
Algebraic Optimization of Database Queries
with Preferences∗

Radim Nedbal

4th year of PGS, email: radned@seznam.cz
Department of Mathematics, Faculty of Nuclear Sciences and Physical
Engineering, CTU
advisor: Ing. Július Štuller, CSc., Institute of Computer Science, ASCR

Abstract. The paper resumes a logical framework for formulating preferences and proposes
their embedding into relational algebra through a single preference operator parameterized by
a set of user preferences of sixteen various kinds, inclusive of ceteris paribus preferences, and
returning only the most preferred subsets of its argument relation. Most importantly, conflicting
set of preferences is permitted and preferences between sets of elements can be expressed.

Formal foundation for algebraic optimization, applying heuristics like push preference, also
is provided: abstract properties of the preference operator and a variety of algebraic laws
describing its interaction with other relational algebra operators are presented.

Abstrakt. Př́ıspěvek shrnuje logické př́ıstupy k vyjadřováńı preferenćı a navrhuje jejich začleněńı
do relačńı algebry pomoćı jediného preferenčńıho operátoru parametrizovaného množinou až
šestnácti r̊uzných druh̊u preferenćı, včetně preferenćı ceteris paribus, a vracej́ıćıho nejprefer-
ovaněǰśı podmnožiny relace, která je v jeho argumentu. Podstatné je, že koncept zahrnuje
preference, které mohou být navzájem v konfliktu a umožňuje reprezentovat i preference mezi
množinami.

Navrženy jsou také základńı principy algebraické optimalizace jako je např. propagováńı
preferenčńıho operátoru výrazem relačńı algebry směrem ke vstupńım relaćım. Podobné heuri-
stické metody vycházej́ı z algebraických vztah̊u operaćı relačńı algebry – v tomto př́ıpadě pref-
erenčńıho operátoru, které jsou také prezentovány.

1 Introduction

If users have requirements that are to be satisfied completely, their database queries are
characterized by hard constraints, delivering exactly the required objects if they exist and
otherwise empty result. This is how traditional database query languages treat all the
requirements on the data. However, requirements can be understood also in the sense of
wishes: in case they are not satisfied, database users are usually prepared to accept worse
alternatives and their database query is characterized by soft constraints. Requirements
of the latter type are called preferences.

Building on a logical framework for formulating preferences and their embedding into
relational algebra (RA) through a single preference operator, introduced in [10] to combat

∗This has been supported by the project 1ET100300419 of the Program Information Society (of the
Thematic Program II of the National Research Program of the Czech Republic) “Intelligent Models,
Algorithms, Methods and Tools for the Semantic Web Realization” and by the Institutional Research
Plan AV0Z10300504 “Computer Science for the Information Society: Models, Algorithms, Applications”.

1

2

the empty result and the flooding effects, this paper presents an approach to algebraic
optimization of relational queries with various kinds of preferences. The preference oper-
ator selects from its argument relation the best-matching alternatives with regard to user
preferences, but nothing worse.1 Preferences are specified using a propositional logic no-
tation and their semantics is related to that of a disjunctive logic program. The language
for expressing preferences i) is declarative, ii) includes various kinds of preferences, iii) is
rich enough to express preferences between sets of elements, iv) and has an intuitive, well
defined semantics allowing for conflicting preferences.

In Sect. 2, the above mentioned framework for formulating preferences and in Sect. 3
an approach to their embedding into RA are revisited. Presenting a variety of algebraic
laws that describe interaction with other RA operators to provide a formal foundation
for algebraic optimization, Sect. 4 provides the main contribution of this paper. A brief
overview of related work in Sect. 5 and conclusions in Sect. 6 end this paper. All the
nontrivial proofs are given.

To improve the readability, � (x, y)∧¬ � (y, x) and � (x, y)∧ � (y, x) is substituted
by � (x, y) and = (x, y), respectively.

