
On Scalability of the Similarity Search in the World of Peers

Michal Batko
Masaryk University

Brno, Czech Republic

David Novak
Masaryk University

Brno, Czech Republic

Fabrizio Falchi
ISTI-CNR
Pisa, Italy

Pavel Zezula
Masaryk University

Brno, Czech Republic

Abstract

Due to the increasing complexity of current digital data,
similarity search has become a fundamental computational
task in many applications. Unfortunately, its costs are still
high and the linear scalability of single server implemen-
tations prevents from efficient searching in large data vol-
umes. In this paper, we shortly describe four recent scalable
distributed similarity search techniques and study their per-
formance of executing queries on three different datasets.
Though all the methods employ parallelism to speed up
query execution, different advantages for different objec-
tives have been identified by experiments. The reported re-
sults can be exploited for choosing the best implementations
for specific applications. They can also be used for design-
ing new and better indexing structures in the future.

1. Introduction

Efficient lookup for specific keywords in a dictionary of
more than 100,000 words or locating specific records in mil-
lions of bank accounts are quite easy tasks for present-day
computers. Since records in such domains can be sorted,
and every record either fully satisfies the search condition
or it does not at all, hashing or tree-like structures can be
applied as indexes. High scalability of such technologies
is guaranteed by logarithmically bounded search time with
respect to the size of the file.

However, to find images of sport cars, time series with
similar development, or groups of customers with common
buying patterns in respective data collections, the traditional
technologies simply fail. Here, the required comparison
is gradual, rather than binary, because, once a reference
(query) pattern is given, each instance in a search file and
the pattern are in certain relation measured by a user defined
dissimilarity function. The importance of such a search is
increasing for a variety of present complex digital data col-
lections and is generally designated as the similarity search.

Although many similarity search approaches have been
proposed, the most generic one considers the mathemati-

cal metric space as a suitable abstraction of similarity [27].
The simple but powerful concept of the metric space con-
sists of a domain of objects and a distance function that
measures proximity of pairs of objects. It can be applied
not only to multi-dimensional vector spaces, but also to dif-
ferent forms of string objects, as well as to sets or groups
of various nature, etc. Despite many index structures have
been proposed, the similarity search is inherently expensive.
Besides, the linear scalability of the search time prevents
from application to huge files that have become common
with a prediction of continuous rapid growth.

Very recently, we have proposed four scalable and dis-
tributed similarity search structures for metric data. The
first two structures respect the basic ball and generalized
hyperplane partitioning principles [26] and they are called
the VPT and the GHT , respectively [4]. The other two ap-
ply transformation strategies the metric similarity sear ch
problem is transformed into a series of range queries ex-
ecuted on existing distributed keyword structures, namely
the CAN [21] and the Chord [24]. By analogy, we call
them the MCAN [10] and the M-Chord [19]. Each of the
structures is able to execute similarity queries for any met-
ric dataset, and they all exploit parallelism for query execu-
tion. However, due to the completely different underlying
principles, an important question arises: What are the ad-
vantages and disadvantages of the individual approaches in
terms of search costs and scalability for different real-life
search problems?

In this paper, we report on implementations of the VPT ,
GHT , MCAN and M-Chord systems over the same infras-
tructure of peer computers. We have conducted numerous
experiments on three different datasets and present the most
important findings. We focus on scalability with respect to
the size of the query, the size of the dataset, and the number
of simultaneously executed queries.

The rest of the paper is organized as follows. The nec-
essary background and related work are reported in Sec-
tion 2. A brief specification of our four indexing techniques
is available in Section 3, while the assumptions and results
of our experiments can be found in Section 4. The paper
concludes in Section 5.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

INFOSCALE '06. Proceedings of the First International Conference on Scalable Information Systems, May 29-June 1 2006, Hong Kong
© 2006 ACM 1-59593-428-6/06/05...$5.00

2. Background and related work

In this section, we provide a theoretical background for
the similarity search. Then we mention the distributed
paradigm adopted by all presented solutions. We also give
a brief related work survey in the end of this section.

Let us recall basic definitions and principles that are nec-
essary for the metric-based indexing.
Definition 1: Metric space is a pair , where

is the domain of objects and is the total distance func-
tion satisfying the following conditions
for all objects :

(non-negativity)
iff (identity)

(symmetry)
(triangle inequality)

Several types of similarity queries are defined in the lit-
erature, but we concentrate on the two most common ones
 the range query and the -nearest neighbors query. Let

be a finite set of data objects indexed by an index
structure.
Definition 2: Given an object and a maximal search
radius , range query selects a set of
indexed objects: .

Definition 3: Given an object and an integer ,
-nearest neighbors query retrieves a set

.

Since there is no coordinate system in the metric world,
the only way to divide and prune the indexed data space is
to use relative distances from some preset objects.

The following principle based on the triangle inequality
of is behind most of the metric index methods. For a

query, every indexed object may be
excluded without evaluating if

(1)

where and are precomputed distances to
some fixed object . Furthermore, having a set of

objects (pivots) and having values of
for an object , this object

can be excluded if

(2)

In the following, we refer to this formula as the pivot filter-
ing criterion [27].

All the presented systems are based on the P2P philoso-
phy and constitute purely decentralized structured P2P net-
works. These features refer to the fact that peers (nodes par-
ticipating in the network) offer the same functionality and
the system follows some distributed logic that facilitates an
effective intra-system navigation.

Generally, every node of such a system provides the fol-
lowing features and requires them from the other peers:

resources storage and computational power,

communication every node can contact any other
node directly if knowing its network identification,

navigation internal structure that ensures correct
routing among the peers.

To ensure a maximal scalability, all the systems also
adopt the requirements of the Scalable and Distributed
Data Structures [17]:

data expands to new nodes gracefully, and only when
the nodes already used are efficiently loaded;

there is no master site to be accessed when searching
for objects, e.g., there is no centralized directory;

the data access and maintenance primitives, e.g.,
search, insertion, split, etc., never require atomic up-
dates to multiple nodes.

