! “person who eats only non-meat foods” ! VEGETARIAN

– others are describable only by relative clauses or compound
nouns:

! “person who has at least 3 children”

! “towns located in MA or NH or VT,..”

(NEW_ENGLAND_TOWNS)

Prague08 © A.Borgida 14

Description Logics (cont’d)

Fundamental observation 2: Both primitive and defined
concepts can have additional assertions made about them,
representing necessary conditions.

A standard way to make such assertions is to use

is-a / is-subconcept-of / is-subsumed-by / is-a-kind-of

 PERSON is-a ANIMATE

 PERSON is-a (“age having an integer value”)

 TEENAGER is-a LIKES_MTV

Prague08 © A.Borgida 15

Description Logics (cont’d)

We need a language for defining concepts. (Based on empirical
experience on what has been useful in many applications):

• atomic/primitive concepts: PERSON, COURSE, BOOK

• boolean combinations of these:

– AFRICAN and HERBIVORE

– PERSON or CORPORATION

• concepts defined by enumeration of individuals: {Masc,Fem}

• concepts from “concrete domains” (numbers, strings, ...)

• primitive binary relationships graduateOf, locatedIn, likes, hasPart

• sets of objects satisfying restrictions on their role fillers

– objects all of whose locatedIn values are in NEW_ENGLAND_TOWNS

– objects some of whose graduateOf values are in UNIVERSITY

– objects with at least 3 hasPart fillers

– objects whose firstName same as father’s firstName

– objects whose name values include “Jr.”

Prague08 © A.Borgida 16

Description Logics - syntax (1)

Just like {and,or,not} are logical formula constructors, DLs offer

concept constructors. Will use term/prefix notation here:

• AFRICAN and HERBIVORE

• not ANIMATE

• PERSON or CORPORATION

• PERSON and not TEEN

• {Masc,Fem}

• (numbers, Progr.Lang. values)

• objects whose locatedIn values

 are only in NEW_ENGLAND_TWN

• objects some of whose graduateOf

values are in UNIVERSITY

• objects with at least 3 hasPart

 fillers

• name value is identical to father’s

•and(AFRICAN, HERBIVORE)

•not(ANIMATE)

•or(PERSON, CORPORATION)

•and(PERSON, not(TEEN))

•enum(Masc , Fem)

•INTEGER

• all(locIn,NEW_ENGLAND_TWN)

•some(graduateOf,UNIVERSITY)

•at-least(3,hasPart)

•same-as([name],[father name])

Prague08 © A.Borgida 17

Description Logics -syntax

Can describe concepts of arbitrary complexity by nesting. (Unlike
OO, etc. no need to name concepts)

• and(

COURSE

at-least(60, takers)

at-most(90, takers)

all(takers, and(STUDENT

 all(inYear , enum(3, 4))))

exactly(1, taughtBy)

all(taughtBy, and(PROFESSOR

fills(inDepartment , “CS”))))

“Courses taken by 60 to 90 students, who are all juniors

or seniors, and taught by a CS professor”

Prague08 © A.Borgida 18

Description Logics -syntax variants

• (and PERSON (all eats (not MEAT)))

• PERSON ! eats.¬MEAT

• <concept> <and>
<primitive name=“PERSON”/>
<all>

<primrole name=“eats”/>
<not> <primitive name=“MEAT”/> </not>

</all> </and> </concept>

• <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PERSON" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#eats" />
 <owl:allValuesFrom>

<owl:complementOf rdf:resource="#MEAT" />
 </owl:allValuesFrom/>

 </owl:Restriction>
 </owl:intersectionOf>

“Persons who eat only non-meat stuff”

Prague08 © A.Borgida 19

Description logics: roles/properties

DL Fundamental observation 3: Relationships are like
concepts. Hence they can also be structured and
defined, using role constructors.

• loves is-a-kind-of likes

loves is-a likes

• childOf is the inverse of parentOf

inverse(parentOf)

• descendantOf is the transitive closure of childOf

trans(childOf)

• nephewOf is the composition of sonOf and siblingOf

compose(sonOf,siblingOf)

Prague08 © A.Borgida 20

Concept/Description Languages: summary

• Descriptions are composite, variable-free terms, which can be
recursively built up from primitive symbols, using constructors

• There are constructors for both concepts and roles (binary
relationships)

• There is a collection of constructors that have been empirically
found useful over the years

So what can one do with descriptions?