2 User Preferences

A user preference is expressed by a preference statement, e.g. “a is preferred to b”, or
symbolically by an appropriate preference formula. Preference formulas comprise a simple
declarative language for expressing preferences. To capture its declarative aspects, model-
theoretic semantics is defined: considering a set of states of affaires S and a set W = 2S

of all its subsets – worlds, if M = 〈W,�〉 is an order � on W such that w � w′ holds for
some words w,w′ from W , then M is termed a preference model of w > w′ – a preference
of the world w over the world w′, which we express symbolically as M |= w > w′.

The basic differentiation between preferences is based on notions of optimism and
pessimism. Defining a-world as a world in which a occurs, if we are optimistic about a
and pessimistic about b for example, we expect some a-world to precede at least one b-
world in each preference model of a preference statement “a is preferred to b”. This kind of
preference is called opportunistic. By contrast, if we are pessimistic about a and optimistic
about b, we expect every a-world to precede each b-world in each preference model of a
preference statement “a is preferred to b”. This kind of preference is called careful.
Alternatively, we might be optimistic or pessimistic about both a and b. Then we expect
some a world to precede each b-world or each a-world to precede some b-world in each
preference model of a preference statement “a is preferred to b”. This kind of preference
is called locally optimistic or locally pessimistic, respectively. Locally optimistic, locally
pessimistic, opportunistic and careful preferences are symbolically expressed by preference
formulas of the form: a M>M b, a m>m b, a M>m b, and a m>M b, respectively.

Also, we distinguish between strict and non-strict preferences. For example, if w
precedes w′ strictly in a preference model, then we strictly prefer w to w′.

In addition, we distinguish between preferences with and without ceteris paribus pro-

1A similar concept was proposed independently by Kießling et al. [6, 7] and Chomicki et al. [2] and,
in a more restricted form, by Börzsönyi et al. [1] (for more detail refer to Sect. 5).

3

viso – a notion introduced by von Wright [11] and generalized by Doyle and Wellman
[3] by means of contextual equivalence relation – an equivalence relation on W .2 For ex-
ample, a preference model of a preference statement “a is carefully preferred to b ceteris
paribus” is such an order on W that a-worlds precede b-worlds in the same contextual
equivalence class. Specifically, the preference statement “I prefer playing tenis to playing
golf ceteris paribus” might express by means of an contextual equivalence that I prefer
playing tenis to playing golf only if the context of weather is the same, i.e., it is not true
that I prefer playing tenis in strong winds to playing golf during a sunny day.

Next, we revisit the basic definitions introducing syntax and model-theoretic semantics
of the language for expressing user preferences:

Definition 1 (Language). Given a finite set of propositional variables p, q, . . ., the set L0

of propositional formulas and the set L of preference formulas is defined as the smallest
set satisfying the following:

L0 3 ϕ, ψ: p | (ϕ ∧ ψ) | ¬ϕ
L 3 Φ,Ψ: ϕ x>y ψ | ϕ x≥y ψ | ¬Φ | (Φ ∧Ψ) for x, y ∈ {m,M}

If we identify propositional variables with tuples over a relation schema R, then the
elements of L are termed preference formulas over R. A relation instance I(R), i.e., a set
of tuples over R, creates a world w, an element of a set W .

The preference model is defined so that any set of (possibly conflicting) preferences is
consistent: the partial pre-order, i.e., a binary relation which is reflexive and transitive,
in the definition of the preference model, enables to express some kind of conflict by
incomparability:

Definition 2 (Preference model). A preference model M = 〈W,�〉 over a relation schema
R is a couple in which W is a set of worlds, relation instances of R, and � is a partial
pre-order over W , the preference relation over R.

A set of user preferences of various kinds can by represented symbolically by a pref-
erence specification, which corresponds to an appropriate complex preference formula in
the above defined language.