Many metric-based indexing principles and index struc-
tures have been proposed, focusing on pruning of the search
space at query time [12, 8, 27]. However, even with the
most sophisticated techniques, the similarity search be-
comes too expensive when the stored data volume grows,
because the search costs increase linearly with respect to
the size of the dataset [9]. This fact calls for an attempt to
exploit a distributed processing.

Restricting to multi-dimensional interval queries in vec-
tor spaces, several distributed structures have been pro-
posed recently, for example the MAAN [7], MURK [11],
Mercury [5] or Skip Graphs [1]. A general solution for
the range and nearest neighbors search in the vector data
is provided in the SWAM [2] a family of small-world
based access methods. Unfortunately, these structures are
often designed for specific applications (for example spa-
tial data) typically using vectors of low dimensionality. The
vector space approach cannot be applied on many impor-
tant datasets where similarities are measured by functions
such as the Hausdorff distance, Jaccard’s coefficient, edit
distance, etc.

On the other hand, the pSearch [25] introduces a decen-
tralized P2P information retrieval system based on the CAN
routing protocol. However, this approach is only suitable
for the text retrieval. To the best of our knowledge, the
four systems elaborated in this paper are the only published
metric-based distributed data structures. In this respect, this
paper presents the first and extensive performance compar-
ison of all distributed metric similarity search indexes.

3. Distributed metric approaches

This section contains short descriptions of four different
distributed structures for indexing and similarity search in
the metric data. The first two, GHT and VPT , are native
metric index structures whereas the other two, MCAN and
M-Chord, transform the metric search issue into a different
problem and take advantage of some well-known solutions.
Each description consists of a main idea of the particular
approach, a basic architecture of the system, and a schema
of algorithms for the queries. All the structures
adopt very similar approach to solve the queries and
this technique is explained in the end of this section.

In this section, we describe two distributed metric index
structures the GHT [4] and its not yet published exten-
sion called the VPT . Both of them exploit natural metric
partitioning principles that are used to build a distributed
binary tree [15].

In both the GHT and the VPT , the dataset is distributed
among peers participating in the network. Every peer holds
sets of objects in its storage areas called buckets. A bucket is
a limited space dedicated to store objects. It may be, for ex-
ample, a memory segment or a block on a disk. The number
of buckets managed by a peer depends on its own potential.

Since both the structures are dynamic and new objects
can be inserted at any time, a bucket on a peer may reach its
capacity limit. In this situation, a new bucket is created and
some objects from the full bucket are moved to it. This new
bucket may be located on a different peer than the original
one. Thus, the structures grow as new data come in.

The core of the algorithm lays down a mechanism for lo-
cating appropriate peers which hold requested objects. The
part of the structure responsible for this navigation is called
the Address Search Tree (AST). In order to avoid hotspots,
which may be caused by the existence of a centralized node
accessed by every request, an instance of the AST structure
is present in every peer. Whenever a peer wants to access
or modify the data in the GHT structure, it must first con-
sult its own AST to get locations, i.e. peers, where the data
resides. Then, it contacts the peers via network communi-
cation to actually process the operation.

Since we are in a distributed environment, it is prac-
tically impossible to maintain a precise address for every
object in every peer. Thus, the ASTs in the peers contain
only limited navigation information which may be impre-
cise. The locating step is then repeated on contacted peers
until the desired peers are reached. The algorithm guaran-
tees that the destination peers are always found. Both the
structures also provide a mechanism called image adjust-
ment for updating the imprecise parts of the AST automat-
ically. We will focus only on the basics of both the struc-
tures, i.e. the partitioning principles used in AST and the
evaluation of range queries. For more details see [4].

Address search tree The AST is a binary search tree
based on the Generalized Hyperplane Tree (GHT) [26] in
GHT , and on the Vantage Point Tree (VPT) [26] for the
VPT structure. Its inner nodes hold the routing information
according to the partitioning principle and each leaf node
represents a pointer to either a bucket (denoted as BID) or
a peer (denoted as NNID) holding the data. Whenever the
data is in a bucket on the local peer, a leaf node is a BID
pointer. An NNID pointer is used if the data is on a remote
peer.

12

19

3

4

9

17

18

22

13
14

15

16

21
20

8

1

2

6
5 7

10
11 BID2 BID3

1210

198 18 ...

NNID1BID1

10 11

1 2 5

876

21

151413

16 19 20

22

181712

3 4 9
BID 1 BID 2 BID 3

Figure 1. Address Search Tree with the gen-
eralized hyperplane partitioning

An example of AST using the generalized hyperplane
partitioning is depicted in Figure 1. In order to divide a set
of objects into two separated partitions

using the generalized hyperplane, we must first select
a pair of objects from the set. In Figure 1, we select ob-
jects and call them pivots for the first level of the
AST. Then, the original set is split by measuring the dis-
tance between every object and both the pivots. If

, i.e. the object is closer to the pivot
, the object is assigned to the partition and vice versa.

This principle is used recursively until all the partitions are
small enough and a binary tree representing the partitioning
is build accordingly. Figure 1 shows an example of such a
tree. Observe that the leaf nodes are denoted by and

symbols. That means that the corresponding parti-

tion (which is small enough to stop the recursion) is stored
either in a local bucket or on a remote peer respectively.

The vantage point partitioning, which is used by the
VPT structure, can be seen in Figure 2. In general, this
principle also allows to divide a set into two partitions
and . However, only one pivot is selected from the
set and the objects are divided by a radius . More specif-
ically, if the distance between the pivot and an object

is smaller or equal to the specified radius , i.e. if
then the object belongs to partition . The

object is assigned to otherwise. Similarly, the algorithm
is used recursively to build a binary tree. The leaf nodes
also follow the same schema for addressing local buckets
and remote peers.

