
MASARYKOVA UNIVERZITA V BRNĚ
FAKULTA INFORMATIKY

��� �
� � ���

	�
 ��������������������
 �! "
$

% & ')(+* ,.-0/�132 46587:9<;>= ?�@�ACB
D EF GH

Ontology Learning

DIPLOMA THESIS

Vı́t Nováček

Brno, winter 2005

Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by myself. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Advisor: Aleš Horák, Ph.D.

ii

Thanks

I would like to thank both my former and latter thesis advisors RNDr. Pavel
Smrž, Ph.D. and Aleš Horák, Ph.D. for their expert support and scholarly
supervisory. The research and tools presented here are parts of a broader
project run and funded by Czech Academy of Sciences under the national
research project 1ET100300419. I have appreciated this support very much
and therefore I want to give a word of thanks also to all responsible people
involved — especially doc. PhDr. Karel Pala, CSc. from Faculty of Infor-
matics, Masaryk University Brno and Ing. Julius Stuller, CSc. from Czech
Academy of Sciences.

iii

Keywords

artificial intelligence, natural language processing, ontology, ontology ac-
quisition, knowledge representation, text mining, knowledge extraction,
uncertainty representation

iv

Abstract

Ontology learning is one of the essential topics in the scope of an impor-
tant area of current computer science and artificial intelligence – the up-
coming Semantic Web. As the Semantic Web idea comprises semantically
annotated descendant of the current world wide web and related tools and
resources, the need of vast and reliable knowledge repositories is obvious.
Ontologies present well defined, straightforward and standardised form
of these repositories. There are many possible utilisations of ontologies –
from automatic annotation of web resources to domain representation and
reasoning tasks. However, the ontology creation process is very expensive,
time-consuming and unobjective when performed manually. So a frame-
work for automatic acquisition of ontologies would be very advantageous.
In this work we present such a framework called OLE (an acronym for On-
tology LEarning) and current results of its application. The main relevant
topics, state of the art methods and techniques related to ontology acquisi-
tion are discussed as a part of theoretical background for the presentation
of the OLE framework and respective results. Moreover, we describe also
preliminary results of progressive research in the area of uncertain fuzzy
ontology representation that will provide us with natural and reasonable
instruments for dealing with inconsistencies in empiric data as well as for
reasoning. Main future milestones of the ongoing research are debated as
well.

v

Contents

1 Introduction . 3
2 Ontology Formalisations and Theoretical Background 6

2.1 Formal Definitions of Ontology and Related Concepts 6
2.1.1 Ontology as Vocabulary and Restrictions 7
2.1.2 John Sowa’s Complex Definition 7
2.1.3 Semantic Web Reflections and OLE Ontologies 8

2.2 Ontology Languages and Classification 9
2.2.1 Main Knowledge Representation Standards 9
2.2.2 Ontology Classifications 12
2.2.3 The OLE Approach . 12

3 Methods of Ontology Acquisition 14
3.1 Manual Methods and Related Frameworks 14
3.2 Overview of Autonomous Techniques 16

3.2.1 Pattern–based Extraction 16
3.2.2 Concept Sets Acquisition 17
3.2.3 FCA and FFCA Approach 17

3.3 Discussion of Methods Used in OLE 18
4 Autonomous Acquisition of Ontologies in OLE 20

4.1 Extracting Taxonomy Chunks Using Patterns 20
4.1.1 Preprocessing of the Text 20

Language Universality 21
Creation of Pattern Objects 22

4.1.2 Extraction from Chunked Text 24
4.2 Extracting Concept Sets Using Hierarchical Clustering . . . 25

4.2.1 General Algorithm . 26
4.2.2 Preprocessing, Dictionary Creation and Feature As-

signment . 26
4.2.3 Hierarchical Clustering and Class Annotation 27

4.3 Domain Ontology Creation and Iterative Enrichment 28
5 Remarks on Uncertainty Representation 30

5.1 Motivations . 30
Remedy to Emerging Inconsistencies 30

1

Mental Models Reflection 31
5.2 Theoretical Background . 32

Extended Probabilistic Frameworks 32
Fuzzy Sets . 33

5.3 Proposal of ANUIC Format 34
5.3.1 Formal Definition . 34
5.3.2 Conviction Function 35
5.3.3 Notes on the Interpretation of µ-measures 36
5.3.4 An Example of Ontology Fragment Creation 38

5.4 From ANUIC to (F)OWL . 38
6 OLE Architecture . 41

6.1 Design Considerations . 41
6.2 System Components . 41
6.3 Implementation Remarks . 43

7 Evaluation and Preliminary Results 44
7.1 Pattern-based Method . 45
7.2 CAANNO Technique . 46
7.3 Basic Ontology Merging . 47

8 Conclusions and Future Work . 49
A OLE Ontologies — Basic Real Data Examples 55

A.1 Sample from an Ontology Extracted Using Patterns 55
A.2 Sample from an Ontology Extracted by CAANNO 56

B (F)OWL — Fuzzy OWL Extension 57

2

Chapter 1

Introduction

The term ontology in the computer science is not strictly bound to the Se-
mantic Web1, but it has become widely discussed and examined in the very
scope of this popular and progressive area. World Wide Web Consortium
non-formally defines the Semantic Web as an activity that is ”bringing the
web to its full potential” in the meaning of extending its current capabil-
ities by fully incorporated machine readable information and automated
services in general (as stated in [30]). The content of such a web will be com-
prehensible not only by humans, but even by autonomous artificial agents.

However, ontologies can offer support for semantic annotation of web
pages as well as present representation background for any domain of hu-
man knowledge in general. Their importance is not limited only to Seman-
tic Web then, but is related to many areas of cognitive science and artificial
intelligence in general. That is why extensive and universal ontology acqui-
sition forms a bottleneck in many application areas from the above fields.
Thus it is obvious that it is more than worthwhile to pursue development of
a platform able to perform this task automatically, efficiently and reliably.

But what does the ontology term mean exactly? In the field of computer
science, an ontology is usually understood as a formal and machine read-
able representation of conceptual sets, stratified in classes and including
relations among particular concepts and their classes. Ontologies are able
to provide a comprehensive representation of information related to a par-
ticular subdomain of human knowledge.

Basic approach to the ontology acquisition is a manual definition of do-
main conceptualisation. This task is usually performed by a group of do-
main experts. Various elaborated tools support the work; the most popular
ones are Protégé, WebODE and OntoEdit. A comprehensive survey of such
ontology engineering frameworks can be found in [4].

Manual creation of ontologies presents a tedious work, is error-prone

1. We can track notions akin to ontology purpose in machine-oriented knowledge repre-
sentation about thirty years ago, when considering for example John Sowa’s conceptual
graphs [40].

3

1. INTRODUCTION

and the results are often too subjective. Moreover, it is infeasible to organise
a group of experts for each possible domain. This led to the idea of auto-
matic extraction of ontologies from available resources.