Definition 3 (Preference specification). Let R be a relation schema and PB a set of
preference formulas over R of the form {ϕi Bψi : i = 1, . . . , n}. A preference specification
P over R is a tuple 〈PB|B ∈ { x>y, x≥y |x, y ∈ {m,M}}〉, and M is its model, i.e., a
preference specification model, iff it models all elements PB of the tuple:

M |= PB ⇐⇒ ∀(ϕi B ψi) ∈ PB : M |= ϕi B ψi .

2As it has been shown [5] that any preference with contextual equivalence specification can be ex-
pressed by a set of preferences without contextual specification, we can restrict ourselves only to prefer-
ences without ceteris paribus proviso.

4

3 Preference Operator

To embed preferences into RQL, the preference operator ωP returning only the best sets
of tuples in the sense of user preferences P is defined:

Definition 4 (Preference operator). If R is a relation schema, P a preference specification
over R, and M the set of its models; then the preference operator ωP is defined for all
instances I(R) of R as follows:

ωP(I(R)) = {w ∈ W | w ⊆ I(R) ∧ ∃Mk = 〈W,�k〉 ∈M s.t. ∀w′ ∈ W :

w′ ⊆ I(R)∧ �k (w′, w)⇒ �k (w,w′)} .

Remark 1 (Preference operator notation). To be precise, we should write ωP(2I(R)) instead
of ωP(I(R)). Thus it makes sense to write ωP({a, b, c}), where the argument of preference
operator is a set of elements a, b, and c.

3.1 Basic Properties.

The following propositions are essential for investigation of algebraic properties describing
interaction of the preference operator with other RA operations:

Proposition 1. Given a relation schema R and a preference specification P over R, for
all instances I(R) of R the following properties hold:

ωP(I(R)) ⊆ 2I(R) ,

ωP (ωP(I(R))) = ωP(I(R)) ,

ωPempty(I(R)) = 2I(R) ,

where Pempty is the empty preference specification, i.e., containing no preference.

Preference operator is not monotone or antimonotone with respect to its relation
argument. However, partial antimonotonicity holds:

Proposition 2 (Partial antimonotonicity). Given a relation schema R and a preference
specification P over R, for all instances I(R), I ′(R) of R the following property holds:

I(R) ⊆ I ′(R)⇒ 2I(R) ∩ ωP(I ′(R)) ⊆ ωP(I(R)) .

Proof. Assume w ∈ 2I(R) ∩ ωP(I ′(R)). It follows that w ⊆ I(R) and from the definition
(Def. 4) of preference operator w ⊆ I ′(R) ∧ ∃Mk ∈ M s.t. ∀w′ ∈ W : w′ ⊆ I ′(R)∧ �k

(w′, w) ⇒�k (w,w′). As I(R) ⊆ I ′(R), we can conclude that ∃Mk ∈ M s.t. ∀w′ ∈
W : w′ ⊆ I(R)∧ �k (w′, w) ⇒�k (w,w′), which together with w ⊆ I(R) implies w ∈
ωP(I(R)).

The following theorem enables to reduce cardinality of an argument relation of the
preference operator without changing the return value:

5

Theorem 1 (Reduction). Given a relation schema R, a preference specification P over
R, for all instances I(R), I ′(R) of R the following property holds:

I(R) ⊆ I ′(R) ∧ ωP(I ′(R)) ⊆ 2I(R) ⇒ ωP(I(R)) = ωP(I ′(R)) .

Proof. ⊆: Assume w ∈ ωP(I(R)). Then, it follows from the definition of the preference
operator w ⊆ I(R)∧∃Mk ∈M s.t. ∀w′ ∈ W : w′ ⊆ I(R)∧ �k (w′, w)⇒�k (w,w′).
The assumption ωP(I ′(R)) ⊆ 2I(R) implies ∀w′ ∈ 2I′(R) − 2I(R) : ¬ �k (w′, w), and
we can conclude ∃Mk ∈ M s.t. ∀w′ ∈ W : w′ ⊆ I ′(R)∧ �k (w′, w) ⇒�k (w,w′),
which together with the assumption I(R) ⊆ I ′(R) implies w ∈ ωP(I ′(R)).

