Blocking Mechanisms in Description Logics, A General Approach

Dmitry Tishkovsky

School of Computer Science The University of Manchester

dmitry.tishkovsky@manchester.ac.uk

PRAGUE, CZECH REPUBLIC

Prague, 11 June 2008

Outline

Crash course on DLs

- ALC
- Universal modality
- TBox
- ABox and individuals
- RBox
- Problem statement
- Tableau procedure

Blocking mechanisms

- Subset blocking
- Equality blocking
- Pairwise blocking
- Successor and anywhere blocking

General blocking mechanism

- Unrestricted blocking rule
- Simulating existing blocking mechanisms

ALC Syntax and Semantics

Atomic concepts: $p, p_0, p_1 \dots$ Atomic roles: $r, r_0, r_1 \dots$ Concepts: $C, D \stackrel{\text{def}}{=} p \mid \neg C \mid C \sqcup D \mid \exists r.C$ $C \sqcap D \stackrel{\text{def}}{=} \neg (\neg C \sqcup \neg D), \quad \forall r.C \stackrel{\text{def}}{=} \neg \exists r. \neg C.$

ALC Syntax and Semantics

Atomic concepts: $p, p_0, p_1 \dots$ Atomic roles: $r, r_0, r_1 \dots$ Concepts: $C, D \stackrel{\text{def}}{=} p \mid \neg C \mid C \sqcup D \mid \exists r.C$ $C \sqcap D \stackrel{\text{def}}{=} \neg (\neg C \sqcup \neg D), \quad \forall r.C \stackrel{\text{def}}{=} \neg \exists r. \neg C.$ Interpretation (model): $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfying $p^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \qquad r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \qquad \ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $(\exists r.C)^{\mathcal{I}} = \{x \mid \exists y \in C^{\mathcal{I}} (x, y) \in r^{\mathcal{I}}\}$

Universal Modality

• $\forall C, \exists C.$

- $\bullet \ (\forall C)^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{ x \mid \forall y \in S \ y \in C^{\mathcal{I}} \}.$
- $(\exists C)^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{x \mid \exists y \in S \ y \in C^{\mathcal{I}}\}.$

Universal Modality

- $\forall C, \exists C.$
- $\bullet \ (\forall C)^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{x \mid \forall y \in S \ y \in C^{\mathcal{I}}\}.$
- $\bullet \ (\exists C)^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{x \mid \exists y \in S \ y \in C^{\mathcal{I}}\}.$

Universal Modality

- $\forall C, \exists C.$
- $\bullet \ (\forall C)^{\mathcal{I}} \stackrel{\text{def}}{=} \{x \mid \forall y \in S \ y \in C^{\mathcal{I}}\}.$
- $\bullet \ (\exists C)^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{x \mid \exists y \in S \ y \in C^{\mathcal{I}}\}.$

• Terminological axiom: C = D.

- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: ∀(¬C ⊔ D).

- Terminological axiom: C = D.
- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$.
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: ∀(¬C ⊔ D).

- Terminological axiom: C = D.
- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$.
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: ∀(¬C ⊔ D).

- Terminological axiom: C = D.
- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$.
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: ∀(¬C ⊔ D).

- Terminological axiom: C = D.
- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$.
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: $\forall (\neg C \sqcup D)$.

- Terminological axiom: C = D.
- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$.
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: $\forall (\neg C \sqcup D)$.

- Terminological axiom: C = D.
- Interpretation: $C^{\mathcal{I}} = D^{\mathcal{I}}$.
- A general TBox is a set of terminological axioms.
- Subsumption axiom $C \sqsubseteq D$.
- Interpretation: $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- Every general TBox is equivalent to a set of subsumption axioms.
- If language contains a universal modality than TBox is representable as a set of concepts: $\forall (\neg C \sqcup D)$.

• ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.