In this work we devise OLE — a new complex language–independent
platform for automatic and empiric ontology acquisition from natural lan-
guage resources. In contrast to other ontology-learning systems that are
currently available, OLE can be characterised by the modular architecture
enabling integration and comparison of various methods of the automatic
acquisition of semantic relations and respective ontology concepts. Virtu-
ally any method of automated knowledge acquisition can be employed as
an independent part of the extraction module.

We introduce the architecture of the framework and discuss the method-
ology of the employed empiric approach. OLE enables creating the core
taxonomy of an ontology subdomain in the bottom-up manner, from on-
tologies with a very simple structure to more complex ones, in a continual
iterative process. It is also able to extend, refine and update ontologies with
respect to new data. A miniontology for each input resource is created first.
It consists of concepts and classes gained from the given resource. The min-
iontologies are integrated into the current ontology on the fly. The process
of ontology merging and alignment shall embody an application of uncer-
tainty representation methods.

The structure of the work is organised as follows. We analyse the prob-
lems embraced within the automatic ontology acquisition and application
tasks in a representative survey in the theoretical parts of the work. These
problems can be divided basically in the following general areas (though
they may not be strictly disjunctive):

• ontology definition and representation

• extraction of concepts, relations and properties

• extraction or identification of ontological individual instances

• merging of ontologies

• efficient and meaningful reasoning

We give an overview of the selected principles and state of the art tech-
niques for the above areas in Chapter 2, 3 and 5. Approaches selected for
OLE project are depicted and discussed in the respective thematically ded-
icated Chapter 4 and 5. Concrete structure of the framework and more
or less technical details are conveyed mainly in Chapter 6. Chapter 7 de-
scribes preliminary evaluation and interpretation of the results that have

4

1. INTRODUCTION

been achieved with OLE application so far. Chapter 8 concludes the work
and outlines the directions for future research on OLE. Appendices of the
work offer examples of system application and a transcript of constructs
that allow fuzzy extension of OWL.

5

Chapter 2

Ontology Formalisations and Theoretical Background

Before we turn our attention to ontology acquisition itself, ontology defini-
tions and formal background should be discussed properly. In the following
sections there is a list of ontology definitions, mainly with respect to com-
puter science domain. Further we sketch possible ontology representations
and utilisations. Eventually we discuss the natural connection of ontologies
with the Semantic Web.

2.1 Formal Definitions of Ontology and Related Concepts

The ontology term has arisen from the philosophy field originally. Accord-
ing to glossary at http://www.atf.org.au/papers/glossary.asp, ontol-
ogy means ”branch of philosophy concerned with the study of being, of
reality in its most fundamental and comprehensive forms” then. We can
find many other similar philosophical definitions of ontology, but this one
is fully sufficient for our needs.

Various computer science ontology definitions are brought out in the
sections below. As we can see, the notion is quite similar to the philosophi-
cal one though it is much more specifically oriented and the ontology term
refers rather to an object than to a field or branch. Its purpose shifts from
study to representation of world or its thematically restricted part that is
called domain most usually. According to very often cited short and gen-
eral definition by Gruber [22], an ontology is an explicit specification of a
conceptualisation of a given domain.

Read on in the more explicit definitions below. Note that the definition’s
list also reflects changing formal restrictions of knowledge representation
from very vague to precise specifications influenced by the paradigm of
ontology utilisation (these have been mainly expert systems, frame-based
knowledge representations, support for artificial agents’ cooperation and
presently the Semantic Web).

6

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

2.1.1 Ontology as Vocabulary and Restrictions

Fikes presents sort of informal, yet a reasonable ontology definition in [17].
According to the source, ontologies are generally considered to provide def-
initions for the vocabulary used to represent knowledge. There should also
be included sentences that restrict possible interpretations of undefined
symbols. Ontologies must therefore contain both sentences like that and
definitions. Fikes gives also a model for ontology role in a general declara-
tive knowledge representation language. Such a language provides a syn-
tax, a set of inference rules, a vocabulary of non-logical symbols, and the
above-mentioned ontology sentences that restrict the acceptable interpre-
tations of the symbols in the vocabulary. This model is mentioned in the
scope of frame-based knowledge representations and KIF [20] format that
had been very popular before the introduction and florescence of Semantic
Web.

2.1.2 John Sowa’s Complex Definition

John Sowa offers more elaborated and complex definition that naturally
connects the ontology interpretation in philosophy with ontology as a de-
scriptive tool in computer science. He specifies the following notions of the
term (adopted from [41]):

1. Generic and informal ontology definition: The subject of ontology is
the study of the categories of things that exist or may exist in some
domain. The product of such a study, called an ontology, is a cata-
logue of the types of things that are assumed to exist in a domain of
interest. The types are either undefined or defined only by statements
in a natural language.

2. Formal ontology definition: A formal ontology is specified by a col-
lection of names for concept and relation types organised in a partial
ordering by the type-subtype relation. Formal ontologies are further
distinguished by the way the subtypes differ from their supertypes:

• Axiomatised ontologies: These distinguish subtypes by axioms
and definitions stated in a formal language, such as logic or some
computer-oriented notation that can be translated to logic.

• Prototype-based ontologies: Subtypes are distinguished by com-
parisons with a typical member or prototype for each subtype.

7

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

2.1.3 Semantic Web Reflections and OLE Ontologies

Semantic Web efforts build on the definitions presented above — they do
not bring brand new specifications of what an ontology is. They rather for-
malise the requirements posed on the languages for ontology representa-
tion. Such initiatives vary from a design of logical formalisms that allow to
encode and process knowledge efficiently by autonomous software agents
to proposals and development of the ontology representation languages
that satisfy the requirements of these logics.

W3 Consortium (see http://www.w3.org) has become the key insti-
tution that steers almost all Semantic Web formalisation and proposal ac-
tivities. It gives widely accepted standards for Semantic Web ontologies
through the proper OWL (Web Ontology Language) specification (look at
http://www.w3.org/2004/OWL/ for recent details on OWL proposal, ref-
erence case–studies and so forth).

The consortium presents an implicit ontology definition somehow by
the OWL recommendations, which we briefly recall here and develop in
detail in Section 2.2. Perhaps the most crucial construct of OWL is class
that roughly corresponds to concept in the meaning of representation of an
entity existing in the relevant domain1. Entity defined by a class usually
represents an abstract collection of other objects (e. g. the concept of mammal
comprises objects like carnivore, herbivore or even human etc.). On the other
hand, individual is a construct that represents concrete entity identifiable
in the domain — an instance of a class (e. g. the Tom the cat individual is a
concrete instance concept of the cat class concept). The third construct of the
OWL triumvirate is property. Properties define attributes and/or relations
of concepts (classes or individuals) in general.

Definitions of ontology content and its axiomatic restrictions are all rep-
resented using the three basic OWL constructs2. For the purpose of OLE
ontologies we adopt structure similar to the one described in the paragraph
above. However, we incorporate it into a more universal framework in or-
der to tackle uncertain knowledge (yet with possible extensions that use
intrinsic elements of OWL syntactic structure — see Section 5.4 for details).