13

21
20

4

17

18

12

r3

1 3

22

9

14

2

6
5 7

16

r1

r2

19

11

15

8

10 BID2 BID3 NNID1BID1

11

15 r2

r1

r312

10 11 14

191615

20 21

652

7 8 9

13 22

181712

1 3 4
BID 1 BID 2 BID 3

Figure 2. Address Search Tree with the van-
tage point partitioning

Range search The search for query in both
the GHT and VPT structures proceeds as follows. The
evaluation starts by traversing the local AST of the peer
which issued the query. For every inner node in the tree,
we evaluate the following conditions. Having the general-
ized hyperplane partitioning and thus the inner node format

:

(3)

(4)

And for the vantage point partitioning with the inner node
format :

(5)

(6)

The right subtree of the inner node is traversed if Condi-
tion 3 for the GHT or Condition 5 for the VPT qualifies.
The left subtree is traversed whenever Condition 4 or Con-
dition 6 holds respectively. It is clear that both conditions
may qualify at the same time for a particular range search.
Therefore, multiple paths may be followed and finally, mul-
tiple leaf nodes may be reached.

For all qualifying paths having an NNID pointer in their
leaves, the query request is recursively forwarded to iden-
tified peers until a BID pointer is found in every leaf. The
range search condition is evaluated by the peers in every
bucket determined by the BID pointers using Equation 1.
All qualifying objects form the query response set.

In order to manage metric data, the MCAN [10] uses a
pivot-based technique that maps data objects to an

-dimensional vector space . Then, the CAN [21] Peer-
to-Peer protocol is used for partitioning the space and the
internal navigation. Having a set of pivots
selected from , MCAN maps an object to the vector
space by means of the following function :

(7)

The virtual vector space coordinates designate the object
placement within the MCAN structure. The CAN proto-

col divides the vector space into regions and assigns them
to the participating peers. The object is stored by the peer
whose region contains . Using as a distance func-
tion in the vector space, the mapping is contractive, i.e.

. It can be proved using the
triangle inequality of the metric function [10]. Thus, the
algorithm for query involve only the regions
that cover objects for which . In
other words, it accesses the regions that intersect the hyper-
cube with side centered in (see Figure 3).

Figure 3. Example of MCAN range query

In order to further reduce the number of evaluated dis-
tances, MCAN uses the additional pivot-based filtering ac-
cording to Formula 2. All peers use the same set of pivots:
the pivots from the mapping function (Equation 7),
plus additional pivots since is typically low. All the piv-
ots are selected from a sample dataset using the incremental
selection technique [6].

Routing in MCAN works in the same way as for the orig-
inal CAN. Every peer maintains a coordinate-based routing
table containing the network identifiers and the coordinates
of its neighboring peers in the virtual space. In every
step, the routing algorithm passes the query to the neighbor-
ing peer that is geometrically the closest to the target point
in the space. Given a dataset, the average number of neigh-
bors per peer is proportional to the dimensionality while
the average number of hops to reach a peer is inversely pro-
portional to this value [21].

The insert operation When inserting an object
into MCAN, the initiating peer computes distances between

and all pivots. These values are used for mapping into
by Equation 7 and then the insertion request is for-

warded (using the CAN navigation) to the peer that covers
value . The receiving peer stores and if it reaches its
storage capacity limit (or another defined condition) it exe-
cutes a split. The peer’s region is split into two parts trying
to divide the storage equally. One of the new regions is as-
signed to the new active peer and the other one replaces the
original region.

Range search algorithm The peer that initiates a
query first computes distances between and

all the pivots. The CAN protocol is then employed in order
to reach the region which covers . If a peer, visited
during the routing process, intersects the query area, the re-
quest is spread to all other involved peers using a multicast
algorithm described in detail in [14, 22]. Every affected
peer searches its data storage employing the pivot filtering
mechanism and returns the answer directly to the initiator.

Similarly to the previous MCAN method, the M-Chord
[19] approach also transforms the original metric space.
The core idea is to map the data space into a one-
dimensional domain and use this domain together with the
Chord routing protocol [24].

In particular, this approach exploits the idea of a vector
index method iDistance [13] which partitions the data space
into clusters (), identifies reference points () within the
clusters, and defines one-dimensional mapping of the data
objects according to their distances from the cluster refer-
ence point. Having a separation constant , the iDistance

key for an object is

Figure 4a visualizes the mapping schema. Handling a
query, the space to be searched is specified by

iDistance intervals for such clusters that intersect the query
sphere see an example in Figure 4b.

q
r

(a) (b)
*c *c0 c2*c 3*c0

(iDistance)

0

p2

p1

c 2 3

C

C2

C1

p

p

p

1

0 2

0

C

C2

C1

p

0

Figure 4. The principles of iDistance

This method is generalized to metric spaces in the M-
Chord. No coordinate system can be used to partition a gen-
eral metric space, therefore, a set of pivots
is selected from a sample dataset and the space is parti-
tioned according to these pivots. The partitioning is done
in a Voronoi-like manner [12] (every object is assigned to
its closest pivot).

Because the iDistance domain is to be used as the key
space for the Chord protocol, the domain is transformed
by a uniform order-preserving hash function into the M-
Chord domain of size . Thus, for an object ,

, the M-Chord key-assignment formula becomes:

m-chord (8)

The M-Chord structure Having the data space mapped
into the one-dimensional M-Chord domain, every active
node of the system takes over responsibility for an interval
of keys. The structure of the system is formed by the Chord
circle [24]. This Peer-to-Peer protocol provides an efficient
localization of the node responsible for a given search key.

When inserting an object into the structure, the
initiating node computes the m-chord key through
Formula 8 and employs the Chord to forward a store re-
quest to the node responsible for the computed key (see Fig-
ure 5a).

The nodes store the data in a B -tree storage according
to their M-Chord keys. When a node reaches its storage
capacity limit (or another defined condition) it executes a
split. A new node is placed on the M-Chord circle, so that
the requester’s storage can be split evenly.

