
Similarity of XML Schema Fragments Based on XML Data Statistics∗

Irena Mlynkova and Jaroslav Pokorny
Charles University, Faculty of Mathematics and Physics, Department of Software Engineering

Malostranske nam. 25, 118 00 Prague 1, Czech Republic
{irena.mlynkova,jaroslav.pokorny}@mff.cuni.cz

Abstract

As XML has become a standard for data representa-
tion, it can be found in plenty of information technolo-
gies. A possible optimization of XML-based approaches
can be exploitation of similarity of XML data.

In this paper we propose a technique for evaluating
similarity of XML schema fragments focusing on two
often omitted aspects – structural level of similarity and
tuning of parameters of the similarity measure. In the
former case we exploit the results of statistical analy-
sis of real-world XML data. In the latter case we show
that the tuning problem is a kind of constraints opti-
mization problem and can be solved using corresponding
approaches. We have analyzed (dis)advantages of two
of them, genetic algorithms and simulated annealing,
and in further experiments we show that appropriate
tuning produces a more precise similarity measure.

1 Introduction

The XML [4] has become a standard for data repre-
sentation and can be found in most areas of information
technologies. A possible optimization of XML-based
methods is exploitation of similarity of XML data. It
enables to manage similar XML data in a similar man-
ner or to extend approaches for particular XML data to
the whole set of similar ones. But though the amount
of existing similarity-based approaches is significant,
there is still a space for further improvements.

In this paper we propose a similarity measure de-
signed primarily for the purpose of enhancing of user-
driven XML-to-relational storage strategies [10]. The
main idea is to apply storage strategies specified for se-
lected schema fragments to all similar fragments. But
the key ideas can be simply extended to any appro-
priate similarity-based problem. Our method differs

∗This work was supported by the National Programme of Re-
search (Information Society Project number 1ET100300419).

mainly in two aspects: Firstly, it focuses on structural
similarity of the given schema fragments instead of se-
mantics of element/attribute names used in most of ex-
isting works. Since the key aim of XML-to-relational
storage strategies is to find the most efficient way XML
data are stored into relations, the structural analysis
has key impact. Secondly, we deal with tuning of pa-
rameters of the similarity measure, an aspect which is
usually omitted. For this purpose we exploit the re-
sults of statistical analysis of real-world XML data [11]
and we show that the tuning problem is a kind of con-
straints optimization problem and thus can be solved
using respective approaches. We use two of them, ge-
netic algorithms and simulated annealing, whose prop-
erties we analyze using an experimental implementa-
tion. Using further experiments we show that with ap-
propriate tuning the similarity measure is much precise
than a common “reasonable” setting usually used.

The rest of the paper is structured as follows: Sec-
tion 2 overviews the existing related works. Section
3 describes the proposed similarity measure and Sec-
tion 4 provides results of experimental testing. Finally,
Section 5 provides conclusions.

2 Related Work

The number of existing works in the area of XML
data similarity evaluation is significant. In case of doc-
ument similarity we distinguish techniques expressing
the similarity of two documents D1 and D2 by mea-
suring how difficult is to transform D1 into D2 or vice
versa (e.g. [13]) and techniques which specify a simple
and reasonable representation of D1 and D2 that en-
ables their efficient comparison and similarity evalua-
tion (e.g. [14]). In case of similarity of document D and
schema S there are also two types of strategies – tech-
niques which measure the number of elements which
appear in D but not in S and vice versa (e.g. [3]) and
techniques which measure the closest distance between
D and “all” documents valid against S (e.g. [12]). Fi-

nally, methods for measuring similarity of two XML
schemes S1 and S2 exploit and combine various sup-
plemental information and measures such as, e.g., pre-
defined similarity rules, similarity of element/attribute
names, equality of data types and structure, schema
instances, thesauri, previous results, etc. (e.g. [5, 8])

For choosing the best XML-to-relational storage
strategy the key information lies in structural analysis
of XML data. Thus, the corresponding measure should
focus on structural level. And since the best source of
structural information are XML schemes, also the sim-
ilarity should be evaluated primarily on schema level.
In this area the key emphasis is put on the semantic
similarity reflecting the requirements of corresponding
applications (such as schema-integration systems [9],
dissemination-based systems [1], etc.). But for the pur-
pose of XML-to-relational storage strategies such tech-
niques are inappropriate.