1. We give up on a precise definition of concept presented for example in [31], because there
has not been a reasonable consensus in the scope of formal semantics. We use the terms
like concept, class, individual etc. rather in their technical meaning as proposed here and in
Section 2.2.
2. Such an implicit ontology representation corresponds mostly to axiomatised Sowa’s def-
inition.

8

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

2.2 Ontology Languages and Classification

One of the first significant efforts in the area of machine readable knowl-
edge representation is related to the establishment of the common commu-
nication framework between different software agents (according to Sowa
in [41]). The knowledge sharing purpose is common for almost all ontology
utilisations that have been presented among the divergent knowledge engi-
neering community so far. However, the ontology representations adopted
have been quite different. We sketch major ontology representation lan-
guages, proposed ranges of utilisation and formal classification of ontology
types in Section 2.2.1 and Section 2.2.2. In Section 2.2.3 we introduce our
way of ontology representation and empiric classification then.

2.2.1 Main Knowledge Representation Standards

It seems to be quite reasonable to use matured database technology (mainly
relational or object-oriented database concepts, as mentioned in [39]) if we
want to represent knowledge. Although there can be spotted similarities
between ontologies and databases (see [32]), generic database schemata
suffer from lack of tools for coherent and straightforward expression of
conceptual relations and logical constraints. That is why there have been
developed various frameworks directly aimed at ontology representation,
usually based on first order predicate calculus3 (usually enriched at least
by one second order construct — a reification mechanism, which allows
the treatment of statements of the language as objects in their own right,
thereby making it possible to express statements over these statements).
We describe the most significant of them in the following list:

KIF Stands for Knowledge Interchange Format. Primarily intended for co-
operation between software agents, as stated in the following defini-
tion (according to [20]):

KIF is a language designed for use in the interchange of
knowledge among disparate computer systems (created by
different programmers, at different times, in different lan-
guages, and so forth). KIF is not intended as a primary lan-
guage for interaction with human users (though it can be
used for this purpose). Different computer systems can in-
teract with their users in whatever forms are most appro-
priate to their applications (for example Prolog, conceptual

3. Mainly because it is decidable and still quite expressive at the same time.

9

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

graphs, natural language, and so forth). KIF is also not in-
tended as an internal representation for knowledge within
computer systems or within closely related sets of computer
systems (though the language can be used for this purpose
as well). Typically, when a computer system reads a knowl-
edge base in KIF, it converts the data into its own internal
form (specialised pointer structures, arrays, etc.). All com-
putation is done using these internal forms. When the com-
puter system needs to communicate with another computer
system, it maps its internal data structures into KIF.

Perhaps one the most popular cases of KIF ontology are SUO (Stan-
dard Upper Ontology) or SUMO (Suggested Upper Merge Ontology)
(see http://suo.ieee.org/). These ontologies are designed mainly
with respect to e-commerce, educational and natural language under-
standing application areas.

CycL The ontology representation language used in Cyc project (see http:
//www.cyc.com/ or http://www.opencyc.org/ for a similar open
source version). Cyc is aimed at (manual) creation of a system that
offers a very large, multi-contextual knowledge base and inference
engine. Again, it should enhance software agents’ interoperability by
constructing a foundation of basic ”common sense” knowledge — a
semantic substratum of terms, rules, and relations — that will enable
a variety of knowledge–intensive products and services. Cyc is in-
tended to provide a ”deep” layer of understanding that can be used
by other programs to make them more flexible (according to state-
ments at http://www.cyc.com/). The structure and application do-
main of Cyc ontology is thus very similar to the SUO and SUMO on-
tologies mentioned above.

DAML/DAML+OIL DARPA Agent Markup Language. The OIL acronym
stands for Ontology Inference Layer then. These two frameworks to-
gether form an ontology representation language then. The language
is intended to support semantic annotation of the world wide web
based upon XML and RDF (Resource Description Framework) stan-
dards. Thus would be the web content accessible not only for human,
but even for automated agents of all kinds. The language is a part
of World Wide Web Consortium (W3C) standards and contains many
constructs for efficient yet expressive representation of knowledge in
the form of ontologies, such as reification and formal semantics and

10

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

reasoning services provided by description logics. Although we can
find ontologies created in DAML+OIL, it is only a predecessor of cur-
rent World Wide Web Consortium standard for ontology representa-
tion — OWL language.

OWL Stands for Web Ontology Language and is defined by W3C. It is de-
signed for use by applications that need to process the content of in-
formation instead of just presenting information to humans. OWL fa-
cilitates greater machine interpretability of Web content than that sup-
ported by XML, RDF, and RDF Schema by providing additional vo-
cabulary along with a formal semantics. OWL has three increasingly-
expressive sublanguages (adopted according to document describing
basic OWL features at http://www.w3.org/TR/owl-features/):

– OWL Lite supports those users primarily needing a classification
hierarchy and simple constraints. For example, while it supports
cardinality constraints, it only permits cardinality values of 0 or
1. It should be simpler to provide tool support for OWL Lite than
its more expressive relatives, and OWL Lite provides a quick mi-
gration path for thesauri and other taxonomies. Owl Lite also has
a lower formal complexity than OWL DL.

– OWL DL supports those users who want the maximum expres-
siveness while retaining computational completeness (all con-
clusions are guaranteed to be computable) and decidability (all
computations will finish in finite time). OWL DL includes all
OWL language constructs, but they can be used only under cer-
tain restrictions (for example, while a class may be a subclass
of many classes, a class cannot be an instance of another class).
OWL DL is so named due to its correspondence with description
logics, a field of research that has studied the logics that form the
formal foundation of OWL.

– OWL Full is meant for users who want maximum expressiveness
and the syntactic freedom of RDF with no computational guar-
antees. For example, in OWL Full a class can be treated simulta-
neously as a collection of individuals and as an individual in its
own right. OWL Full allows an ontology to augment the mean-
ing of the pre-defined (RDF or OWL) vocabulary. It is unlikely
that any reasoning software will be able to support complete rea-
soning for every feature of OWL Full.

11

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

There are also other ways of representation of knowledge resources that
do not benefit from a universal language. This approach is characteristic
for proprietary products using their own representation frameworks. On
the other hand, a well known WordNet [16] and EuroWordNet [46] project
use textual or XML format respectively. Even though the WordNet lexical
database is not an ontology in the meaning of a precise definition, it is worth
of mentioning here — mostly because it is very closely related to natural
language ontologies as mentioned in the next section.

2.2.2 Ontology Classifications

We can distinguish between various kinds of ontologies according to their
structure, complexity, scope of content and other criteria. Possible classifica-
tion categories are overviewed in the few following paragraphs. Note that
the classification is not strictly formal and there can be conceptual overlaps
in the terms introduced. We mention the classification here rather for tech-
nical terminology purposes than to formally discriminate between different
ontology types.

Ontologies that define general categories without focusing on a specific
branch are called upper, core or top ontologies. We can also have a very ab-
stract ontology that covers even a core one with few most general concepts.
Such a level is called foundational ontology (see [18] for details). Domain on-
tologies are those that that take into account only a small and well-restricted
part of human knowledge. The level of concept instantiation and amount
of logical constraints rises when moving from foundational to domain on-
tologies. This is similar to another ontology classification that distinguishes
between vertical and horizontal ontologies.