Range search algorithm The node that initiates the
query uses the iDistance pruning idea to

choose the M-Chord intervals to be examined. The Chord
protocol is then employed to reach nodes responsible for
middle points of these intervals. The request then spreads
to all nodes covering the particular interval (see Figure 5b).

response
request

N

Nx

Nq

(b)

0

(a)

ins

insert(x):

forward(k,x)

receive(k,x):
store(k,x)

m−chord(x)

k:=m−chord(x)

Figure 5. The insert (a) and range search (b)

The iDistance pruning technique filters out all objects
that fulfil . When inserting

an object into M-Chord, distances are computed
. These values are stored together with ob-

ject and the general metric filtering criterion (Equation 2)
improves the pruning of the search space.

The previous brief descriptions of the structures do not
mention algorithms for queries. Generally, all the
systems adopt a similar approach of query eval-
uation, which exploits the range search. The idea is to es-
timate radius , so that the query returns at
least objects.

More precisely, the general algorithm has the fol-
lowing two phases:

1. Send a request to the node where object would be
stored and search for objects that are near . Mea-
sure the distance to the nearest object found.

2. Execute the query and return the
nearest objects from the query result (skip the space
searched during the first phase).

If less than objects are found in the storage during the first
phase then some other estimation techniques are used see
[3] for details.

The space limitations do not permit us to present
performance results and, thus, the following section, that
evaluates the performance of the structures, concerns the

search only. Because the algorithm directly
exploits the search, the scalability trends are very
similar for both algorithms and all the presented results are
relevant for the query processing as well.

4. Scalability performance evaluation

In this section, we provide comparison of the presented
approaches by confronting results of extensive experiments.
For each data structure, the tests have been conducted on the
same datasets and in the same test environment. Moreover,
all the structures have been implemented over the very same
infrastructure sharing a lower-level code. Due to these facts,
we consider the results of the experiments fairly compara-
ble.

When designing the experiments, we have focused
mainly on various aspects of the scalability of the sys-
tems. Namely, we studied the scalability with respect to
the query selectivity, with respect to the size of the indexed
dataset, and considering the number of concurrently exe-
cuted queries.

All the compared systems are dynamic. Each structure
maintains a set of available inactive nodes and employs
these to split the overloaded nodes, although other split-
ting scenarios are possible as well. For the experiments,
the systems consisted of up to 300 active nodes. Each of
the GHT and VPT peers maintained five buckets with ca-
pacity of 1,000 objects and the MCAN and M-Chord peers
had storage capacity of 5,000 objects. The implementations
built up overlay structures over a high-speed LAN commu-
nicating via the TCP and UDP protocols.

We selected the following significantly different real-life
datasets to conduct the experiments on:

VEC 45-dimensional vectors of extracted color image fea-
tures. The similarity function for comparing the vec-
tors is a quadratic-form distance [23]. The distribu-
tion of the dataset is quite uniform and such a high-
dimensional data space is extremely sparse.

TTL titles and subtitles of Czech books and periodicals
collected from several academic libraries. These
strings are of lengths from 3 to 200 characters and are
compared by the edit distance [16] on the level of in-
dividual characters. The distance distribution of this
dataset is skewed.

DNA protein symbol sequences of length sixteen. The
sequences are compared by a weighted edit distance
according to the Needleman-Wunsch algorithm [18].
This distance function has a very limited domain of
possible values the returned values are integers be-
tween 0 and 100.

Observe that none of these datasets can be efficiently in-
dexed and searched by a standard vector data structure. If

not stated otherwise, the stored data volume is 500,000 ob-
jects. When considering the scalability with respect to the
growing dataset size, the whole datasets of 1,000,000 ob-
jects are used (900,000 for TTL). As for other settings that
are specific for particular data structures, the MCAN uses 4
pivots to build the routing vector space and 40 pivots for fil-
tering. The M-Chord uses 40 pivots as well. The GHT and
VPT structures use variable number of pivots according to
the depth of the AST tree (see Section 3.1).

All the presented performance characteristics of query
processing have been taken as an average over 100 queries
with randomly chosen query objects.

In real applications as well as in the described datasets,
evaluation of the distance function has typically high com-
putational demands. Therefore, the objective of metric-
based data structures is to decrease the number of distance
computations at query time. This value is typically consid-
ered an indicator of the structure efficiency. The CPU costs
of other operations (and usually I/O cost as well) are practi-
cally negligible compared to the distance evaluation time.

Concerning the distributed environment, we use the fol-
lowing two characteristics to measure the computational
costs of a query:

total distance computations the sum of the number of
the distance function evaluations on all engaged peers,

parallel distance computations the maximal number
of distance evaluations performed in a sequential man-
ner during the query processing.

Note that the total number corresponds to costs on a central-
ized version of the specific structure. The communication
costs of a query evaluation are measured by the following
indicators:

total number of messages the number of all messages
(requests and responses) sent during a particular query
processing,

maximal hop count the maximal number of messages
sent in a serial way in order to complete the query.

Since the technical resources used for testing were not
dedicated but opened for public use, the actual query re-
sponse times were fluctuating and we cannot report them
precisely. However, we have usually observed that one
range query evaluation took less than one second for small
radii and approximately two seconds for the big ones re-
gardless of the dataset size. Instead, we use the parallel
distance computations together with the maximal hop count
as an objective response time estimation. Another indica-
tor that we monitored is the percentage of nodes that were
affected by the query processing.

In the first set of experiments, we have focused on the
systems’ scalability with respect to the size of the pro-
cessed query. Namely, we let the structures handle a set
of queries with growing radii . The size of
the stored data was 500,000 objects. The average load ratio
of nodes for all the structures was 60 70% which resulted
in approximately 150 active nodes for each tested system.