⊇: Immediately follows from Prop. 2.

The following theorem ensures that the empty query result effect is successfully elim-
inated:

Theorem 2 (Non-emptiness). Given a relation schema R, a preference specification P

over R, then for every finite, nonempty instance I(R) of R, ωP(I(R)) is nonempty.

3.2 Multidimensional Composition.

In multidimensional composition, we have a number of preference specifications defined
over several relation schemas, and we define preference specification over the Cartesian
product of those relations: the most common ways are Pareto and lexicographic compo-
sition.

Definition 5 (Pareto and lexicographic composition). Given two relation schemas R1

and R2, preference specifications P1 over R1 and P2 over R2, and their sets of models M1

and M2, the Pareto composition P (P1,P2) and the lexicographic composition L(P1,P2)
of P1 and P2 is a preference specification P0 over the Cartesian product R1 ×R2, whose
set of models M0 is defined as:

∀Mm = 〈W1 ×W2,�m〉 ∈M0,∃Mk = 〈W1,�k〉 ∈M1,∃Ml = 〈W2,�l〉 ∈M2 s.t.

∀w1, w
′
1 ∈ W1,∀w2, w

′
2 ∈ W2 :�m (w1 × w2, w

′
1 × w′2) ≡ �k (w1, w

′
1) ∧ �l (w2, w

′
2)

and

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2 :

�m (w1 × w2, w
′
1 × w′2) ≡ �k (w1, w

′
1) ∨ (=k (w1, w

′
1)∧ �l (w2, w

′
2)) ,

respectively.

4 Algebraic Optimization

As the preference operator extends RA, the optimization of queries with preferences can
be realized as an extension of a classical relational query optimization. Most importantly,
we can inherit all well known laws from RA, which, together with algebraic laws govern-
ing the commutativity and distributivity of the preference operator with respect to RA
operations, constitute a formal foundation for rewriting queries with preferences using
the standard strategies (push selection, push projection) aiming at reducing the sizes of
intermediate relations.

6

4.1 Commuting with Selection

The following theorem identifies a sufficient condition under which the preference operator
commutes with RA selection:

Theorem 3 (Commuting with selection). Given a relation schema R, a preference spec-
ification P over R, the set of its preference models M , and a selection condition ϕ over
R, if the formula

∀Mk = 〈W,�k〉 ∈M ,∀w,w′ ∈ W : �k (w′, w) ∧ w = σϕ(w)⇒ w′ = σϕ(w′)

is valid, then for any relation instance I(R) of R:

ωP (σϕ(I(R))) = σϕ(ωP(I(R)))
def
= {w ∈ ωP(I(R))|σϕ(w) = w} .

Proof. Observe that:

w ∈ ωP(σϕ(I(R))) ≡ w ⊆ I(R) ∧ σϕ(w) = w∧
¬(∀Mk ∈M ,∃w′ : (w′ ⊆ I(R) ∧ σϕ(w′) = w′∧ �k (w′, w)) .

w ∈ σϕ(ωP(I(R))) ≡ w ⊆ I(R) ∧ σϕ(w) = w∧
¬(∀Mk ∈M ,∃w′ : (w′ ⊆ I(R)∧ �k (w′, w)) ,

Obviously, the second formula implies the first. To see that the opposite implication also
holds, we assume w 6∈ σϕ(ωP(I(R))) and prove that than also w 6∈ ωP(σϕ(I(R))). There
are three cases when w 6∈ σϕ(ωP(I(R))). If w * I(R) or σϕ(w) 6= w, it is immediately
clear that w 6∈ ωP(σϕ(I(R))). In the third case, ∀Mk ∈M ,∃w′ : (w′ ⊆ I(R)∧ �k (w′, w).
However, due to assumption of the theorem, ∀Mk ∈ M ,∃w′ : (w′ ⊆ I(R) ∧ σϕ(w′) =
w′∧ �k (w′, w), which completes the proof.