Horizontal ontologies are general in nature. These are common ontolo-
gies that span multiple domains and provide a mechanism to organise and
standardise information content. Vertical ontologies, which also incorpo-
rate features from horizontal ontologies, are domain specific. Vertical on-
tologies not only define data in terms of semantics native to a particular
vertical industry, they also contain rules and formal computer languages
that can perform certain types of runtime automated reasoning.

2.2.3 The OLE Approach

The OLE ontologies are primarily processed and shared among particular
OLE components in a special internal format (see Section 5.3 for details).
This resembles the comment on KIF in Section 2.2.1 (agents are storing

12

2. ONTOLOGY FORMALISATIONS AND THEORETICAL BACKGROUND

knowledge for their own in their efficient ”language”, but they output and
share the knowledge with the environment in agreed and common repre-
sentation).

We have chosen the OWL DL sublanguage of OWL as a base for exter-
nal representation of OLE ontologies. This allows us to store knowledge
using all essential constructs — classes, subclasses with multiple inheri-
tance, complex properties, reification and so forth. Yet we have a system
that is decidable by means of description logics. However, we still need to
encode possible uncertainty within OWL DL somehow. We devise special
OWL constructs (inspired by [48]) for representing uncertainty that have to
be taken into account by uncertain inference engines and can be omitted by
classical inference engines at the same time. We present complete descrip-
tion of these constructs in Section 5.3 that is dedicated to specific issues of
OLE knowledge representation formats.

OLE is primarily intended to work with complex domain specific (ver-
tical) ontologies. However, we build our ontologies in bottom-up manner
— we continuously extract data from particular resources and incorporate
them into the complex ontology. An ontology corresponding to a single re-
source is called miniontology and is quite shallow even though it can be (and
usually is) very specific. But we consider even other than domain specific
ontologies for future. These are mainly a universal natural language ontol-
ogy, a common sense ontology and an upper ontology for similar domains
(acquired and maintained by interoperation between more OLE system in-
stances for various domains).

13

Chapter 3

Methods of Ontology Acquisition

We have hopefully clarified what is the ontology and what is it good for
in the previous chapter. The crucial question is how to build an ontology.
Many approaches exist for different ontology utilisations. Relatively many
kinds of applications designed for so called ”ontology engineering” have
also been developed. In the following, the main approaches are shortly de-
scribed. In the final section, our way of ontology building is introduced and
glossed with respect to the previously mentioned approaches.

3.1 Manual Methods and Related Frameworks

One way of creating an ontology (we call it manual development, though
the process in general may not be necessarily purely manual) can be de-
scribed as follows:

1. Let a group of domain experts design the conceptual structure of the
ontology more or less manually in some way.

2. Take the results from the domain experts and let a group of computer
science specialists formalise the structure to the form ready for the
software implementation.

3. Let a group of software engineering experts develop the ontology
data representation and possibly some tools for the ontology man-
agement and ongoing maintenance as well.

Note that the groups mentioned in the individual points may overlap or
even be equal (for example when some computer experts are going to make
an ontology comprising the computer science domain).

This way of ontology building was (and to some extent still remains)
popular in many ontology engineering frameworks, such as Protégé, We-
bODE, OntoEdit and so forth. An elaborated overview of such frameworks
and/or systems is given in [4] or [8]. We will not describe all the efforts in

14

3. METHODS OF ONTOLOGY ACQUISITION

this area in detail here. However, some kind of a common overview of the
method is given in the paragraphs below.

The discussed frameworks most usually concentrate on development of
some comprehensive workbench that can facilitate all phases of the ontol-
ogy development in an integral manner. The result of the efforts formulated
this way is a tool, which is supporting most of the following basic issues1:

• the design of the domain conceptualisation

• the formalisation of the conceptualisation

• the implementation of the formalised conceptual structure (in most
cases, this part lies in the implementation of some arbitrary taxonomic
structure, where the concrete domain concepts shall be filled in)

• concept insertion

• concurrent processing of the ontology by a group of experts in the
meaning of the above points

• ontology validation

• merging of ontologies

• ontology browsing

• ontology management (such as updating, versioning, trimming and
so on)

The systems developed with respect to the ”handmade” approach may
cover all of the issues mentioned in the list quite efficiently. However, even
when there are many sophisticated techniques, algorithms and presentation
methods involved, the main portion of the work (which is considered to be
the ontology construction itself) remains on human.

The trickiest part of the ontology development is its structure design
and appropriate concept filling in the meaning of ”correct” connections of
the nodes of the class/concept hierarchy graph. Even when the domain
experts’ experience is employed within the conceptualisation design, there
always looms a possibility of that another group of experts would create a
significantly different ontology. The process of manual conceptual design is
always arbitrary and in fact, it may not really be a proper representation of
the real world subset which happens to be covered. And just the precision

1. According to the statements presented for example in [4], [8], [29] or [42].

15

3. METHODS OF ONTOLOGY ACQUISITION

of the representation is very often crucial for the efficiency and reasonability
of an ontology application.

We need our ontologies to represent the current domains exhaustively
and empirically. We do not want to know the layout of the domain con-
ceptual structure as imposed by some more or less personal opinion of an
expert group. The first argument, which is underlying such statement was
mentioned in the previous paragraph. The second one is that we would
need a group of experts for each possible domain of our portals’ coverage.
This is obviously infeasible, at least when we want to represent knowledge
for domains of our concern within some integral framework and also pos-
sibly share the knowledge between the respective ontologies. That is why
the ”handmade” approach was cast aside in the beginning of our research
already.

3.2 Overview of Autonomous Techniques

Automatic extraction methods and algorithms are listed in this section. We
do not give a complete overview of all possible techniques here, but rather
describe the major ones with respect to OLE framework.

3.2.1 Pattern–based Extraction

A pattern based method that can be used for empiric ontology acquisition
was firstly sketched by Hearst in [24]. The method consists of automatic
pattern-based extraction of particular semantic relations — the hyponymy
relation in the case of the referenced work. The hyponymy relation (and its
inverse – the hyperonymy)2 serve well as a basis for an ontology structure
in the meaning of the natural hierarchy of conceptual classes. However, the
notion of the automatic extraction of hyperohyponymical constructs from
the resource data can be adopted for any other existing relations (such as
synonymy, antonymy, meronymy – the part to whole relation, holonymy –
the whole to part relation and so forth).

The hyperohyponymy constructs a well defined and relatively easily
acquirable concept hierarchy in the meaning of superconcept/subconcept
relations. The relation directly corresponds to the aggregation of specific
concepts into classes (and also of some classes into superclasses), which
is one of the backbones of most of the ontology encoding formalisms. See
Chapter 4 for details on the algorithm and it’s implementation in OLE.