3 Proposed Similarity Evaluation

The proposed similarity measure sim(fx, fy) ∈ [0, 1]
expressing similarity of two fragments fx and fy from
space Φ of schema fragments, where 1 represents strong
similarity and 0 strong dissimilarity, is based on a simi-
lar idea as most of the existing works [5,8]. It exploits a
number of supplemental matchers, i.e. functions which
evaluate similarity of a particular feature of the given
schema fragments, such as, e.g. in our case, similar-
ity of number of nodes of fx and fy, similarity of their
depths, similarity of their contents, etc.

Definition 1 A matcher is a function m : Φ2 → [0, 1]
which evaluates similarity of a particular feature of
schema fragments fx, fy ∈ Φ.

Then the partial results are aggregated into the re-
sulting composite similarity value.

Definition 2 A composite similarity measure is a
function mcomp : [0, 1]p → [0, 1] which aggregates re-
sults of p matchers into the total similarity value.

The most common and verified [5] way of composi-
tion is usually a kind of weighted sum.

3.1 Matchers and Composite Measure

For definition of matchers m1, m2, ..., mp we exploit
most of the XML data characteristics developed in the
analysis [11]. Since we want to describe the structure
of the schema fragments as precisely as possible, their
amount is significant. On the other hand, at this stage
the versatility of the approach becomes evident, since

in general any kind of matchers can be used depending
on the requirements of corresponding application.

According to the scope the used characteristics can
be divided into the following groups:

• root – characteristics of root node of the fragment,
e.g. type of content (empty, text, element, mixed,
etc.), element/attribute fan-out, etc.

• subtree – characteristics of the whole fragment,
e.g. number of elements/attributes, number of un-
ordered contents, depths, etc.

• level – characteristics of each level of the fragment,
e.g. number of attributes, minimum/maximum
fan-outs, etc.

Since each matcher should evaluate similarity of par-
ticular characteristic of fragments fx and fy, we trans-
form their values to interval [0, 1]. For root characteris-
tics we distinguish feature matchers and single-valued
matchers. Feature matchers express the (in)equality of
the value of i-th feature feai (e.g. type of content):

mfea
i (fx, fy) =

{
1 feai(fx) = feai(fy)
0 otherwise

(1)

and they are combined into composite feature matcher :

mfea(fx, fy) =
n∑

i=1

mfea
i (fx, fy) · wfea

i (2)

where wfea
i ∈ [0, 1],

∑n
i=1 wfea

i = 1, and n is the num-
ber of feature matchers. Single-valued matchers ex-
press the difference between the value of j-th single-
valued characteristic valuej (e.g. element fan-out):

msingle
j (fx, fy) =

1
|valuej(fx)− valuej(fy)|+ 1

(3)

Subtree characteristics also involve single-valued
characteristics (e.g. number of elements), hence we use
single-valued matchers composed into composite single-
valued matchers msingle similarly to (2). Multi-valued
characteristics (e.g. allowed depths of a schema frag-
ment) require similarity evaluation of two lists of values
of arbitrary lengths. Thus, we supply the shorter list
with zero values, we sort the lists in decreasing order,
and we use multi-valued matchers which express the
similarity of a j-th sorted sequence sj :

mmulti
j (fx, fy) =

∑m
k=1

1
|sj(fx)[k]−sj(fy)[k]|+1

m
(4)

where m is the length of the sequences and seqj(.)[k]
expresses the k-th member of the sequence.

For level characteristics (e.g. minimum fan-out per
level) we use level matchers which compose the results
of single (3) or multi-valued (4) matchers at single lev-
els and decrease their weights with the growing level:

mlev
j (fx, fy) =

l∑

k=1

m
single/multi
j (fx, fy) · (1

2
)k (5)

where l is the maximum of number of levels of fx and
fy (assuming that the shallower one is again supplied
with zero results of the parameters).

Finally, the resulting composite function mcomp is
expressed as a weighted sum of all the matchers.