- Set of individual names: $\ell, \ell_0, \ell_1, \ldots$
- Singleton concepts: { ℓ }
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{\ell^{\mathcal{I}}\}$.
- Concept assertion: l : C.
- Interpretation:

• Role assertion: $(\ell, \ell') : R \stackrel{\text{\tiny def}}{=} \ell : \exists R.\{\ell'\}.$

- ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.
- Set of individual names: $\ell, \ell_0, \ell_1, \dots$
- Singleton concepts: {*l*}
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{\ell^{\mathcal{I}}\}$.
- Concept assertion: ℓ : C.
- Interpretation:

• Role assertion: $(\ell, \ell') : R \stackrel{\text{\tiny def}}{=} \ell : \exists R.\{\ell'\}.$

- ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.
- Set of individual names: $\ell, \ell_0, \ell_1, \dots$
- Singleton concepts: $\{\ell\}$.
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{\ell^{\mathcal{I}}\}$.
- Concept assertion: l : C.
- Interpretation:

$$(\ell:C)^{\mathcal{I}} \stackrel{\text{def}}{=} \begin{cases} \Delta^{\mathcal{I}}, & \text{if } \ell^{\mathcal{I}} \in C^{\mathcal{I}}, \\ \varnothing, & \text{otherwise,} \end{cases}$$

• Role assertion: $(\ell, \ell') : R \stackrel{\text{\tiny def}}{=} \ell : \exists R. \{\ell'\}.$

- ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.
- Set of individual names: $\ell, \ell_0, \ell_1, \dots$
- Singleton concepts: $\{\ell\}$.
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{\ell^{\mathcal{I}}\}.$
- Concept assertion: ℓ : C.
- Interpretation:

$$(\ell:C)^{\mathcal{I}} \stackrel{\text{def}}{=} \begin{cases} \Delta^{\mathcal{I}}, & \text{if } \ell^{\mathcal{I}} \in C^{\mathcal{I}}, \\ \varnothing, & \text{otherwise,} \end{cases}$$

• Role assertion: $(\ell, \ell') : R \stackrel{\text{\tiny def}}{=} \ell : \exists R. \{\ell'\}.$

- ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.
- Set of individual names: $\ell, \ell_0, \ell_1, \dots$
- Singleton concepts: $\{\ell\}$.
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{\ell^{\mathcal{I}}\}.$
- Concept assertion: $\ell : C$.
- Interpretation:

$$(\ell:C)^{\mathcal{I}} \stackrel{\text{def}}{=} \begin{cases} \Delta^{\mathcal{I}}, & \text{if } \ell^{\mathcal{I}} \in C^{\mathcal{I}}, \\ \varnothing, & \text{otherwise,} \end{cases}$$

• Role assertion: $(\ell, \ell') : R \stackrel{\text{\tiny def}}{=} \ell : \exists R. \{\ell'\}.$

- ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.
- Set of individual names: $\ell, \ell_0, \ell_1, \dots$
- Singleton concepts: $\{\ell\}$.
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{\ell^{\mathcal{I}}\}.$
- Concept assertion: $\ell : C$.
- Interpretation:

$$\left(\ell:C\right)^{\mathcal{I}} \stackrel{\text{def}}{=} \begin{cases} \Delta^{\mathcal{I}}, & \text{if } \ell^{\mathcal{I}} \in C^{\mathcal{I}}, \\ \varnothing, & \text{otherwise,} \end{cases}$$

• Role assertion: $(\ell, \ell') : R \stackrel{\text{def}}{=} \ell : \exists R. \{\ell'\}.$

- ABox A is a set of *concept assertions* C(a) and *role assertions* R(a, b) where a, b stand for an elements of a model.
- Set of individual names: $\ell, \ell_0, \ell_1, \dots$
- Singleton concepts: $\{\ell\}$.
- Interpretation: $\ell^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and $\{\ell\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{\ell^{\mathcal{I}}\}.$
- Concept assertion: $\ell : C$.
- Interpretation:

$$\left(\ell:C\right)^{\mathcal{I}} \stackrel{\text{def}}{=} \begin{cases} \Delta^{\mathcal{I}}, & \text{if } \ell^{\mathcal{I}} \in C^{\mathcal{I}}, \\ arnothing, & \text{otherwise,} \end{cases}$$

• Role assertion:
$$(\ell, \ell') : R \stackrel{\text{\tiny def}}{=} \ell : \exists R. \{\ell'\}.$$

- RBox is a set of *role inclusion axioms* $R \sqsubseteq S$.
- possibly, other assumptions on roles are included, e.g. transitivity of roles.