2. Less formally, both of these relations are often introduced as the is-a relation by some
authors.

16

3. METHODS OF ONTOLOGY ACQUISITION

3.2.2 Concept Sets Acquisition

In addition to the technique of the pattern-driven extraction of semantic re-
lations, other methods based on token co-occurrence in the resource data
can be employed in order to gather sets of concepts belonging to the same
class. Various modifications of these generic techniques are listed in [34].
The existing lexical databases may be used for discovery of concept trees
— for example in the OntoLearn project [18], the statistical methods based
on document frequency measure are equipped in order to extract terminol-
ogy from the source data. Then the WordNet database is queried in several
stages of the semantic interpretation and specific relation discovery. Word-
Net is used as auxiliary resource also in the proposed process of automated
meta-data hierarchy creation (see [25]), which is partially related to the au-
tomatic ontology acquisition as well.

Another important way of how to obtain concept sets from data utilises
one of the unsupervised machine learning techniques — clustering. We find
the clustering most appropriate for our empiric approach to ontology con-
struction, because it allows us to directly extract even a taxonomy of the
concepts from a text using so called hierarchical clustering. See Chapter 4
for implementation details.

3.2.3 FCA and FFCA Approach

FFCA stands for Fuzzy Formal Concept Analysis (as FCA stands for Formal
Concept Analysis). Quan et al. propose the method in [43] as yet another
technique of automated ontology generation, based on concept clustering.
The technique has the notion of uncertainty implicitly embraced already at
the initial level of information extraction.

The FFCA method is proposed to be utilised in automatic creation of
scholarly Semantic Web3. It generates so called fuzzy formal context from a ci-
tation database. From the fuzzy formal context, the fuzzy formal concept lattice
is constructed. When the lattice is gained, the concepts on it are clustered
and form the concept hierarchy then. The hierarchy is directly transformed
into an ontology, respecting these rules:

• Each concept is represented as an ontology class4.

3. The content of the following paragraphs of this section is adopted according to [43]. The
proper definitions, conceptual clustering algorithm, various examples and valuable relevant
references can be found there as well.
4. Note that the authors use slightly different terminology than the one being used in this
paper — the concept and the object terms are analogous to the class and instance terms re-

17

3. METHODS OF ONTOLOGY ACQUISITION

• The subconcept and superconcept relations from the concept hierar-
chy are preserved between the classes respectively.

• Concept attributes become properties of the corresponding class.

• Each object in a concept is represented as an instance of the corre-
sponding class.

• The value of an instance property is the membership value (in the
meaning of the fuzzy formal context definition, see [43]) of the corre-
sponding object’s attribute.

Currently, we postpone the uncertainty to the phase of ontology merg-
ing. But the approach proposed by Quan et al. for domain meta-information
processing (the citation information) seems to be very promising even for
the domain content representation efforts (our case). The method, possibly
adjusted and adapted to our needs, can be implemented as another infor-
mation extraction plug-in for the OLITE system.

3.3 Discussion of Methods Used in OLE

The acquisition of is-a relations is essential for OLE. If we can discover the
relations in the resource data, then we can create the respective taxonomy of
the resulting ontology directly in the bottom–up manner (from ontologies
with very simple structure to more complex ones in a continual iterative
process). And when such a process is fully automated, we can acquire and
update our ontologies dynamically from the submitted real world data. The
ontologies reflecting the particular resources are merged into the current
domain ontology by another specialised software agent. The result is no
way arbitrary and subject–dependent. In reverse, it is purely empiric and
as up to date as are the resources used when considering the current state
of the domain. This approach complies very well to the remarks in [37]. Al-
though the topic covered by this reference is not directly related to the OLE
project, its proposals are to some extent universal, suggesting to build the
Semantic Web as simple as possible. Knowledge representations should not
be artificially structured in an ambitious effort to devour the whole world
in an ontology. According to [37], the mappings between the ”local” knowl-
edge repositories should not be some standardised rigid translation rules,

spectively. We use the concept term for any relevant token extracted from the resources. The
difference between classes and instances is not stressed until the miniontology generation
and merging phases take their places (see Section 4).

18

3. METHODS OF ONTOLOGY ACQUISITION

but rather dynamic principles that pay attention to the current situation.
More or less, this proposal can be stretched out to the automatic merging
of simple miniontologies into the richer current domain ontology (using a
simple technique described in Section 4.3 or even the principles of uncertain
information representation, as sketched in Chapter 5).

Thus we propose a flexible ontology building approach, which is based
on automated concept extraction from mainly unannotated plain text re-
source data. No manual conceptual engineering is performed, the gener-
ated ontologies are simply mirroring the respective domain according to
dynamically submitted relevant resources. However, manual adjustments
are always possible and they can be made by an external tool (such as
Protégé).

Virtually any method of automated knowledge acquisition introduced
in the previous two subsections can be employed as an independent part of
the OLITE module. Presently the following methods have been examined
— pattern–based extraction of semantic relations and hierarchical cluster-
ing improved by automatic class annotation.

A so called miniontology is created for each input resource, comprising
the concepts extracted from the resource. The pattern based method suffers
from data sparsity (as the automatic methods often do). We may have not a
sufficient number of relation patterns in data and thus the overall coverage
of the system would be quite low. That is why we incorporate a more ex-
tensive method based on hierarchical clustering of words for building the
basic domain ontology (see Section 4.2). This method processes all nouns in
a resource and so it is less sensitive to the data sparsity problem. Then, the
miniontologies produced by pattern–based extraction are integrated into
the current domain ontology on the fly. Currently a very simple method
is used for the complex task of ontology integration (see Section 4.3). The
resulting ontology can be further improved and enlarged by another appli-
cation of clustering when the amount of new resources is reasonably high.
However, it is not practical to perform the clustering very often because it
is very resource–demanding.

As sketched in Section 5, the process of proper automatic ontology mer-
ging and alignment would embody the application of uncertain knowledge
representation methods (even if the currently produced miniontologies are
encoded in the classic ”certain” way). The concrete structure of OLE tools
is developed in Chapter 6.

19

Chapter 4

Autonomous Acquisition of Ontologies in OLE

In the following two sections we describe two extraction algorithms that
have been incorporated in OLE1. In the third and last section of the chap-
ter there is depicted a simple technique used for the merging of extracted
ontologies. However, more sophisticated techniques are needed when we
want to perform really ”intelligent” ontology integration. This topic and
respective framework is discussed further in consequent Chapter 5.

4.1 Extracting Taxonomy Chunks Using Patterns

As stated above, the pattern–based method is based on the work presented
by Hearst in [24]. Supposing we know patterns characteristic for a semantic
relation (namely the is-a relation), we can extract the reference words of
concepts involved in the relation from a text.

4.1.1 Preprocessing of the Text

First we need to process the resource in order to gain plain text of relevant
sentences with respective representation of their syntactic structure (at least
a shallow one). This preliminary phase has to be as fast as possible so we
use simple but computationally efficient techniques. The possible lack of
accuracy is balanced by the large amount of processed data. The prepro-
cessing is performed in the following steps:

1. Extraction of plain text — The OLE preprocessing module is designed
to work with plain text, that is why the text must be extracted from a
resource if needed. There are many publicly available tools able to do
this (such as UNIX html2text utility for HTML documents).