4.2 Commuting with Projection

The following theorem identifies sufficient conditions under which the preference operator
commutes with RA projection. To prepare the ground for the theorem, some definitions
have to be introduced:

Definition 6 (Restriction of a preference relation). Given a relation schema R, a set of
attributes X of R, and a preference relation � over R, the restriction θX(�) of � to X
is a preference relation �X over πX(R) defined using the following formula:

�X (wX , w
′
X) ≡ ∀w,w′ ∈ W : πX(w) = wX ∧ πX(w′) = w′X ⇒ � (w,w′) .

Definition 7 (Restriction of the preference model). Given a relation schema R, a set of
relation attributes X of R, and a preference model M = 〈W,�〉 over R, the restriction
θX(M) of M to X is a preference model MX = 〈WX ,�X〉 over πX(R) where WX =
{πX(w) | w ∈ W}.

7

Definition 8 (Restriction of the preference operator). Given a relation schema R, a set
of attributes X of R, a preference specification P over R, and the set MX of its models
restricted to X, the restriction θX(ωP) of the preference operator ωP to X is the preference
operator ωX

P defined as follows:

ωX
P (πX(I(R))) = {wX ∈ WX | wX ⊆ πX(I(R)) ∧ ∃MX ∈MX s.t.

∀w′X ∈ WX : w′X ⊆ πX(I(R))∧ �X (w′X , wX)⇒ �X (wX , w
′
X)} .

Theorem 4 (Commuting with projection). Given a relation schema R, a set of attributes
X of R, a preference specification P over R, and the set of its preference models M , if
the following formulae

∀Mk ∈M ,∀w1, w2, w3 ∈ W :

πX(w1) = πX(w2) ∧ πX(w1) 6= πX(w3)∧ �k (w1, w3)⇒ �k (w2, w3) ,

∀Mk ∈M ,∀w1, w3, w4 ∈ W :

πX(w3) = πX(w4) ∧ πX(w1) 6= πX(w3)∧ �k (w1, w3)⇒ �k (w1, w4)

are valid, then for any relation instance I(R) of R:

ωX
P (πX(I(R))) = πX(ωP(I(R)))

def
= {πX(w) | w ∈ ωP(I(R))} .

Proof. We prove: πX(w) 6∈ ωX
P (πX(I(R)))⇐⇒ πX(w) 6∈ πX(ωP(I(R))).

⇒: Assume πX(w3) 6∈ ωX
P (πX(I(R))). The case πX(w3) * πX(I(R)) is trivial. Oth-

erwise, it must be the case that ∀MX ∈ MX ,∃wX s.t. wX ⊆ πX(I(R)) and �X

(wX , πX(w3)), which implies ∀Mk ∈ M ,∀w1, w4 ∈ W : πX(w1) = wX ∧ πX(w4) =
πX(w3)⇒�k (w1, w4) and thus πX(w3) 6∈ πX(ωP(I(R))).

⇐: Assume πX(w3) 6∈ πX(ωP(I(R))). Then ∀Mk ∈M and ∀w4 ⊆ I(R) s.t. πX(w4) =
πX(w3), there is w1 ⊆ I(R) s.t. �k (w1, w4) and πX(w1) 6= πX(w4). From the
assumption of the theorem, it follows that ∀w2, w4 ⊆ I(R) : πX(w2) = πX(w1) ∧
πX(w4) = πX(w3) ⇒�k (w2, w4), which implies θX(�k)(πX(w1), πX(w3)) and thus
πX(w3) 6∈ ωX

P (πX(I(R))).