3.2 Tuning of Weights

In existing works the weights of the matchers are
set either without any argumentation or a machine-
learning strategy is exploited. In our approach we use
the “golden mean” exploiting the experience from the
analysis of real-world XML schemes [11]. The basic
idea is relatively simple: We use the same 98 real-world
XML schemes divided into database (dat), document
(doc), exchange (ex), report (rep), and research (res)
category. Their characteristics are listed in Table 1.

Characteristic dat doc ex rep res

Num. of schemes 31 18 38 4 7

Num. of
elements

min 7 5 5 109 28
max 76 377 523 3,213 250

Depth
min 2 4 2 3 5
max 12 81 79 5 15

Table 1. Characteristics of XML schemes

The first two categories are similar to classical data-
centric and document-centric ones, the other three are
introduced in [11] to enable finer division. Then we
prepare sample patterns of real schema fragments, e.g.
data-centric, document-centric, unordered, recursive,
etc., whose representation is in the particular categories
known. Finally, we compute the number of occurrences
of similar fragments within the schema categories and
tune the parameters of the similarity measure so that
the results correspond to the results of the analysis.

Note that this is the second stage where the algo-
rithm can be modified to any purpose. It general it is
possible to use any relevant information, i.e. knowledge
of characteristics of any sample set of data.

3.2.1 Theoretical View of the Tuning Problem

In general the tuning problem and its solution can be
described as follows: Let c1, c2, ..., cK denote the cat-

egories of schemes, p1, p2, ..., pP the sample patterns,
and (Mrep

i,j)K×P the representation matrix which con-
tains real-world representation of pattern pj in cate-
gory ci, i.e. results of the analysis. Next let us have a
search algorithm with parameters par1, par2, ..., parR,
where ∀i : pari ∈ [0, 1] and some subsets of the param-
eters have to fulfill constraints, such as, e.g., the sum of
parameters which correspond to weights of a weighted
sum must be equal to 1. With a setting of parameters
the algorithm returns calculated representation repi,j

of pattern pj in category ci. The aim is to find the
optimal setting of the parameters, where the sum of
deviations of calculated and real-world representations

∆ =
K∑

i=1

P∑

j=1

|Mrep[i, j]− repi,j | (6)

is minimal. This task is obviously a kind of a classical
constraints optimization problem (COP) [2] – a prob-
lem of finding a solution in a feasible region (i.e. a
space of all possible solutions), where the value of ob-
jective function (i.e. a function which determines qual-
ity of a solution) is optimal and the solution satisfies
the given criteria. Since our feasible region is theo-
retically infinite, we search for a suboptimal solution
of COP using two heuristics – genetic algorithms and
simulated annealing. They enable to find a reasonable
setting following the given requirements and influence
the number of expensive evaluations.

Genetic Algorithms Genetic algorithms (GA) [6]
are a part of evolutionary algorithms inspired by evo-
lution biology. The idea is based on iterative improving
of initial population P0 of individuals using two simula-
tions of natural processes – crossover and mutation. At
i-th iteration the fitness ffit, i.e. the quality of every
individual of population Pi is evaluated, the best indi-
viduals are selected, and modified, i.e. crossed over and
mutated to form a new population Pi+1. Crossover cre-
ates a new offspring by exchanging portions of two in-
dividuals. Mutation creates a new offspring by chang-
ing attributes of an existing one. Both the operations
are performed with given probabilities Pcross and Pmut

which influence the speed of convergence to the subop-
timal solution. The algorithm terminates either if sat-
isfactory fitness level Fmin has been reached in popu-
lation Pi or after N iterations.

In our case a single individual of a population cor-
responds to a single possible setting of parameters
par1, par2, ..., parR and the fitness function evaluates
the inverse value of ∆. Crossover and mutation are
modified to ensure that the parameters fulfill the pre-
viously described conditions of weighted sums.

Simulated Annealing Simulated annealing (SA) [7]
is inspired by the way metal cools and freezes into crys-
talline structure, where controlled cooling increases size
of the crystals and thus reduces defects.