Problem Statement

• Knowledge base KB is a tuple (ABox, TBox, RBox).

• The problem (KB $\models C$?):

Given a knowledge base KB and a concept C, find a model \mathcal{I} which validate all the axioms of the knowledge base and $C^{\mathcal{I}} \neq \varnothing$.

 In modern description logic, tableau decision algorithms are usually used for solving the problem.

Problem Statement

- Knowledge base KB is a tuple (ABox, TBox, RBox).
- The problem (KB \models *C*?): Given a knowledge base KB and a concept *C*, find a model \mathcal{I} which validate all the axioms of the knowledge base and $C^{\mathcal{I}} \neq \emptyset$.
- In modern description logic, tableau decision algorithms are usually used for solving the problem.

Problem Statement

- Knowledge base KB is a tuple (ABox, TBox, RBox).
- The problem (KB \models *C*?): Given a knowledge base KB and a concept *C*, find a model \mathcal{I} which validate all the axioms of the knowledge base and $C^{\mathcal{I}} \neq \emptyset$.
- In modern description logic, tableau decision algorithms are usually used for solving the problem.

Tableau Procedure Common Tableau Rules

Rules for individuals

$$(\operatorname{sym}) \frac{\ell : \{\ell'\}}{\ell' : \{\ell\}} \qquad (\neg \operatorname{sym}) \frac{\ell : \neg \{\ell'\}}{\ell' : \neg \{\ell\}} \qquad (\operatorname{ref}) \frac{\ell : C}{\ell : \{\ell\}} \qquad (\operatorname{mon}) \frac{\ell : \{\ell'\}, \quad \ell' : C}{\ell : C} \qquad (\operatorname{canc}) \frac{\ell : (\ell' : C)}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : (\ell' : C)}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell : \ell' : C}{\ell' : C} \qquad (\operatorname{canc}) \frac{\ell' : C}{\ell' : C} \qquad (\operatorname{canc})$$

Tableau Procedure Common Tableau Rules

Standard rules for \mathcal{ALC} (L) $\frac{\ell: C, \ \ell: \neg C}{\bot}$ ($\neg \neg$) $\frac{\ell: \neg \neg C}{\ell: C}$ ($\neg \neg$) $\frac{\ell: \neg \neg C}{\ell: C}$ ($\neg \neg$) $\frac{\ell: \neg \neg C}{\ell: C}$ (L) $\frac{\ell: (C \sqcup D)}{\ell: C \mid \ell: D}$ (\Box) $\frac{\ell: \exists R.C}{\ell: \exists R.\{\ell'\}, \ \ell': C}$ ($\neg \exists$) $\frac{\ell: \exists R.C, \ \ell: \exists R.\{\ell'\}}{\ell: \neg C}$

$$(\operatorname{sym}) \frac{\ell : \{\ell'\}}{\ell' : \{\ell\}} \qquad (\neg \operatorname{sym}) \frac{\ell : \neg \{\ell'\}}{\ell' : \neg \{\ell\}} \qquad (\operatorname{ref}) \frac{\ell : C}{\ell : \{\ell\}}$$
$$(\operatorname{mon}) \frac{\ell : \{\ell'\}, \quad \ell' : C}{\ell : C} \qquad (\operatorname{canc}) \frac{\ell : (\ell' : C)}{\ell' : C}$$

$$\ell:\{\ell'\}\equiv\ell=\ell'$$

Outline

Crash course on DLs

- ALC
- Universal modality
- TBox
- ABox and individuals
- RBox
- Problem statement
- Tableau procedure

Blocking mechanisms

- Subset blocking
- Equality blocking
- Pairwise blocking
- Successor and anywhere blocking

General blocking mechanism

- Unrestricted blocking rule
- Simulating existing blocking mechanisms

Blocking is a detection of repetitions in partially constructed models.