We present results of these experiments for all the three
datasets. All graphs in this section represent the dependency
of various measurements (vertical axis) on the range query
radius (horizontal axis) and the datasets are indicated by
titles. For the VEC dataset, we varied the radii from 200
to 2,000 and for the TTL and DNA datasets from 2 to 20.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 500 1000 1500 200
range query radius

VEC

all structures

re
tr

ie
ve

d
ob

je
ct

s

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0 5 10 15 2
range query radius

TTL

all structures

re
tr

ie
ve

d
ob

je
ct

s

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 5 10 15 2
range query radius

DNA

all structures

re
tr

ie
ve

d
ob

je
ct

s

Figure 6. Number of retrieved objects

In the first group of graphs, shown in Figure 6, we re-
port on the relation between the query radius size and the
number of retrieved objects. As intuitively clear, the big-
ger the radius the higher the number of objects satisfying
the query. Since we have used the same datasets, query ob-
jects and radii, all the structures return the same number of
objects. We can see that the number of results grows ex-
ponentially with respect to the query radius for all the three
datasets. Note that, for example, the biggest radius 2,000
in the VEC dataset selects almost 10,000 objects (2% of
the whole database), for the TTL dataset the biggest radius
retrieves even more objects. Obviously, such big radii are
usually not reasonable for applications (e.g., two titles with
edit distance 20 differ a lot), but we provide the results in
order to study behavior of the structures also in these cases.
On the other hand, smaller radii return reasonable amounts
of objects, for instance, radius 6 results in approximately 30
objects in the DNA dataset, which is not clearly readable
from the graphs.

The number of visited nodes is reported in Figure 7.
More specifically, the graphs show the ratio of the number
of nodes that are involved in a particular range query evalu-
ation to the total number of active peers forming the struc-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 500 1000 1500 200
range query radius

VEC

GHT*
VPT*
MCAN
M−Chord

vi
si

te
d

no
de

s
(%

)

 0

 20

 40

 60

 80

 100

 0 5 10 15 2
range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

vi
si

te
d

no
de

s
(%

)

GHT*
VPT*
MCAN
M−Chord

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 2
range query radius

DNA

vi
si

te
d

no
de

s
(%

)
Figure 7. Percentage of visited nodes

ture. As mentioned earlier, the total number of active peers
participating in the network was around 150, thus, value
20% in the graph means that approximately 30 peers were
used to complete the results. We can see that the number
of employed peers grows practically linearly with the size
of the radius. The only exception is the GHT algorithm,
which visits all the participating nodes very soon as the ra-
dius grows. This is induced by the fact that the generalized
hyperplane partitioning does not guarantee a balanced split
as opposed to the other three methods. Moreover, because
we count all the nodes that evaluate distances as visited, the
VPT and the GHT algorithms are a little bit handicapped.
Recall that they need to compute distances to pivots dur-
ing the navigation and thus the nodes that only forwards the
query are also counted as visited.

Note that the used dataset influences the number of vis-
ited nodes. For instance, the DNA metric function has a
very limited set of discrete distance values, thus, both the
native and transformation methods are not as efficient as
for the VEC dataset and more peers have to be accessed.
From this point of view, the M-Chord structure performs
best for the VEC dataset and also for smaller radii in the
DNA dataset, but it is outperformed by the MCAN algo-
rithm for the TTL dataset.

The next group of experiments, depicted by Figure 8,
shows the computational costs with respect to the query ra-
dius. We provide a pair of graphs for every dataset. The
graphs on the left (a) report the total number of distance
computations needed to evaluate a range query. This mea-
sure can be considered to be the query costs in centralized
index structures. The graphs on the right (b) illustrate the
parallel number of distance computations, i.e. the costs of a
query in the distributed environment.

Since the distance computations are the most time con-
suming operations during the evaluation, all the structures
employ the pivot filtering criteria (as mentioned in Sec-
tion 2) to avoid as much distance computations as possi-
ble. As explained, the number of pivots used for filtering

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 500 1000 1500 200
range query radius

GHT*
VPT*
MCAN
M−Chord

to
ta

l d
is

ta
nc

e
co

m
p.

VEC

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 500 1000 1500 200
range query radius

VEC

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

 0 5 10 15 2
range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

to
ta

l d
is

ta
nc

e
co

m
p.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 5 10 15 2
range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

(a)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000

 0 5 10 15 2
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

to
ta

l d
is

ta
nc

e
co

m
p.

(b)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 5 10 15 2
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

Figure 8. The total (a) and parallel (b) number
of distance computations

strongly affects its effectiveness, i.e. the more pivots we
have the more effective the filtering is and the fewer dis-
tances need to be computed. The MCAN and the M-Chord
structures use a fixed set of 40 pivots for filtering, as op-
posed to the GHT and VPT which use the pivots in the
AST. Thus, objects in buckets in lower levels of the AST
have more pivots for filtering and vice versa. Also, the
GHT partitioning implies two pivots per inner tree node,
but VPT contains only one pivot, resulting in half the num-
ber of pivots than for the GHT . In particular, the GHT has
used 48 pivots in its longest branch and only 10 in the short-
est one, while the VPT has filtered using maximally 18 and
minimally 5 pivots.

Observe the effects of filtering on total distance com-
putations in Figure 8a. We can see that the M-Chord and
MCAN structures have practically the same filtering for all
the datasets. On the other hand, the VPT index is always
the worst, since it has the lowest number of pivots used for
filtering. We can also see that the filtering was rather inef-
fective in the DNA dataset, where the structures have com-
puted the distances for up to twice as many objects as for
the TTL and VEC datasets. Then, queries with bigger radii
in the DNA dataset have to access about 60% of the whole
database, which would be very slow in a centralized index.

Figure 8b illustrates the parallel computational costs of
the query processing. We can see that the amount of neces-
sary distance computations is significantly reduced, which
comes out from the fact that the computational load is di-
vided among the participating peers running in parallel. We
can see that the GHT structure has the best parallel dis-
tance computation and seems to be unaffected by the dataset

used. However, its lowest parallel cost is counterbalanced
by the high percentage of visited nodes (shown in Figure 7),
which in fact is strictly correlated to the parallel distance
computations cost for all the structures.