1. Note that because the automatic acquisition of conceptually valid ontologies with com-
plex relational structure is often considered as a very difficult or even infeasible task, we
have concentrated mainly on taxonomy structure extraction so far.

20

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

2. Splitting of the text into sentences — Each pattern occurs within a sen-
tence. Therefore it is desirable to split the text into sentence tokens.
We do this using regular expression matching. This can be less effec-
tive than for example machine learning techniques, but it is very fast
and yet quite precise for our purposes (the ratio of correctly split sen-
tences varies between 85 and 95 percents depending on the kind of
sources).

3. Elimination of irrelevant sentences — We do not have to process the
sentences with no pattern present, so we eliminate them in this step,
using regular expression matching again. However, the patterns are
general so we do not perform straight matching of text tokens. We
rather examine matches of sentences with compiled pattern objects
that wrap the basic regular expression operations (see Section 4.1.1
for details). Thus we discover sentences that possibly contain a relation
and eliminate those that certainly do not contain one. This minimises
the data load for further stages that are slightly more demanding then
simple one–pass regular expression matching.

4. Tokenization and tagging of the relevant sentences — Before finding out a
syntactic structure of a sentence, it has to be divided into word tokens
with respective morphology (part of speech or POS) tags. The tok-
enization is regular expression based again. For POS tagging we in-
corporate Brill transformational tagger (see [7] for details) combined
with statistical and regular expression taggers. We do not use stem-
ming, for we could lose important information regarding specific in-
dividual concepts.

5. Chunk parsing of the sentences — Eventually, we parse the sentences
with custom chunk parser that identifies prepositional, noun, verb
and so called core phrases in the input sentences. The core phrases
are those that identify and form the core of a pattern. When we have
identified also the phrases that are surrounding the core phrase, we
can directly extract the respective semantic relation between the con-
cepts involved.

Language Universality

The only phase which is language dependent in ontology acquisition is the
preprocessing of data. If we can preprocess a text in the steps described
above and know the proper patterns, we can also extract the respective re-

21

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

lations and concepts. At the Figure 4.1 is schema of the tools ensuring lan-
guage independence of OLE under some conditions. These conditions are
mainly existence of respective corpora for the given language.

Figure 4.1: Language universality support

The components depicted at the figure are described as follows:

Corpus reader interface implements sets of rules that transform an exist-
ing corpus of particular language into the format comprehensible by
OLE tools.

Tagger trainer utilises a tagged corpus in order to create a respective POS
tagger; stochastic and Brill transformation based taggers are trained to
be combined with manually designed regular expression and default
taggers that are characteristic for the current language.

Chunker trainer utilises a treebank-like corpus in order to learn how to
chunk the input tagged sentences and identify particular phrases in a
text. However, it is very useful to combine the rules learned this way
with few additional (manually designed) rules that comprise at least
core phrases for pattern identification.

Creation of Pattern Objects

The pattern–driven extraction process accepts patterns in a special form.
The designed universal pattern–specification format allows new patterns
to be easily added in the future.

The patterns are loaded and compiled from a separate PES XML file.
PES stands for Pattern Extended Specifications. The syntax of expressions oc-
curring in a pattern is similar to extended regular expressions. Moreover,
the pattern structure is encoded via structure of respective XML elements.

22

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

The PES file has several levels that represent a kind of pattern, an identi-
fier of a pattern and the pattern structure itself. Specific constructs are used
to encode positional attributes and meaning of various parts of a pattern
as seen in the example below. Respective pattern objects are created after
compilation of the PES file. These objects are used for preprocessing and
for core phrase identification in the chunk–parsed text when extracting the
relations.

The is-a pattern (adopted from [15]) in the form of:
NP1 {‘‘,’’} ‘‘such as’’ NPList2

is transformed into the following PES element within a PES file:
<?xml version="1.0"?>
<xml>
...
<rel id="is-a">
...
<patt id="3">
<b pos="1" expr=".+"/>
<core pos="2" expr=" such as "/>

</patt>
...

</rel>
...

</xml>
The rel element presents a container for a respective relation (identified
by the element’s only attribute id) patterns. The patt element encloses a
pattern identified by the only id attribute again. There can be three kinds
of elements as children of a patt element:

a We operate only with binary relations in OLE ontologies (any relation
of higher arity can be expressed using binary relations when needed).
The a element in PES pattern represents expression(s) that refer to
concepts acting as a first element of the considered relation.

b Similarly to the previous point, b represents expression(s) that refer
to concepts acting as a second element of the considered relation.

core This element represents expressions of core words in a pattern.

Each of the elements is provided with pos and expr attributes encoding
the element position within a pattern and corresponding regular expres-

23

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

sion. This is all information needed to compile the universal pattern objects
for further processing of data.

4.1.2 Extraction from Chunked Text

Concept extraction utilises the abstract regular expression matching again,
but it works on the chunked sentences and the compiled PES patterns. The
abstract matching means that the objects are not compared as standard
strings. They carry information on what they are representing (a chunked
sentence or a PES pattern) and what kind of operations should be applied.
We concentrate on creation of taxonomies. The taxonomic relations hold es-
pecially for nouns. Although we could imagine hyperohyponymic strings
for other parts of speech, extraction of the noun hierarchy is the only rea-
sonable way of how to obtain an ontology skeleton. The taxonomy pieces
are extracted directly according to the respective patterns.

In the Table 4.1 we give an example of few hand–crafted patterns and
their meaning (partly adopted from [15] and [24]). The patterns are intro-
duced in an intuitive regular expression based form, where NP stands for
a simple noun phrase and NPList stands for simple noun phrases conju-
gated by a comma or a coordinating conjunction. By a simple noun phrase
we mean a noun or noun compound, supplemented by possible modifiers.
In case of the extraction of taxonomies we need not to be concerned about
those supplements.

Selected is-a pattern It’s interpretation
NP such as (NPList | NP) The concept(s) referred by the nouns

on the right are hyponyms of the
concept(s) on the left

NP including (NPList | NP) The concept(s) referred by the nouns
on the right are hyponyms of the

concept(s) on the left
NP (is | was) an? NP The concept referred by the nouns

on the left is hyponym of the
concept on the right

NP like (NPList | NP) The concept(s) referred by the nouns
on the right are hyponyms of the

concept(s)on the left

Table 4.1: An example of patterns for is-a relation

24

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

We focus at noun phrases appearing in the vicinity of core phrases. The
algorithm implemented in OLE is non–formally described as follows:

input: chunk–parsed sentence
output: list of is-a relations

1. for each matching pattern within a sentence, create a triple(s) (l, c, r),
where l, c, r are left context, core phrase and right context respec-
tively;

2. for each triple, get the complex noun phrases that are nearest to the
core phrase;

3. assign the hyperonymy/hyponymy mark for these phrases according
to the respective matching PES pattern object;

4. extract the hyperonyms/hyponyms from each noun phrase NP in the
following manner:

4.1 if NP is a simple noun phrase, extract the head noun from the
phrase and return it as single hyperonym/hyponym;

4.2 if NP is a conjugated noun phrase consisting of several simple
noun phrases, extract the nouns or noun compounds form each
one of them and return them in hyperonym/hyponym list;

5. join all the hyperonyms/hyponyms gained in step 4. in respective is-a
relation instances;

6. return the relation instances;

The extracted information is stored in a universal internal format. An
output miniontology file can be produced by applying respective transla-
tion rules. See Chapter 5 and Section 5.4 for further information on the inter-
nal representation and dumping of ontologies. However, the miniontology
is primarily passed to the integration phase. Basic algorithm for ontology
merging is given in Section 4.3.