Prague08 © A.Borgida 21

Standard “judgements” about Descriptions

1. Does C subsume D? D :< C D C

– and(PERSON, MALE) :< PERSON

– at-least(3, hasChildren):<at-least(1,hasChildren)

– and(all(p,C) , all(p,D)) :< all(p , and(C,D))

– fills(loves, Eve) :< at-least(1, likes)

2. Is concept C incoherent?

! and(PERSON

at-least(3, hasDegree)

all(hasDegree , enum(“BA”, “BS”))

Prague08 © A.Borgida 23

 Non-standard judgements

3. What is the least common subsumer of concepts C and D:
lcs(C,D) in the (infinite) lattice of all description terms!!! [B] (Useful
in machine learning.)

all(sons, DOCTORS)
 and

at-least(2,sons)

all(daughters, LAWYERS)
 and

 at-least(3,daughters)

 all(children, PROFESSIONALS) and
at-least (2, children)

4. Matching/Unification [B] (Useful in printing relevant aspects)

e.g., matching all(hasParts, ?Y) against ARCH yields
?Y # BLOCK; But macthing is against “semantic
complection” of ARCH !

NOTE: contrast with FOPC, where disjunction makes this pointless.

Prague08 © A.Borgida 24

How does one use DLs?

• (A specific DL consists of a particular set of concept & role
constructors)

• Then create a theory T of subsumption and definition
assertions (or other kinds of assertions

e.g., A disjoint_from B = and(A,B) :< "
 T is usually called a T-box (“ontology”, “knowledge base”)

• As part of creating T , concepts in it are

– automatically pre-classified into a subsumption hierarchy

– tested for “reasonableness” (satisfiable)

• T can then be queried to see if it entails other judgements

Prague08 © A.Borgida 25

DLs and individuals/nominals

• Two new judgements

 Mimi : HAPPY ind membership

sisterOf(Anna,Mimi) roles relating inds

• Create a theory A of assertions about individuals, usually
called an A-box (“database”)

• As part of creating A, individuals in it are (often)

– automatically pre-classified under the most specific named
concept in T-box taxonomy

– tested for “reasonableness” (satisfiable)

– some propagations cached

• A can then be queried to see if it entails other judgements

Prague08 © A.Borgida 26

Sample Individual Reasoning

• Assertions: individuals can be asserted to satisfy descriptions
 Calvin : PERSON

 Calvin : all(friendOf, the(age and(min(5),max(7))))

• Consistency checking: given additional assertion

friendOf(Calvin, Susie)

 verify that Susie’s age is not known to be under 5 or over 7

• Propagation -- if Susie’s age is not known, then infer partial information

Susie : the(age , and(min(5),max(7)))

• Individual Classification -- in either case, if we have a definition like

CHILD =def the(age , and(min(0),max(12)))

 then Susie is inferred to be a child

 Susie : CHILD

Open World
Assumption

Prague08 © A.Borgida 27

Outline

1. Motivation

2. Fundamental notions of DLs + syntax

3. Formal properties

4. Applications of DLs

5. DDL

>>

Prague08 © A.Borgida 28

Expressive power

• Even the most expressive DL ever proposed =

 FOL + counting quantifiers + fix point but only 3 variable
symbols

– so cannot represent 4-clique

happy(X) :- likes(X,Y1),likes(X,Y2),likes(Y1,Y2),...

• But open-world assumption, ALL-restrictions, definitions, put
it beyond Datalog

• Subsets of DL are variants of
– modal logic K

– Propositional Dynamic Logic

– Guarded Fragment of FOL

Prague08 © A.Borgida 29

Some well known DLs

• Classic (early 1990’s, AT&T Bell Labs [B]

– low-order polynomial time reasoning

– used in industrial application at AT&T to configure switching
equipment

• FaCTSHIQ (late 90’s, Manchester)
– optimized tableaux implementation

– used for large (5000 concept) medical ontology, which is not
just a tree

– although logic is EXPTIME-complete, in practice not a
problem!?

• OWL-DL

– the ontology language of the semantic web

– SHOIQ(C)

Prague08 © A.Borgida 30

Some complexity results

Constructors T-Box Subsumes? Member?
 (prim :< D) (D :< C) cyclic

AL (and,all) O(n2)

AL * co-NP-complete

CLASSIC with host O(n3)
 individuals

ALE(and,all,some) NP-compl. PSPACE

ALC (and,all,not) PSPACE-complete
ALC(and,all,not) * EXPTIME-complete

ALCNR(r-and,nrs) PSPACE PSPACE
ALCNR,SHIQ * * * NEXPTIME

NEXPTIME

ALCQ, ALCN+complex roles but not r-and EXPTIME-complete

AL & role same-as undecidable
AL & func’n role same-as * poly-time

Prague08 © A.Borgida 34

Outline

1. Motivation

2. Fundamental notions of DLs

3. Syntax, semantics, some formal properties

4. Application of DLs

• (representing UML class diagrams-- hence reasoning
about consistency)