4.3 Distributing over Cartesian Product

For preference operator to distribute over the Cartesian product of two relations, the
preference specification, which is the parametr of the preference operator, needs to be
decomposed into the preference specifications that will distribute into the argument re-
lations:

Theorem 5 (Distributing over Cartesian product). Given two relation schemas R1 and
R2, and preference specifications P1 over R1 and P2 over R2, for any two relation in-
stances I(R1) and I(R2) of R1 and R2, the following property holds:

ωP0(I(R1)× I(R2)) = ωP1(I(R1))× ωP2(I(R2))
def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ∈ ωP2(I(R2))} ,

where P0 = P (P1,P2) is a Pareto composition of P1 and P2.

8

Proof. We prove:

w1 × w2 6∈ ωP0(I(R1)× I(R2))⇐⇒ w1 × w2 6∈ ωP1(I(R1))× ωP2(I(R2)) .

⇒: Assume w1 × w2 6∈ ωP0(I(R1) × I(R2)). Then ∀Mm ∈ M0, models of P0, there
are w′1 ⊆ I(R1), w

′
2 ⊆ I(R2) s.t. �m (w′1 × w′2, w1 × w2). Consequently, ∀Mk ∈

M1,∀Ml ∈ M2, models of P1 and P2, there are w′1 ⊆ I(R1), w
′
2 ⊆ I(R2) s.t.

�k (w′1, w1) or �l (w′2, w2), which implies w1 6∈ ωP1(I(R1)) or w2 6∈ ωP2(I(R2)) and
thus w1 × w2 6∈ ωP1(I(R1))× ωP2(I(R2)).

⇐: Assume w1 × w2 6∈ ωP1(I(R1)) × ωP2(I(R2)). Then w1 6∈ ωP1(I(R1)) or w2 6∈
ωP2(I(R2)). Assume the first. Then ∀Mk ∈ M1, models of P1, there must be
w′1 ⊆ I(R1) s.t. �k (w′1, w1). Consequently, ∀Mm ∈ M0, models of P0, ∃w′1 ⊆
I(R1) :�m (w′1 × w2, w1 × w2), which implies w1 × w2 6∈ ωP0(I(R1) × I(R2)). The
second case is symmetric.

For lexicographic composition, we obtain the same property as for Pareto composition:

Theorem 6 (Distributing over Cartesian product). Given two relation schemas R1 and
R2, and preference specifications P1 over R1 and P2 over R2, for any two relation in-
stances I(R1) and I(R2) of R1 and R2, the following property holds:

ωP0(I(R1)× I(R2)) = ωP1(I(R1))× ωP2(I(R2))
def
=

{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ∈ ωP2(I(R2))} ,

where P0 = L(P1,P2) is a lexicographic composition of P1 and P2.

Proof. We prove:

w1 × w2 6∈ ωP0(I(R1)× I(R2))⇐⇒ w1 × w2 6∈ ωP1(I(R1))× ωP2(I(R2)) .

⇒: Assume w1 × w2 6∈ ωP0(I(R1) × I(R2)). Then ∀Mm ∈ M0, models of P0, there
are w′1 ⊆ I(R1), w

′
2 ⊆ I(R2) s.t. �m (w′1 × w′2, w1 × w2). Consequently, ∀Mk ∈

M1,∀Ml ∈ M2, models of P1 and P2, there are w′1 ⊆ I(R1), w
′
2 ⊆ I(R2) s.t.

�k (w′1, w1) or =k (w′1, w1)∧ �l (w′2, w2), which implies w1 6∈ ωP1(I(R1)) or w2 6∈
ωP2(I(R2)) and thus w1 × w2 6∈ ωP1(I(R1))× ωP2(I(R2)).

⇐: Assume w1 × w2 6∈ ωP1(I(R1)) × ωP2(I(R2)). Then w1 6∈ ωP1(I(R1)) or w2 6∈
ωP2(I(R2)). Assume the first. Then ∀Mk ∈ M1, models of P1, there must be
w′1 ⊆ I(R1) s.t. �k (w′1, w1). Consequently, ∀Mm ∈M0, models of P0, there must
be w′1 s.t. �m (w′1 × w2, w1 × w2), which implies w1 × w2 6∈ ωP0(I(R1) × I(R2)).
The second case is symmetric.