4.2 Extracting Concept Sets Using Hierarchical Clustering

We use the hierarchic clustering and consequent WordNet–based annota-
tion of resulting classes in order to acquire sets of individuals and their
classes’ hierarchy, which naturally corresponds to an ontology taxonomy.

25

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

The approach is somehow similar to work presented by Lin and Pantel
in [35] in the context of automatic extraction of senses from a text, although
we rather discover relations between groups of words than their senses. Be-
cause of extensive exploitation of the provided data (all present nouns are
taken into account), we use this method to create the initial domain ontol-
ogy.

4.2.1 General Algorithm

According to the survey in [45], the algorithms for word clustering are clas-
sified into two types. One type is based on construction of an initial set of
classes and further shuffling of words among these classes until the clus-
ters are stabilised. The other type utilises iterative merging of classes that
initially contain only one word. Both types are driven by an objective func-
tion, in most cases by perplexity or average mutual information. Efficient
clustering can also be made using more general distance measures in a vec-
tor space that represents the input data. These methods are directly avail-
able for OLE due to incorporation of NLTK [1] natural language processing
framework. Namely the cosine distance of normalised vectors is used as a
measure for vector similarity in OLE.

The latter type of word clustering is most appropriate for extraction of
taxonomies, because we can easily convert the history of the merging pro-
cess to a tree–structured representation of the input data. The first type can-
not be directly used for obtaining a taxonomy and is very dependent on the
initial set of classes. Finding a good initial set is itself a very difficult prob-
lem, so we adopt the second type of clustering for OLE. The main benefit
of clustering techniques in the scope of OLE is that they are unsupervised
and run fully automatically without a need of human assistance.

4.2.2 Preprocessing, Dictionary Creation and Feature Assignment

The preprocessing need not be as complex as for the extraction of seman-
tic relations — usual stop list application, text tokenization into words and
POS tagging is fully sufficient (we do not use stemming again). Since we
want our data to be viewed as a vector space before we can cluster them,
we have to encode the vectors that correspond to words we are going to
process. By these vectors we represent the context words relevant for clus-
tering.

The clustering demands a relatively large dataset. Having this dataset,
we create a domain dictionary of all the words present in the set. Each word

26

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

has a unique ID (natural number) assigned after adding it into the dictio-
nary (it can be for example the order in the sequence of word additions).
These IDs act as elements of vectors that characterise the words to be clus-
tered then.

When we have annotated the text with respective IDs, we extract the
nouns with their respective symmetric contexts from left and from right.
The size of the context is defined empirically — size of ten words for the
whole context was found to be sufficient for basic evaluation. The context
words form a feature vector we assign to the extracted noun.

4.2.3 Hierarchical Clustering and Class Annotation

By the hierarchical clustering we obtain classes of words, classes of these
classes of words and so forth until we have a root of the respective tree
(called a dendrogram in the field of machine learning). The history of merg-
ing steps allow us to reconstruct a noun taxonomy from the dendrogram,
but the classes at particular levels are anonymous. If we want to translate
them into an ontology, we have to annotate them by names that conform
to hyperonymy relation in the context of words comprised by the respec-
tive class. The bottom level (dendrogram leafs) represent individuals in the
ontology then, as the upper levels represent classes. We do this more or
less empirically, using the WordNet lexical database. Sometimes we use
the CAANNO (Clustering and Autonomous ANNOtation) acronym for the
technique in the following text. The novel algorithm for CAANNO acquisi-
tion of a named–classes’ hierarchy is described as follows:

input: vectors corresponding to nouns associated with their contexts
output: internal representation of an ontology taxonomy

1. induce a dendrogram from the preprocessed input data;

2. for each level in the dendrogram tree (going from the bottom to the
root), perform the following:

2.1 to all words in each class at the current level, assign a set of all
hyperohyponymic strings in WordNet they are involved in;

2.2 compute the most frequent hyperohyponymic string among each
class;

2.3 from the nearest hyperonym in this string (that is not present
as an individual in a class), make an annotation for this class

27

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

(take an arbitrary word from the respective synset and update
the domain dictionary if needed);

3. translate the annotated tree into an ontology representation;

The step 2.2 in the above algorithm forms a computational bottleneck
for autonomous class annotation — we should mutually compare all hy-
perohyponymic string with respect to all senses the involved words can
have. This causes very undesirable combinatorial explosion.

That is why we use a heuristics to overcome this problem. It is very
simple — when computing the string frequencies among a class, we process
only strings corresponding to all senses of all words in a class in one pass.
The addition of each string that is corresponding to a word w is weighted
by the Savg

Sw
modifier, where Savg is average number of strings per one word

in the given class and Sw is number of strings for the word w.
Such weighting corresponds to an intuitive idea that the words with

more hyperohyponymic strings assigned should not overwhelm the words
with less strings in the frequency computation. This heuristics solves the
combinatorial explosion problem and yet it does not reasonably harm the
annotation usefulness, as seen in Chapter 7.

4.3 Domain Ontology Creation and Iterative Enrichment

Supposing we have created a basic domain ontology, we need to process
new resources that are coming to OLE. Re–clustering after each deploy-
ment of a new resource is computationally demanding. But we can use the
efficient pattern–based extraction method combined with classification by
current cluster structure. Taxonomy chunks extracted by the pattern–based
method enrich the domain ontology structure in the meaning of spreading
of leaf groups of words and possible assignment of new and previously
unknown relations between classes. The algorithm of addition of a new re-
source is given below:

input: current domain ontology, new resource
output: enriched domain ontology

1. process the resource by a pattern–based module and create the re-
spective miniontology;

2. extract the context–vectors for each term in the miniontology from the
resource;

28

4. AUTONOMOUS ACQUISITION OF ONTOLOGIES IN OLE

3. for each instance isa(c1, c2) of is-a relation between concepts c1 and
c2 from the miniontology, compute domain ontology concepts ĉ1 and
ĉ2 respectively as the concepts with the lowest cosine distance from
c1 and c2;

4. compute c as the nearest common hyperonym of ĉ1 and ĉ2 in the
domain ontology;

5. set the new relations isa(c2, c) and isa(c1, c2) in the domain ontology,
possibly marking c1 as an individual and c2 as a class (if their states
were different in the former domain ontology);

6. return the updated ontology;

The step 5. in the above algorithm contains operations of marking a con-
cept as an individual or as a class. This is caused by the fact that obviously
only concepts that have no subclasses can be individuals in the meaning of
statements given in Section 2.1.3 and Section 2.2. Thus we empirically set
the concepts without subclasses in the updated ontology as individuals. On
the other hand, the concepts that have had no subclasses before and have
ones after merging with miniontology must be marked as classes instead of
individuals in this perspective.