• describing e-services/programs

>>

Prague08 © A.Borgida 35

Representing UML in SHIQ / DL-lite

BOOK :< the(isbn, INT)

PAPER_BACK :< BOOK

HARD_COVER :< BOOK

BOOK :< or(PAPER_BACK,HARD_COVER) ;;complete

and(PAPER_BACK,HARD_COVER) :< NOTHING ;;disjoint

 BOOK

isbn:INT

 PAPER_BACK HARD_COVER

{disjoint,complete}

Prague08 © A.Borgida 36

Representing UML in SHIQ / DL-lite

BOOK :< all(lentTo,PATRON) and at-most(1,lentTo)

borrowed =def= inverse(lentTo)

PATRON :< all(borrowed,BOOK) and at-most(5,borrowed)

 BOOK

 PATRON

...

lentTo 0..1

borrowed0..5

Prague08 © A.Borgida 39

An application: e-service description [B]
interface CAR{
 attrib CAR-MODEL model;
 attrib OWNER ownedBy;
 attrib MANUFACT madeBy;
 ...

 deliver(in MANUFACT src,
 in DEALER dest,
 in DATE time

)signals (BadDealer);
 sell(...);
 destroy(...);

CAR :<
(model some CAR_MODELS)
(ownedBY some OWNER)
(madeBy some MANUFACT)
(deliver some DELIVER)

1. Create class for CAR with attributes and methods

as properties:

CORBA interface:

Prague08 © A.Borgida 40

SE application: e-service description

DELIVER :<
ACTION and
(this some CAR)
(src some MANUFACT)
(dest some DEALER)
(time some DATE)

2. Reify methods, to describe parameters as attributes

CORBA interface:
interface CAR{
 attrib CAR-MODEL model;
 attrib OWNER ownedBy;
 attrib MANUFACT madeBy;
 ...

 deliver(in MANUFACT src,
 in DEALER dest,
 in DATE time

)signals (BadDealer);
 sell(...);
 destroy(...);

Prague08 © A.Borgida 41

SE application: e-service description

DELIVER :<
ACTION and
(this some CAR)
(src some MANUFACT)
(dest some DEALER)
(time some DATE)

3. Describe service semantics by giving pre- and
post-conditions, conditions for exceptions,...

CAR :<
(model some CAR_MODELS)
(ownedBY some OWNER)
(madeBy some MANUFACT)
(deliver some DELIVER)

 //preconds include
 (madeBy same-as deliver.src)
 //postconds include
 (ownedBy same-as deliver.dest)
 //exception BadDealer signalled when
 (not (src overlaps dest.represents))

Prague08 © A.Borgida 43

Pros and Cons of DLs

Pros
• Has been found empirically useful to describe “natural”

domains we talk about (can represent and reason with ER
and UML diagrams)

• “Open World Assumption” helps with reasoning in the
presence of incomplete knowledge

• Syntax avoids variables, quantifiers, and supports nested
complex concepts without having to name them

• Distinguishes definitions from primitive concepts, and applies
uniformly to relationships and concepts

• Intermediate in expressive power between propositional and
full First Order Predicate Calculus

• Well-explored complexity picture for many combinations of
constructors

Prague08 © A.Borgida 44

Pros and Cons of DLs

Cons
• Expressive limitation: 3FOL + fixed point logic

• Poor at describing mathematical concepts (algebraic equations
and reasoning with them)

• Cannot express even conjunctive queries (non-recursive
Datalog)

• Vast majority of ‘ontologies’ being built are simple (simple
hierarchies of terms (e.g., DMOZ, Yahoo), or at most UML). For
these, OWL is overkill

Prague08 © A.Borgida 45

References
• Description Logic Handbook, F. Baader et al, Cambridge Press, 2003

• Annual Description Logic workshops (20 so far). Electronic
proceedings on web -- search for

dblp DL 2006

some [Borgida...] papers:

• “CLASSIC: A Structural Data Model for Objects”, SIGMOD Database
Conf. 1989 (with R. Brachman, D. McGuinness, L. Alperin Resnick)

• “Description Logics in Information Management”, IEEE Trans. Knowl. &
Data Engineering (1995)

• “On the Relative Expressiveness of Description Logics and Predicate
Logics”, Artif. Intelligence Journal (1996)

• “Adding more ‘DL’ to IDL: Towards More Knowledgeable Component
Inter-Operability”, Int. Conf. on Software Engineering (ICSE) 1999 (with
Prem Devanbu)

• “Explaining ALC subsumption”, ECAI'2000, (with E. Franconi, I. Horrocks,
D. McGuinness)

• “Distributed Description Logics”, Journal of Data Semantics 1(1), 2004,
(with L.Serafini)

• “On Concept Similarity” (DL’2006) (with T.Walsh, H.Hirsh)

• “Importing Knowledge from T-Boxes” (DL’2007)

Prague08 © A.Borgida 46

Outline

1. Motivation

2. Fundamental properties of DLs

3. Syntax and reasoning with DLs

4. Using DLs in Information Management

5. Importing knowledge from DL KBs

Prague08 © A.Borgida 47

On Importing Knowledge

• It is important to reuse knowledge from previous KBs
when building new ones.