SA starts with the initial state s0 which is iteratively
improved. The quality of a state si is evaluated using
its energy E(si) which needs to be minimized. At i-th
iteration the current state si is replaced with a random
“nearby” state si+1 whose choice depends on a global
parameter T called temperature which is gradually de-
creased during the process. The probability Pmov of
moving from state si to si+1 is expressed as a function
of T , E(si), and E(si+1):

Pmov =
{

1 E(si) > E(si+1)
exp(E(si)−E(si+1)

T) otherwise
(7)

SA terminates either after a certain number of it-
erations N or if a state with satisfactory energy Emin

is reached. The main advantage of SA is its ability to
avoid trapping at local optimum, since SA does not ac-
cept only states which improve the current optimum,
but the probability Pmov and temperature T ensure
that at the beginning the state changes almost arbi-
trarily, but the changes decrease as T goes to zero.

In our case each state represents a single setting of
parameters par1, par2, ..., parR and the energy E eval-
uates ∆. The neighboring states are defined by ran-
dom change of a single parameter, whereas others are
recomputed to fulfill conditions of weighted sums.

4 Experimental Tests

With correct setting of parameters of both the algo-
rithms (i.e. Pcross and Pmut of GA and T and Pmov

of SA [10]) we can analyze their quality and behavior.
Table 2 overviews the quality of the suboptimums ex-
pressed using the result of ∆ and numbers of iterations
necessary for reaching the suboptimums. Moreover,
the algorithms start either with random initial popula-
tion P0 and state s0 or with average-producing weights
(denoted as avg). Apparently for both GA and SA the
results are better when we start with a reasonable set-
ting than with a random one. But, though the values of
the two algorithms do not differ too much, the results
of GA are better in both quality and efficiency. It is
probably caused by its ability to improve a population
of possible settings than a single one.

Having the weights tuned according to the knowl-
edge of structure of real-world data (denoted as Sim-
Tuned), we want to analyze its quality. Since the
existing works focus on semantic similarity and omit

Characteristic
Result of ∆

min avg med max

P0 (GA)
random 0,013 1,176 0,673 3,959
avg 0,001 0,652 0,463 3,441

s0 (SA)
random 0,082 17,318 11,764 55,719
avg 0,061 9,412 6,595 40,519

Characteristic
Number of iterations

min avg med max

P0 (GA)
random 1 17,2 19 30
avg 5 20,9 22,5 30

s0 (SA)
random 8 39,8 38 80
avg 2 38.7 37 80

Table 2. Behavior of GA and SA

the tuning at all, comparison with any of them would
be misleading. But we can compare the tuning with
the usually used reasonable setting to the average-
producing weights (denoted as and SimAvg). For this
purpose we use the approach introduced in [5] which
compares results of an algorithm with results of man-
ual processing representing the optimum. Let R be the
set of manually determined schema fragments similar
to the given schema pattern and P the set of fragments
determined by the similarity measure. Then I denotes
the set of true positives, i.e. fragments correctly identi-
fied by the mesure, F = P\I denotes false matches, i.e.
fragments identified incorrectly, and M = R\I denotes
false negatives, i.e. not identified fragments, and thus

• Precision = |I|
|P | = |I|

|I|+|F | evaluates the reliability
of the measure,

• Recall = |I|
|R| represents the share of real matches

that is found, and
• Overall = 1− |F |+|M |

|R| = |I|−|F |
|R| represents a com-

bined measure of the post-match effort necessary
to remove false and add missed matches.

The lower the values are, the less precise the simi-
larity measure is.

We have selected 5 XML schemes representing the
5 categories and a sample set of 10 data-centric and 10
document-centric schema patterns and we have man-
ually identified the set R and using both SimAvg and
SimTuned the set P . Finally, within the categories we
have computed average values of Precision, Recall, and
Overall which are depicted in Figure 1.

As can be seen, the SimAvg approach is apparently
less precise than SimTuned in all the categories. The
quality of both the measures is correlated with the
amount of information we had for tuning. The best re-
sults can be found for categories dat, doc, and ex since
the amount of schemes highly exceeds the amount in

Figure 1. Results for SimAvg and SimTuned

the other two (see Table 1). Considering the Preci-
sion and Recall parameters, the reliability and share
of real matchers exceeds 60% in the first three cate-
gories. It is not as good as in [5], where these values
often exceed 75%, but none of the similarity measures
focussed on structural similarity and also the match
tasks were different. Considering the Overall param-
eter the worst results are again in case of rep and res
categories, whereas in case of SimAvg and rep the value
is even negative. This denotes that the number of false
positives exceeds the number of true positives and thus
the post-match effort is too high.