- If some conditions are true for given two individuals (labels) l and l' then l is blocked by l' (for application of individual generating rules).
- To avoid cyclic blocking we assume that all individuals in branch are linearly ordered by an ordering < and given two nominals we always block the largest one w.r.t. the ordering.
- If blocks on individuals are never undone then blocking is *static*. Otherwise it is called *dynamic*.
- Blocking mechanisms usually require access to a set of concepts τ(ℓ) associated with given individual ℓ and sometimes a set of role links τ(ℓ, ℓ') associated with two individuals within the same branch B:

$$\begin{split} \tau(\ell) & \stackrel{\text{def}}{=} \{C \mid \ell : C \in \mathcal{B}\}\\ \tau(\ell, \ell') & \stackrel{\text{def}}{=} \{R \mid \ell : \exists R. \{\ell'\} \in \mathcal{B}\} \end{split}$$

- Blocking is a detection of repetitions in partially constructed models.
- If some conditions are true for given two individuals (labels) l and l' then l is blocked by l' (for application of individual generating rules).
- To avoid cyclic blocking we assume that all individuals in branch are linearly ordered by an ordering < and given two nominals we always block the largest one w.r.t. the ordering.
- If blocks on individuals are never undone then blocking is *static*. Otherwise it is called *dynamic*.
- Blocking mechanisms usually require access to a set of concepts $\tau(\ell)$ associated with given individual ℓ and sometimes a set of role links $\tau(\ell, \ell')$ associated with two individuals within the same branch \mathcal{B} :

$$\begin{split} \tau(\ell) &\stackrel{\text{def}}{=} \{ C \mid \ell : C \in \mathcal{B} \} \\ \tau(\ell, \ell') &\stackrel{\text{def}}{=} \{ R \mid \ell : \exists R. \{\ell'\} \in \mathcal{B} \} \end{split}$$

- Blocking is a detection of repetitions in partially constructed models.
- If some conditions are true for given two individuals (labels) l and l' then l is blocked by l' (for application of individual generating rules).
- To avoid cyclic blocking we assume that all individuals in branch are linearly ordered by an ordering < and given two nominals we always block the largest one w.r.t. the ordering.
- If blocks on individuals are never undone then blocking is *static*. Otherwise it is called *dynamic*.
- Blocking mechanisms usually require access to a set of concepts $\tau(\ell)$ associated with given individual ℓ and sometimes a set of role links $\tau(\ell, \ell')$ associated with two individuals within the same branch \mathcal{B} :

$$\begin{split} \tau(\ell) &\stackrel{\text{def}}{=} \{C \mid \ell : C \in \mathcal{B}\}\\ \tau(\ell, \ell') &\stackrel{\text{def}}{=} \{R \mid \ell : \exists R. \{\ell'\} \in \mathcal{B}\} \end{split}$$

- Blocking is a detection of repetitions in partially constructed models.
- If some conditions are true for given two individuals (labels) ℓ and ℓ' then ℓ is blocked by ℓ' (for application of individual generating rules).
- To avoid cyclic blocking we assume that all individuals in branch are linearly ordered by an ordering < and given two nominals we always block the largest one w.r.t. the ordering.
- If blocks on individuals are never undone then blocking is *static*. Otherwise it is called *dynamic*.
- Blocking mechanisms usually require access to a set of concepts $\tau(\ell)$ associated with given individual ℓ and sometimes a set of role links $\tau(\ell, \ell')$ associated with two individuals within the same branch \mathcal{B} :

$$\begin{split} \tau(\ell) &\stackrel{\text{def}}{=} \{C \mid \ell : C \in \mathcal{B}\}\\ \tau(\ell, \ell') &\stackrel{\text{def}}{=} \{R \mid \ell : \exists R. \{\ell'\} \in \mathcal{B}\} \end{split}$$