Both Theorem 5 and Theorem 6 make it possible to derive the transformation rule
that pushes preference operator with a one-dimensional preference specification down the
appropriate argument of the Cartesian product:

Corollary 1. Given two relation schemas R1 and R2, a preference specifications P1 over
R1, and an empty preference specification P2 over R2, for any two relation instances
I(R1) and I(R2) of R1 and R2, the following property holds:

ωP0(I(R1)× I(R2)) = ωP1(I(R1))× 2I(R2) def
= {w1×w2 | w1 ∈ ωP1(I(R1))∧w2 ⊆ I(R2)} ,

where P0 = P (P1,P2) is a Pareto of lexicographic composition of P1 and P2.

9

Proof. Follows from previous theorems and from the equality ωPempty(I(R)) = 2I(R).

4.4 Distributing over Union

The following theorem shows how the preference operator distributes over the union of
two relations:

Theorem 7 (Distributing over union). Given two compatible relation schemas3 R and
S, and a preference specification P over R (and S), if the following formula

ωP(I(R) ∪ I(S)) ⊆ 2I(R) ∪ 2I(S)

is valid for relation instances I(R) and I(S) of R and S, then the following property
holds:

ωP(I(R) ∪ I(S)) = ωP(ωP(I(R)) ∪ ωP(I(S))) .

Proof. Obviously, ωP(I(R)) ∪ ωP(I(S)) ⊆ 2I(R)∪I(S). If we show that ωP(I(R) ∪ I(S)) ⊆
ωP(I(R)) ∪ ωP(I(S)), the theorem immediately follows from Theorem 1.

Indeed, if w ∈ ωP(I(R) ∪ I(S)), then it follows from the definition of the preference
operator w ⊆ I(R)∪I(S)∧∃Mk ∈M s.t. ∀w′ ∈ W : w′ ⊆ I(R)∪I(S)∧ �k (w′, w)⇒�k

(w,w′). As we know that w ⊆ I(R) ∨w ⊆ I(S) from the assumption of the theorem, we
can conclude w ∈ ωP(I(R)) ∪ ωP(I(S)).

4.5 Distributing over Difference

Only in the trivial case, the preference operator can be distributed over difference:

Theorem 8 (Distributing over difference). Given two compatible relation schemas R and
S, and a preference specification P over R (and S), for any two relation instances I(R)
and I(S) of R and S, the following property holds:

ωP(I(R)− I(S)) = ωP(I(R))− ωP(I(S))

iff the preference specification P is empty.

4.6 Push Preference

The question arises how to integrate the above algebraic laws into the classical, well-
known hill-climbing algorithm. In particular, we want to add heuristic strategy of push
preference, which is based on the assumption that early application of the preference
operator reduces intermediate results. Indeed, the Theorem 1 provides a formal evidence
that it is correct to pass exactly all the tuples that have been included in any world
returned by the preference operator to the next operator in the operator tree. This leads
to a better performance in subsequent operators.

3We call two relation schemas compatible if they have the same number of attributes and the corre-
sponding attributes have identical domains.

10

5 Related Work

The study of preferences in the context of database queries has been originated by Lacroix
and Lavency [8]. They, however, haven’t addressed the issue of algebraic optimization.

Nevertheless, only at the turn of the millennium this area attracted broader inter-
est again. Kießling [6] and Chomicki et al. [2] have pursued independently a similar,
qualitative approach within which preferences between tuples are specified directly, us-
ing binary preference relations. They have defined an operator returning only the best
preference matches. However, they, by contrast to the approach presented in this paper,
don’t consider preferences between sets of elements and are concerned only with one type
of preference. Moreover, the relation to a preference logic unfortunately is unclear. On
the other hand, both Chomicki et. al. [2] and Kießling [7, 4] have laid the foundation for
preference query optimization that extends established query optimization techniques.