Note also that the increase of parallel cost is bounded by
the value of 5,000 distance computations this is best visi-
ble in the TTL dataset. This is a straightforward implication
of the fact that every node has only a limited storage capac-
ity, i.e. if a peer holds up to 5,000 objects it cannot evaluate
more distance computations between the query and its ob-
jects. This seems to be in contradiction with the M-Chord
graph for the DNA dataset, for which the following problem
has arisen. Due to the small number of possible distance
values of the DNA dataset, the M-Chord transformation re-
sulted into formation of clusters of objects mapped onto
the same M-Chord key. Those objects had to be kept on
one peer only and, thus, the capacity limit of 5,000 objects
could be exceeded.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 500 1000 1500 200

to
ta

l m
es

sa
ge

s

range query radius

VEC

GHT*
VPT*
MCAN
M−Chord

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 200
range query radius

VEC

GHT*
VPT*
MCAN
M−Chord

m
ax

im
al

 h
op

 c
ou

nt

 0
 50

 100
 150
 200
 250
 300
 350

 0 5 10 15 2

to
ta

l m
es

sa
ge

s

range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 2
range query radius

TTL

GHT*
VPT*
MCAN
M−Chord

m
ax

im
al

 h
op

 c
ou

nt

(a)

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 2
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

to
ta

l m
es

sa
ge

s

(b)

 0

 5

 10

 15

 20

 25

 0 5 10 15 2
range query radius

DNA

GHT*
VPT*
MCAN
M−Chord

m
ax

im
al

 h
op

 c
ou

nt

Figure 9. The total number of messages (a)
and the maximal hop count (b)

The last group of measurements in this section, depicted
in Figure 9, reports on the communication costs, i.e. the
traffic load of the underlying network. Since all the struc-
tures exploit the message passing paradigm and the amount
of interchanged data is small (usually fitting in a few pack-
ets), we measure the number of messages needed to solve
a range query as the communication cost. By analogy,
we show the total messages cost, which can be interpreted
as the overall load of the underlying network infrastruc-
ture, and the parallel cost represented by the maximal hop
count . Recall that the hop count is the number of mes-
sages sent in a serial manner, i.e. the sequence of messages
forwarded from one node to another.

Since the GHT and the VPT count all nodes involved
in navigation as visited (as explained earlier), the percent-
age of visited nodes (Figure 7) and the total number of mes-
sages (Figure 9a) are strictly correlated for these structures.
The MCAN structure needs the lowest number of messages
for small ranges, but as the radius grows the number of mes-
sages increases quickly. This comes from the fact that the
MCAN range search algorithm uses multicast to spread the
query and, thus, one peer may be contacted with a specific
query request several times. However, every peer evaluates
a particular request only once. For the M-Chord structure,
we can see that the total cost is considerably high even for
small radii, but it grows very slowly as the radius increases.
In fact, the M-Chord needs to access at least one peer for ev-
ery M-Chord cluster even for small range queries, see Sec-
tion 3.3. Then, as the radius increases, adjacent peers within
some of the clusters need to be contacted and that increases
the total messages costs.

The parallel costs, i.e. the maximal hop count, are practi-
cally constant for different sizes of the radii for all the struc-
tures except the M-Chord for which the maximal hop count
grows. The increase is caused by the serial nature of the cur-
rent algorithm for contacting the adjacent peers in particular
clusters.

In summary, we can say that all the structures scale well
with respect to the size of the radius. In fact, the paral-
lel distance computation costs grow sub-linearly and they
are bounded by the capacity limits of the peers. The paral-
lel communication costs remain practically constant for the
GHT , VPT and MCAN structures and grows linearly for
the M-Chord.

Let us concern the systems’ scalability with respect to
the growing volume of data stored in the structures. We
have observed the performance of queries on
systems storing from 50,000 to 1,000,000 objects. We con-
ducted these experiments on all datasets for the following
radii: 500, 1,000 and 1,500 for the VEC dataset and radii 5,
10 and 15 for the TTL and DNA datasets.

The space limitations do not permit us to present all the
collected results, therefore, we include only one graph for
each type of measurement if the other graphs exhibit the
same trend. The title of each graph in this section specifies
the used dataset and the search radius .

The number of retrieved objects see, e.g., the radius 10
for the TTL dataset in Figure 10a grows precisely linearly
because the data were inserted to the structures in random
order.

Figure 10b depicts the percentage of nodes affected by
the range query processing. For all the structures but the
GHT this value decreases because the data space becomes

(a)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600 700 800

re
tr

ie
ve

d
ob

je
ct

s

dataset size (*1000)

TTL for r = 10

all structures

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 200 400 600 800 10

vi
si

te
d

no
de

s
(%

)

dataset size (*1000)

VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

Figure 10. Retrieved objects (a) and percent-
age of visited nodes (b) for growing dataset

denser and, thus, the nodes cover smaller regions of the
space. Therefore, the space covered by the involved nodes
comes closer to the exact space portion covered by the query
itself. As mentioned in Section 4.3, the GHT partitioning
is not balanced, therefore, the query processing is spread
over larger number of participating nodes.

Figure 11 presents the computational costs in terms of
both total and parallel number of distance computations. As
expected, the total costs (a) increase linearly with the stored
data volume. This well-known trend, which corresponds to
the costs of centralized solutions, is the main motivation for
designing distributed structures. The graph exhibits practi-
cally the same trend for the M-Chord and MCAN structures
since they both use a filtering mechanism based on a fixed
sets of pivots, as explained in Section 4.3. The total costs
for the GHT and the VPT are slightly higher due to the
dynamic sets of filter pivots.