- Blocking is a detection of repetitions in partially constructed models.
- If some conditions are true for given two individuals (labels) ℓ and ℓ' then ℓ is blocked by ℓ' (for application of individual generating rules).
- To avoid cyclic blocking we assume that all individuals in branch are linearly ordered by an ordering < and given two nominals we always block the largest one w.r.t. the ordering.
- If blocks on individuals are never undone then blocking is *static*. Otherwise it is called *dynamic*.
- Blocking mechanisms usually require access to a set of concepts $\tau(\ell)$ associated with given individual ℓ and sometimes a set of role links $\tau(\ell, \ell')$ associated with two individuals within the same branch \mathcal{B} :

$$\begin{split} \tau(\ell) &\stackrel{\text{def}}{=} \{ C \mid \ell : C \in \mathcal{B} \} \\ \tau(\ell, \ell') &\stackrel{\text{def}}{=} \{ R \mid \ell : \exists R. \{\ell'\} \in \mathcal{B} \} \end{split}$$

Subset Blocking

• If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .

• Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap q$.

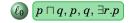
Subset Blocking

- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$

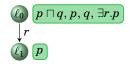
Subset Blocking

- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$

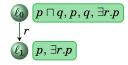
- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$



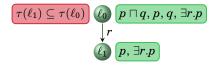
- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$



- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$



- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$



- If $\tau(\ell) \subseteq \tau(\ell')$ (and $\ell' < \ell$) then ℓ is blocked by ℓ' .
- Example: $\mathsf{TBox} = \{\top \sqsubseteq \exists r.p\}, \text{ a concept } p \sqcap q.$

$$\underbrace{\tau(\ell_1) \subseteq \tau(\ell_0)}_{r} \underbrace{\ell_0}_{p \sqcap q, p, q, \exists r.p}$$

• If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .

- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

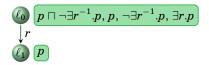
- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

$$\ell_0$$
 $p \sqcap \neg \exists r^{-1}.p, p, \neg \exists r^{-1}.p$

- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

$$\ell_0 \left[p \sqcap \neg \exists r^{-1}.p, p, \neg \exists r^{-1}.p, \exists r.p \right]$$

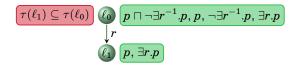
- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.



- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

$$\underbrace{ \begin{pmatrix} p & \neg \exists r^{-1}.p, p, \neg \exists r^{-1}.p, \exists r.p \\ \downarrow r \\ \ell_1 \\ p, \exists r.p \end{pmatrix} }$$

- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.



- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

$$\underbrace{\tau(\ell_1) \subseteq \tau(\ell_0)}_{r} \underbrace{\ell_0}_{p \sqcap \neg \exists r^{-1}.p, p, \neg \exists r^{-1}.p, \exists r.p}_{r}$$

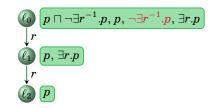
- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

$$\underbrace{\tau(\ell_1) \subseteq \tau(\ell_0)}_{r} \underbrace{\ell_0}_{p \sqcap \neg \exists r^{-1}.p, p, \neg \exists r^{-1}.p, \exists r.p}_{r}$$

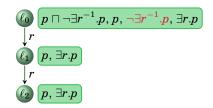
- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.

$$\ell_0 \left(p \sqcap \neg \exists r^{-1}.p, p, \neg \exists r^{-1}.p, \exists r.p \right) \right)$$

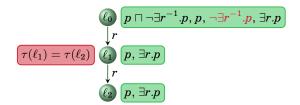
- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.



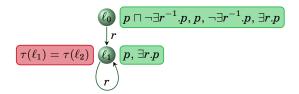
- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.



- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.



- If $\tau(\ell) = \tau(\ell')$ then ℓ is blocked by ℓ' .
- It is required with role inverse.
- Example: TBox = { $\top \sqsubseteq \exists r.p$ }, a concept $p \sqcap \neg \exists r^{-1}.p$.