• Study the notion

“KB1 imports identifiers S={N,...} from KBexp”

Basic Desiderata:

• behave as if all of KBexp was included in KB1

• but minimize import to make understanding easier and
reasoning faster

• accept possibly additional names & axioms imported,
not just S

! S={Dog,Cat},

! Dog :< Carnivore :< Animal, Cat :< Carnivore

Prague08 © A.Borgida 48

On Importing Knowledge

“KB1 imports identifiers S={N,...} from KBexp”

Approach 1: based on the notion of “module”

– KBexp partitioned into modules M1,... which are exported a
priori.

– Each needed module is then imported as a unit (so imported
concept name N comes with everything in its module)

I. Modules are created by hand, by the developer

II. Automatic modularization

! based on more or less syntactic (graph theoretic) grounds

! based on logical properties

Prague08 © A.Borgida 49

On Importing Knowledge

“KB1 imports identifiers S={N,...} from KBexp”

Approach 2: Use list S of names to customize material
imported

III. Define and compute import(KB1,S,KBexp)

IV. Use names in S to write special axioms (“bridge rules”)

connecting KB1 and KBexp, and treat KB1 and KBexp as

independent, communicating sources

Prague08 © A.Borgida 50

Defining import(S,KB2)

Borgida [DL’07,WOMO’07]

Grau et al [WWW’07]

Issues

• Axioms imported form a subset of

1. theorems(KBexp)

2. KBexp

3. expanded(KBexp)

! to deal with dependence on syntax, avoid irrelevant material

• How to define “minimal amount of knowledge to be

imported”

$ | vocab(KB % {$}) & vocab(KB2) ' S and KB % KB2 |= $
– just for this importing KB? or for all possible ones?

• Influence of importing KB

– limit the places where symbols from S can appear (this
may limit the set of axioms that need to be brought)

Prague08 © A.Borgida 51

Computing import

• Even in very simple cases (hierarchies with disjointness),
cost of minimizing makes problem co-NP hard

• [Grau et al] have syntactic condition on KBexp (“locality”)
which allows import to be found effectively

• In general, problem related to “conservative extensions”,
and is hard

Prague08 © A.Borgida 52

IV. Multi-logics with “connections”

Local Semantics

1. DDL (Distributed DL)
2. E-connections

3. P-DL
4. [Stuckenschmidt&Klein ISCW 04]

Characteristic:

• denotational semantics does not assume the same domain of
interpretation for all ontologies

Prague08 © A.Borgida 53

Distributed Desription Logics

Borgida & Serafini [J of Data Semantics 2004]
Serafini, Borgida & Tamlin [IJCAI 2005]

GIVEN: (T1, T2, { T2 imports T1$A}) + very restricted use of

 these imported names in T2! Only in axioms of the form

 H 1:A /*A onto H*/ 1:B G /*B into G*/

 (and actually, is not real subsumption: it is mediated by

domain relation r12 connecting Domain1 to Domain2

1:teamA |---> {2:Pele, 2:Julinho,...}

RESULTS:

• specification of DDL entailment
 (T1,T2,imports) |=ddl 2: E F

• implementation as distributed tableaux theorem prover

• fixed point characterization using H :< G1 \/ ... \/ Gn derived

 from bridge axioms and T1

Prague08 © A.Borgida 54

E-connections

Grau, Parsia, & Sirin [ISWC 2004]

Analogy to DDL:

GIVEN: (T1, T2, { T2 imports concept T1$A}) + R
Somewhat restricted use of these imported names in T2!

 Imported concepts can only be used in T2 to create new
restrictions on the special roles in R, using a specific set of
constructors. (But once defined, such concepts can be used
anywhere in T2.)

RESULTS: spec and implementation for OWL-DL importers

"Can simulate DDL by using R = { r12
– }

 “into”: T1$A :< (* r12 . G) ! (+ r12
– . T1$A) :< G

 “onto”: H :< (+ r12
– . T1$B)

Prague08 © A.Borgida 56

Summary

• Exciting times in Description Logics (too exciting for my taste
;-)

• Lots of work on modularization

• Return to interest on low-expressivity DLs
– EL

– DL Lite