5 Conclusion

There are two main contributions of our paper.
Firstly, we have proposed a similarity measure focusing
on structural level which is not very common in exist-
ing works. Secondly, using experimental tests we show
that with tuning of weights based on reliable informa-
tion, the corresponding similarity measure has much
better characteristics than the commonly used average-
producing ones. Our approach can be viewed as a com-
promise between machine-learning techniques and the
straightforward setting on the basis of user experience.

Our future work will focus on exploiting the seman-
tics of element/attribute names. The similarity can be
searched not only on structural level, but also using a
thesaurus or similar user-given information. Although
our proposal emphasizes structural similarities related
to efficiency of database processing, it is worth testing
whether the semantics of the names carries additional
important information useful for this purpose too.

References

[1] M. Altinel and M. J. Franklin. Efficient Filtering of
XML Documents for Selective Dissemination of Infor-
mation. In VLDB’00: Proc. of the 26th Int. Conf. on
Very Large Data Bases, pages 53–64, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[2] R. Bartak. On-Line Guide to Constraint Program-
ming. 1998. http://kti.mff.cuni.cz/~bartak/

constraints/.
[3] E. Bertino, G. Guerrini, and M. Mesiti. A Match-

ing Algorithm for Measuring the Structural Similarity
between an XML Document and a DTD and its Ap-
plications. Inf. Syst., 29(1):23–46, 2004.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0 (Fourth Edition). W3C, 2006.

[5] H. H. Do and E. Rahm. COMA – A System for Flexi-
ble Combination of Schema Matching Approaches. In
VLDB’02: Proc. of the 28th Int. Conf. on Very Large
Data Bases, pages 610–621, Hong Kong, China, 2002.
Morgan Kaufmann Publishers Inc.

[6] J. H. Holland. Adaptation in Natural and Artifical
Systems. University of Michigan Press, Ann Arbor,
MI, USA, 1975.

[7] S. Kirkpatrick, C. D. G. Jr., and M. Vecchi. Optimiza-
tion by Simulated Annealing. Science, 220(4598):671–
680, 1983.

[8] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
Schema Matching with Cupid. In VLDB’01: Proc. of
the 27th Int. Conf. on Very Large Data Bases, pages
49–58, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc.

[9] S. Melnik, H. Garcia-Molina, and E. Rahm. Similar-
ity Flooding: A Versatile Graph Matching Algorithm
and Its Application to Schema Matching. In ICDE’02:
Proc. of the 18th Int. Conf. on Data Engineering, page
117, Washington, DC, USA, 2002. IEEE.

[10] I. Mlynkova. UserMap – an Enhancing of User-Driven
XML-to-Relational Mapping Strategies. Technical re-
port 2007/3. Charles University, Prague, Czech Re-
public, 2007.

[11] I. Mlynkova, K. Toman, and J. Pokorny. Statisti-
cal Analysis of Real XML Data Collections. In CO-
MAD’06: Proc. of the 13th Int. Conf. on Management
of Data, pages 20–31, New Delhi, India, 2006. Tata
McGraw-Hill Publishing Company Limited.

[12] P. K. Ng and V. T. Ng. Structural Similarity between
XML Documents and DTDs. In ICCS’03: Proc. of the
Int. Conf. on Computational Science, pages 412–421.
Springer Berlin / Heidelberg, 2003.

[13] A. Nierman and H. V. Jagadish. Evaluating Structural
Similarity in XML Documents. In WebDB’02: Proc.
of the 5th Int. Workshop on the Web and Databases,
pages 61–66, Madison, Wisconsin, USA, 2002.

[14] Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity
Metric for XML Documents. In FGWM’03: Proc.
of Workshop on Knowledge and Experience Manage-
ment, Karlsruhe, Germany, 2003.