- A specific blocking mechanism required in extensions of SHIF.
- $\bullet\,$ Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell'_0,$ respectively, the following conditions hold:
 - $\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$

•
$$\tau(\ell) = \tau(\ell');$$

- $\tau(\ell_0) = \tau(\ell'_0).$
- Example: $\mathsf{RBox} = \{s \sqsubseteq r, r \in \mathsf{Trans}\}, \mathsf{concept} \neg p \sqcap \exists s.D \sqcap \forall r. \exists s.D \mathsf{where} D \stackrel{\mathsf{def}}{=} p \sqcap (\leq 1 \ s^{-1}) \sqcap \exists s^{-1}. \neg p.$

- A specific blocking mechanism required in extensions of \mathcal{SHIF} .
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:
 - $\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$

•
$$\tau(\ell) = \tau(\ell');$$

- $\tau(\ell_0) = \tau(\ell'_0).$
- Example: $\operatorname{RBox} = \{s \sqsubseteq r, r \in \operatorname{Trans}\}, \operatorname{concept} \neg p \sqcap \exists s.D \sqcap \forall r.\exists s.D$ where $D \stackrel{\text{def}}{=} p \sqcap (\leq 1 \ s^{-1}) \sqcap \exists s^{-1}. \neg p.$

- A specific blocking mechanism required in extensions of \mathcal{SHIF} .
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

•
$$\tau(\ell_0) = \tau(\ell'_0).$$

$$\ell_0 \quad C, \neg p, \exists s.D, \forall r.\exists s.D$$

- $\bullet~$ A specific blocking mechanism required in extensions of $\mathcal{SHIF}.$
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

- $\tau(\ell_0) = \tau(\ell'_0).$
- Example: $\mathsf{RBox} = \{s \sqsubseteq r, r \in \mathsf{Trans}\}\$, $\mathsf{concept} \neg p \sqcap \exists s.D \sqcap \forall r.\exists s.D$ where $D \stackrel{\mathsf{def}}{=} p \sqcap (\leq 1 \ s^{-1}) \sqcap \exists s^{-1}.\neg p.$

$$\underbrace{ \begin{pmatrix} \ell_0 \\ \downarrow s \end{pmatrix}}_{s} C, \neg p, \exists s.D, \forall r. \exists s.D \\ \ell_1 \\ D, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \end{pmatrix}$$

- $\bullet~$ A specific blocking mechanism required in extensions of $\mathcal{SHIF}.$
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

- $\tau(\ell_0) = \tau(\ell'_0).$
- Example: $\mathsf{RBox} = \{s \sqsubseteq r, r \in \mathsf{Trans}\}\$, $\mathsf{concept} \neg p \sqcap \exists s.D \sqcap \forall r.\exists s.D$ where $D \stackrel{\mathsf{def}}{=} p \sqcap (\leq 1 \ s^{-1}) \sqcap \exists s^{-1}.\neg p.$

$$\begin{array}{c} \ell_0 \\ \hline C, \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \hline \ell_1 \\ \downarrow s \\ \ell_2 \\ \hline D, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \ell_2 \\ \hline D, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \hline \end{pmatrix}$$

- A specific blocking mechanism required in extensions of \mathcal{SHIF} .
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

•
$$\tau(\ell_0) = \tau(\ell'_0).$$

$$\begin{array}{c} \ell_0 \\ \hline (\ell_1) = \tau(\ell_2) \\ \downarrow s \\ \ell_1 \\ \downarrow s \\ \ell_2 \\ \ell_2 \end{array} \begin{array}{c} C, \neg p, \exists s.D, \forall r. \exists s.D \\ \forall r. \exists s.D \\ \downarrow s \\ \ell_2 \end{array} \begin{array}{c} D, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \ell_2 \end{array} \end{array}$$

- $\bullet~$ A specific blocking mechanism required in extensions of $\mathcal{SHIF}.$
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

•
$$\tau(\ell_0) = \tau(\ell'_0).$$

$$\begin{array}{c} \ell_0 \\ \hline C, \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \hline \\ \ell_1 \\ s \end{array} \\ \hline D, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ s \end{array}$$

- $\bullet~$ A specific blocking mechanism required in extensions of $\mathcal{SHIF}.$
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