(b)(a)

GHT*
VPT*
MCAN
M−Chord

 0 200 400 600 800 1000 0 200 400 600 800
 0

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

dataset size (*1000)

VEC for r = 1000

to
ta

l d
is

ta
nc

e
co

m
p.

 0

 500

 1000

 1500

 2000

 2500
VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

dataset size (*1000)

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

Figure 11. The total (a) and parallel (b) num-
ber of distance computations

The parallel number of distance computations (Fig-
ure 11b) grows very slowly. For instance, the parallel costs
for the GHT increase by 50% while the dataset grows 10
times and the M-Chord exhibits a 10% increase for dou-
bled dataset size from 500,000 to 1,000,000. The increase
is caused by the fact that the involved nodes contain more
of the relevant objects while making the data space denser.
This corresponds with the observable correlation of this
graph and Figure 10b the less nodes the structure involves,
the higher the parallel costs it shows. The transformation
techniques, the MCAN and the M-Chord, obviously con-
centrate the relevant data on fewer nodes and have higher
parallel costs then. The noticeable graph fluctuations are
caused by rather regular splits of overloaded nodes.

Figure 12 presents the same results for DNA dataset. The
pivot-based filtering performs less effectively for higher
radii (the total costs are quite high) and it is more sensitive
to the number of pivots. The distance function is discrete
with relatively small variety of possible values. As men-
tioned in Section 4.3, for this dataset, the M-Chord map-
ping collisions may result in overloaded nodes that cannot
be split. Then, the parallel costs in Figure 12b may be over
the split limit of 5,000 objects.

(a) (b)

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

 0 200 400 600 800 1000

to
ta

l d
is

ta
nc

e
co

m
p.

dataset size (*1000)

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 200 400 600 800 10
dataset size (*1000)

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

Figure 12. The total (a) and parallel (b) num-
ber of distance computations

Figure 13 shows the communication costs in terms of the
total number of messages (a) and the maximal hop count
(b). The total message costs for the GHT grow faster be-
cause it contacts higher percentages of nodes. The M-Chord
graphs indicate that the total message costs grow slowly but
the major increase of the messages sending is in sequential
manner which negatively influences the hop count.

(b)(a)

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

to
ta

l m
es

sa
ge

s

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

 0
 2
 4
 6
 8

 10
 12
 14

 0 100 200 300 400 500 600 700 800

GHT*
VPT*
MCAN
M−Chord

m
ax

im
al

 h
op

 c
ou

nt

TTL for r = 10

dataset size (*1000)dataset size (*1000)

Figure 13. The total messages (a) and the
maximal hop count (b)

In this section, we focus on scalability of the systems
with respect to the number of queries executed simultane-
ously. In other words, we measure the interquery paral-
lelism [20] of the queries processing.

In the conducted experiments, we have simultaneously
executed groups of 10 100 queries each from a different
node. We have measured the overall parallel costs of the
set of queries as the maximal number of distance compu-
tations performed on a single node of the system. Since
the inter-node communication time costs are lower than the
computational costs, this value can be considered as a char-
acterization of the overall response time. We have run this

experiments for all datasets and have used the same query
radii as in Section 4.4.

In order to establish a baseline, we have measured the
sum of the parallel costs of the individual queries. The ra-
tio of this value to the overall parallel costs characterizes
the improvement achieved by the interquery parallelism and
we refer to this value as the interquery improvement ratio.
This value can also be interpreted as the number of queries
that can be handled by the systems simultaneously without
slowing them down.

Looking at Figures 14a, 15a and 16a, we can see the
overall parallel costs for all the datasets and selected radii.
The trend of the progress is identical for all the structures
and, surprisingly, the actual values are very similar.

(a) (b)

GHT*
VPT*
MCAN
M−Chord

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 0 20 40 60 80 100
number of simultaneous queries

VEC for r = 1000

ov
er

al
l p

ar
al

le
l d

. c
.

 0
 1
 2
 3
 4
 5
 6
 7

 0 20 40 60 80 1
number of simultaneous queries

VEC for r = 1000

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

Figure 14. The overall parallel costs (a) and
interquery improvement ratio (b)

(a) (b)

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 20 40 60 80 100

ov
er

al
l p

ar
al

le
l d

. c
.

number of simultaneous queries

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 1
number of simultaneous queries

TTL for r = 10

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

Figure 15. The overall parallel costs (a) and
interquery improvement ratio (b)

Therefore, the difference of the respective interquery im-
provement ratios, shown in the (b) graphs, is introduced
mainly by difference of the single query parallel costs. The
M-Chord and the MCAN handle multiple queries slightly
better than the VPT and better than GHT .

(a) (b)

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100
number of simultaneous queries

DNA for r = 15

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 1
number of simultaneous queries

DNA for r = 15

GHT*
VPT*
MCAN
M−Chord

in
te

rq
. i

m
pr

ov
em

en
t r

at
io

ov
er

al
l p

ar
al

le
l d

. c
.

GHT*
VPT*
MCAN
M−Chord

Figure 16. The overall parallel costs (a) and
interquery improvement ratio (b)

The actual improvement ratio values for specific datasets
are strongly influenced by the total number of distance com-
putations spread over the nodes (see Figure 8a) and, there-
fore, the improvement is lower for DNA than for VEC.

5. Conclusions

In this paper, we have studied performance of four differ-
ent distributed metric index structures, namely the GHT ,
the VPT , the MCAN and the M-Chord. We have focused
on their scalability of executing similarity queries from
three different points of view: (1) increasing query radii,
(2) growing volume of searched data, and (3) accumulating
number of concurrent queries. We have conducted a vast
bulk of experiments and reported the most interesting find-
ings in a special section of this paper.