A special case of the same embedding represents skyline operator introduced by
Börzsönyi et al. [1]. Some examples of possible rewritings for skyline queries are given
but no general rewriting rules are formulated.

In [9], actual values of an arbitrary attribute were allowed to be partially ordered
according to user preferences. Accordingly, RA operations, aggregation functions and
arithmetic were redefined. However, some of their properties were lost, and the the query
optimization issues were not discussed.

6 Conclusions

We build on the framework of embedding preferences into RQL through the preference
operator that is parameterized by user preferences expressed in a declarative, logical
language containing sixteen kinds of preferences and that returns the most preferred
sets of tuples of its argument relation. Most importantly, the language is suitable for
expressing preferences between sets of elements and its semantics allows for conflicting
preferences.

The main contribution of the paper consists in presenting basic properties of the pref-
erence operator and a number of algebraic laws describing its interaction with other RA
operators. Particularly, sufficient conditions for commuting the preference operator with
RA selection or projection and for distributing over Cartesian product, set union, and
set difference have been identified. Thus key rules for rewriting the preference queries
using the standard algebraic optimization strategies like push preference or push projec-
tion have been established. Moreover, a new optimization strategy of push preference
has been suggested.

Future work directions include identifying further algebraic properties and finding the
best possible ordering of transformations for optimization of RA statements with the
preference operator. Also, expressiveness and complexity issues have to be addressed in
detail.

11

References

[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ’Proceedings
of the 17th International Conference on Data Engineering’, 421–430, Washington,
DC, USA, (2001). IEEE Computer Society.

[2] J. Chomicki. Preference Formulas in Relational Queries. ACM Trans. Database
Syst. 28 (2003), 427–466.

[3] J. Doyle and M. P. Wellman. Representing preferences as ceteris paribus compara-
tives. In ’Decision-Theoretic Planning: Papers from the 1994 Spring AAAI Sympo-
sium’, 69–75. AAAI Press, Menlo Park, California, (1994).

[4] B. Hafenrichter and W. Kießling. Optimization of relational preference queries. In
’CRPIT ’39: Proceedings of the sixteenth Australasian conference on Database tech-
nologies’, 175–184, Darlinghurst, Australia, Australia, (2005). Australian Computer
Society, Inc.

[5] S. Kaci and L. W. N. van der Torre. Non-monotonic reasoning with various kinds
of preferences. In ’IJCAI-05 Multidisciplinary Workshop on Advances in Preference
Handling’, Ronen I.Brafman and U. Junker, (eds.), 112–117, (August 2005).

[6] W. Kießling. Foundations of Preferences in Database Systems. In ’Proceedings of
the 28th VLDB Conference’, 311–322, Hong Kong, China, (2002).

[7] W. Kießling and B. Hafenrichter. Algebraic optimization of relational preference
queries. Technical Report 2003-01, Institute of Computer Science, University of
Augsburg, (February 2003).

[8] M. Lacroix and P. Lavency. Preferences; Putting More Knowledge into Queries.
In ’VLDB’, P. M. Stocker, W. Kent, and P. Hammersley, (eds.), 217–225. Morgan
Kaufmann, (1987).

[9] R. Nedbal. Relational Databases with Ordered Relations. Logic Journal of the IGPL
13 (2005), 587–597.

[10] R. Nedbal. Non-monotonic reasoning with various kinds of preferences in the rela-
tional data model framework. In ’ITAT 2007, Information Technologies – Applica-
tions and Theory’, P. Vojtáš, (ed.), 15–20, Pǒlana, (September 2007). PONT.

[11] G. von Wright. The logic of preference. Edinburgh University Press, Edinburgh,
(1963).

	Introduction
	User Preferences
	Preference Operator
	Basic Properties.
	Multidimensional Composition.

	Algebraic Optimization
	Commuting with Selection
	Commuting with Projection
	Distributing over Cartesian Product
	Distributing over Union
	Distributing over Difference
	Push Preference

	Related Work
	Conclusions