•
$$\tau(\ell_0) = \tau(\ell'_0).$$

$$\begin{array}{c} \ell_0 \\ \hline C, \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \hline \\ \ell_1 \\ s \end{array} \\ \hline D, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ s \end{array}$$

- A specific blocking mechanism required in extensions of \mathcal{SHIF} .
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

•
$$\tau(\ell_0) = \tau(\ell'_0).$$

$$\begin{array}{c} \textcircled{0} & \fbox{C}, \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \fbox{0} & \fbox{0}, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \fbox{0} & \fbox{0}, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \downarrow s \\ \fbox{0} & \fbox{0}, p, (\leq 1 \ s^{-1}), \exists s^{-1}. \neg p, \exists s.D, \forall r. \exists s.D \\ \end{matrix}$$

- $\bullet~$ A specific blocking mechanism required in extensions of $\mathcal{SHIF}.$
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

• $\tau(\ell_0) = \tau(\ell'_0).$

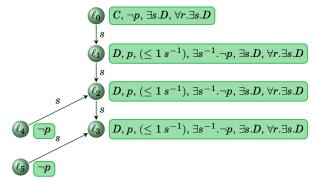
$$\begin{array}{c} \hline \begin{pmatrix} \mathbf{0} \\ \mathbf{0}$$

- A specific blocking mechanism required in extensions of \mathcal{SHIF} .
- Block ℓ by ℓ' only if for their predecessors ℓ_0 and $\ell_0',$ respectively, the following conditions hold:

•
$$\tau(\ell, \ell_0) = \tau(\ell', \ell'_0);$$

•
$$\tau(\ell) = \tau(\ell');$$

• $\tau(\ell_0) = \tau(\ell'_0).$



Successor and Anywhere Blocking

Successor blocking:

- Block l by l' only if l is a successor of l' along some path of role links in the branch.
- It is sufficient for logics which have the tree-model property.

Anywhere blocking:

• Blocks are allowed for any pair of individuals in given branch.

Outline

Crash course on DLs

- ALC
- Universal modality
- TBox
- ABox and individuals
- RBox
- Problem statement
- Tableau procedure

Blocking mechanisms

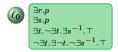
- Subset blocking
- Equality blocking
- Pairwise blocking
- Successor and anywhere blocking