Though all of the considered approaches have demon-
strated a strictly sub-linear scalability in all important as-
pects of similarity search for complex metric functions, the
most essential lessons we have learned from the experi-
ments can be summarized in the following table.

single query multiple queries

GHT excellent poor
VPT good satisfactory
MCAN satisfactory good
M-Chord satisfactory very good

In the table, the single query column expresses the power of
a corresponding structure to speed up the execution of one
query. This is especially useful when the probability of con-
current query requests is very low (preferably zero), so only
one query is executed at a time and the maximum number
of computational resources can be exploited. On the other
hand, the multiple queries column expresses the ability of
our structures to serve several queries simultaneously with-
out degrading the performance by waiting.

We can see that there is no clear winner considering both
the single and the multiple query performance evaluation.
In general, none of the considered structures has a poor per-
formance of single query execution, but the GHT is cer-
tainly the most suitable for this purpose. However, it is also
the least suitable structure for concurrent query execution
queries solved by the GHT are practically executed one
after the other. The M-Chord structure has the opposite
behavior. It can serve several queries of different users in
parallel with the least performance degradation, but it takes
more time to evaluate a single query.

Finally, we would like to emphasize the fact that the
transformation based techniques, i.e. the M-Chord and
MCAN, assume a characteristic subset of the indexed data
to choose proper pivots. In our experiments, the assump-
tion was that the distance distribution in the datasets does

not change, at least not significantly. If, unfortunately it
does, for example due to the luck of the characteristic sub-
set, the performance may change from this point of view,
the native organizations are more robust. We plan to sys-
tematically investigate this issue hereafter.

In the future, we plan to exploit the pros and cons of
the individual approaches reviled by our experiments to de-
sign applications with specific querying characteristics. We
would also like to use them to develop new search struc-
tures combining the best of its predecessors. Future work
will also concentrate on performance tuning, that is design-
ing structures with respect to the user defined bounds on the
query response time.

References

[1] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 384
393, January 2003.

[2] F. Banaei-Kashani and C. Shahabi. SWAM: A family of
access methods for similarity-search in peer-to-peer data
networks. In CIKM ’04: Proceedings of the Thirteenth
ACM conference on Information and knowledge manage-
ment, pages 304 313. ACM Press, 2004.

[3] M. Batko, C. Gennaro, and P. Zezula. A scalable nearest
neighbor search in p2p systems. In Procedings of DBISP2P,
volume 3367 of Lecture Notes in Computer Science, pages
79 92, 2004.

[4] M. Batko, C. Gennaro, and P. Zezula. Similarity grid for
searching in metric spaces. In DELOS Workshop: Digital
Library Architectures, Lecture Notes in Computer Science,
volume 3664/2005, pages 25 44, 2005.

[5] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. SIGCOMM
Comput. Commun. Rev., 34(4):353 366, 2004.

[6] B. Bustos, G. Navarro, and E. Chvez. Pivot selection tech-
niques for proximity searching in metric spaces. In Proc. of
SCCC01, pages 33 40, 2001.

[7] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A multi-
attribute addressable network for grid information services.
In GRID ’03: Proceedings of the Fourth International Work-
shop on Grid Computing, pages 184 191, Washington, DC,
USA, 2003. IEEE Computer Society.

[8] E. Ch·avez, G. Navarro, R. Baeza-Yates, and J. L. Marroqu·ın.
Searching in metric spaces. ACM Comput. Surv., 33(3):273
321, 2001.

[9] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-Index:
Distance searching index for metric data sets. Multimedia
Tools and Applications, 21(1):9 33, 2003.

[10] F. Falchi, C. Gennaro, and P. Zezula. A content-addressable
network for similarity search in metric spaces. In Proceed-
ings of DBISP2P, pages 126 137, 2005.

[11] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to
rule them all: Multi-dimensional queries in p2p systems. In
WebDB ’04: Proceedings of the 7th International Workshop
on the Web and Databases, pages 19 24, New York, NY,
USA, 2004. ACM Press.

[12] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. ACM Trans. Database Syst.,
28(4):517 580, 2003.

[13] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.
iDistance: An adaptive b+-tree based indexing method
for nearest neighbor search. ACM Trans. Database Syst.,
30(2):364 397, 2005.

[14] M. B. Jones, M. Theimer, H. Wang, and A. Wolman. Unex-
pected complexity: Experiences tuning and extending can.
Technical Report MSR-TR-2002-118, Microsoft Research,
December 2002.

[15] B. Kr¤oll and P. Widmayer. Distributing a search tree among
a growing number of processors. In Proceedings of the 1994
ACM SIGMOD International Conference on Management of
Data / SIGMOD ’94, Minneapolis, Minnesota, pages 265
276, 1994.

[16] V. I. Levenshtein. Binary codes capable of correcting spuri-
ous insertions and deletions of ones. Problems of Informa-
tion Transmission, 1:8 17, 1965.

[17] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* A
scalable, distributed data structure. ACM Transactions on
Database Systems, 21(4):480 525, 1996.

[18] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal Of Molecular Biology,
48:443 453, 1970.

[19] D. Novak and P. Zezula. M-Chord: A scalable distributed
similarity search structure. In Proceedings of First Interna-
tional Conference on Scalable Information Systems (INFOS-
CALE 2006), Hong Kong, May 30 June 1 . IEEE Computer
Society, 2006.

[20] M. T. ¤Ozsu and P. Valduriez. Distributed and parallel
database systems. ACM Comput. Surv., 28(1):125 128,
1996.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Proc.
of ACM SIGCOMM 2001, pages 161 172, 2001.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable net-
works. Lecture Notes in Computer Science, 2001.

[23] T. Seidl and H.-P. Kriegel. Efficient user-adaptable simi-
larity search in large multimedia databases. In The VLDB
Journal, pages 506 515, 1997.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of ACM SIG-
COMM, pages 149 160. ACM Press, 2001.

[25] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks,
2002.

[26] J. K. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Information Processing Letters,
40(4):175 179, 1991.

[27] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similar-
ity Search: The Metric Space Approach, volume 32 of Ad-
vances in Database Systems. Springer-Verlag, 2006.