General blocking mechanism

- Unrestricted blocking rule
- Simulating existing blocking mechanisms

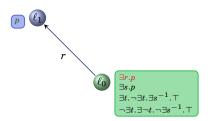
3

Blocking Problem for \mathcal{ALBO}



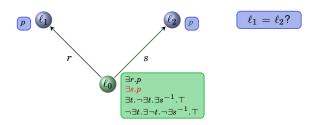
Blocking Problem for \mathcal{ALBO}

$\ell: \exists R.C$				
ℓ :	$\exists R.\{\ell'\},$	ℓ'	:	C



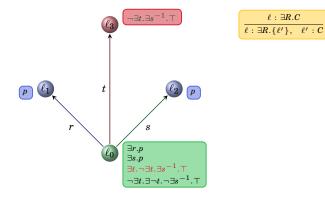
Prague, 11 June 2008

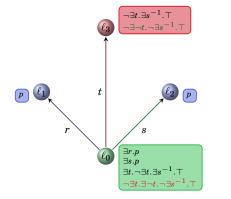
Blocking Problem for \mathcal{ALBO}

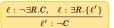


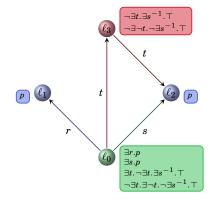
 ℓ : $\exists R.C$

Blocking Problem for \mathcal{ALBO}

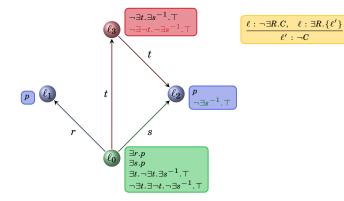


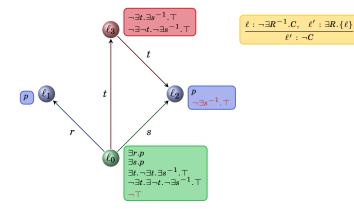


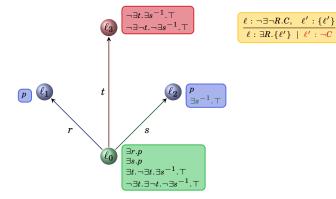


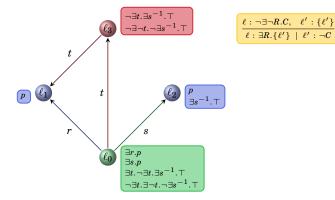


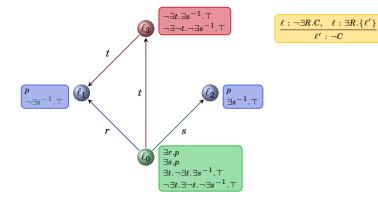
$$\frac{\ell: \neg \exists \neg R.C, \quad \ell': \{\ell'\}}{\ell: \exists R.\{\ell'\} \mid \ell': \neg C}$$

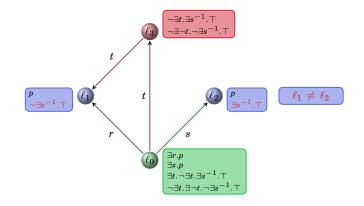












(ub)
$$\frac{\ell: \{\ell\}, \ \ell': \{\ell'\}}{\ell: \{\ell'\} \ | \ \ell: \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- the (B) rule is not applied to role assertion expressions.
- If ℓ : {ℓ} in current branch and ℓ < ℓ then no applications of the (∃) rule to expressions ℓ : ∃R.C are performed¹
- In every open branch there is some node from which point onwards, all gesetble applications of the (ub) rule have been performed before any application of the (3) rule.

(ub)
$$\frac{\ell: \{\ell\}, \ \ell': \{\ell'\}}{\ell: \{\ell'\} \ | \ \ell: \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- Ithe (∃) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
- In every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

< reflects the order in which the individuals are introduced

(ub)
$$\frac{\ell : \{\ell\}, \ \ell' : \{\ell'\}}{\ell : \{\ell'\} \ | \ \ell : \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- (2) the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
- in every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

 1 < reflects the order in which the individuals are introduced

(ub)
$$\frac{\ell : \{\ell\}, \ \ell' : \{\ell'\}}{\ell : \{\ell'\} \ | \ \ell : \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- 2 the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
 - in every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

¹ < reflects the order in which the individuals are introduced

(ub)
$$\frac{\ell : \{\ell\}, \ \ell' : \{\ell'\}}{\ell : \{\ell'\} \ | \ \ell : \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- **2** the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
- In every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

¹ < reflects the order in which the individuals are introduced

- Add conditions for blocking as constraints on application of the unrestricted blocking rule.
- Ensure that tableau uses a fair strategy.
- Ensure the condition 4.
- Tableau algorithm is guaranteed to terminate for logics with the effective finite model property.

- Add conditions for blocking as constraints on application of the unrestricted blocking rule.
- Ensure that tableau uses a fair strategy.
- Ensure the condition 4.
- Tableau algorithm is guaranteed to terminate for logics with the effective finite model property.

- Add conditions for blocking as constraints on application of the unrestricted blocking rule.
- Ensure that tableau uses a fair strategy.
- Ensure the condition 4.
- Tableau algorithm is guaranteed to terminate for logics with the effective finite model property.

- Add conditions for blocking as constraints on application of the unrestricted blocking rule.
- Ensure that tableau uses a fair strategy.
- Ensure the condition 4.
- Tableau algorithm is guaranteed to terminate for logics with the effective finite model property.

you! Questions?

Prague, 11 June 2008

<□ ▶ < @ ▶ < ≧ ▶ ∽ ९. ° 20/20

Prague, 11 June 2008

<□ ▶ < @ ▶ < ≧ ▶ ∽ ९. ° 20/20

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008