The presented method is very rudimentary and relies on the correctness
of relations present in both miniontology and domain ontology. However,
we do not know whether the relations really are correct or not. A mecha-
nism for analysis of correctness measure assignment and utilisation of this
measure in the process of proper empiric ontology merging is needed. Un-
certain reasoning would be very efficient for these tasks. In the following
chapter we introduce a framework for uncertainty representation in OLE
ontologies. Such framework serves as a basis for respective reasoning tools
that are needed for proper autonomous ontology merging.

29

Chapter 5

Remarks on Uncertainty Representation

The significance of uncertainty representation has become obvious in the
Semantic Web community recently. A new framework for uncertain infor-
mation processing is presented in this chapter. Formal systems that underlie
the uncertainty representation are briefly introduced. We discuss a univer-
sal internal format of uncertain conceptual structures in OLE then. We also
present details on translation from such format to the common OWL lan-
guage (with extensions regarding the uncertainty).

5.1 Motivations

Ontology integration phase is the moment when the need of uncertainty
representation arises. Even if we could obtain precise conceptual construc-
tions from single resources (e. g. birds fly), we will experience infeasible con-
sistency difficulties when trying to assign precise relations between the con-
cepts in broader scope of the whole domain (as illustrated by the popular
example: the fact birds fly collides with the statements penguins are birds; pen-
guins do not fly). Besides the inconsistency handling, there are also impor-
tant cognitive motivations of the utilisation of uncertainty in our empiric
ontologies that led us to the proposal of a novel framework for represent-
ing uncertain knowledge. It is called ANUIC (Adaptive Net of Universally
Interrelated Concepts).

The knowledge repositories built by OLE tools must reflect the state of
the respective domain empirically according to information contained in
the provided resources. Such kind of knowledge is as much objective as
possible, because it is not influenced by arbitrary considerations about the
domain’s conceptual structure, but determined by the structure itself.

Remedy to Emerging Inconsistencies

However, the automated empiric approach has an obvious drawback – the
threat of inconsistency. As we do not generally have an infallible ”oracle”

30

5. REMARKS ON UNCERTAINTY REPRESENTATION

to tell us how to precisely join or map newly extracted concepts to the ones
that are already stored in our ontology, crisp relations between concepts are
virtually impossible. We must deal with the inconsistencies somehow.

There are two general kinds of possible inconsistencies in an ontology
(virtually any relational inconsistency can be modelled using these):

• subsumption inconsistency: given concepts C , D and E, the C ⊆ D and
C ⊆ E statements may collide when we represent for example crisp
part-of relation by the ⊆ symbol (e. g.: Turkey is both part of Europe
and Asia)

• equivalence inconsistency: given concepts C , D and E, the C ≡ D, C ⊂
E and D ≡ E statements are in conflict (for example when we find
out in a text that ’science’, ’knowledge’ and ’ erudition’ are synonyms
and at the same time we induce that ’knowledge’ is a super-concept of
’erudition’)

Such collisions are hard to be modelled in classic crisp ontology repre-
sentation frameworks (see [27] or [48]). Implementation of the uncertainty
into our knowledge representation is a solution for dealing with conflicts in
the continuously updated ontology.

Mental Models Reflection

The second motivation lies in inspiration by the conceptual models that are
characteristic for human mind. This topic is closely related to the very defi-
nition of concept and meaning. As stated for example in [26] or [11], people
definitely do not represent the meaning of concepts as static crisp struc-
tures. The meanings are rather constructed as vague sets of dynamically
overlapping referential associations [26], or so called ”meaning potentials”
with particular instantiation dependent on the context of concept-referring
word or sequence of words [3].

We need to develop a little bit more precise definition of a concept than
the ”technical” one that was introduced in Section 2.1.3. Other formulations
related to this topic are presented in section 5.3. By an ANUIC concept we
mean a representation of an entity existing in real world and/or utterable
in human language. A concept is determined by its relations to another con-
cepts in the universe then. Such ”relational” definition of a concept is partly
inspired by poststructuralistic philosophy (see for example [12]). Reference
of a concept is then realised by instances of its relational connections. By
these instances we mean especially concrete uncertainty measures assigned
to each relation a concept is involved into (see Section 5.3 for details).

31

5. REMARKS ON UNCERTAINTY REPRESENTATION

Thus we can naturally represent the dynamic conceptual overlap in the
meaning of [26], because the assigned relations’ measures are continuously
updated within the process of a new knowledge incorporation. And by in-
troducing a special relation of association we can represent the notion of
meaning potentials according to [3]. Using this relation we can associate a
concept with a representation of co-occurring concepts and impose another
useful restriction on the meaning construction (helpful for example when
resolving word-sense ambiguities).

5.2 Theoretical Background

In this section we very briefly recall the main approaches to representation
of uncertainty. The uncertain information representation frameworks are
determined by three significant fields of contemporary mathematics:

1. extending the theory of measure into a more general theory of mono-
tonous measures with respect to the classical measures of information

2. applications of (conditional) probability theory

3. extending the classical set theory into a more general fuzzy set theory

Extended Probabilistic Frameworks

Various uncertain extensions of the information measure theory are men-
tioned by Klir in [28]. However, in the computer science field there are other
probabilistic theories generally accepted, mainly in the scope of:

• Bayesian networks

• non-monotonic reasoning and respective probabilistic (or possibilis-
tic) extensions of ”classical” (mainly propositional, first order or de-
scription) logics

The former approach exploits the idea of a specific graphical model (Ba-
yesian network) of a variables (nodes) connected by respective conditional
probabilities (edges) in a DAG. A good overview of this framework and
related algorithms offers Xiang in [47]. For example Peng [48] or Holi [27]
offer an application of Bayesian networks for uncertain ontologies.

The latter approach supplements the classical logics’ paradigms with
uncertain (e. g. conditional) consequence relations. The reasoning within
these frameworks is inspired by both of extended theory of information

32

5. REMARKS ON UNCERTAINTY REPRESENTATION

and (conditional) probability theory. Good overview of these approaches is
given in [23]. In the scope of ontology reasoning there are probabilistic ex-
tensions of description logics that was designed in order to tackle reason-
ing tasks among crisp ontologies – for example Lukasiewicz’s P-SHOQ(D)

logic [21].
All these more or less probabilistic approaches are no doubt significant

for uncertainty representation. However, we dissociate from them in our
work for one main reason. As we want our ontologies to be built automat-
ically in an empiric manner, it would be very hard to find out appropriate
(conditional) probability assignments (especially in cases when the input
data are sparse in some subdomains of our interest) without any back-
ground knowledge (axioms and/or inference rules) at our hand. That is
why we prefer using the fuzzy sets and fuzzy logic formalisms to motivate
our uncertain knowledge representation proposal.

Fuzzy Sets

Fuzzy sets were introduced by Zadeh [49]. Each fuzzy set is uniquely de-
fined by its membership function, which assigns a certain degree of respec-
tive set’s membership to each element in the considered universal set X .
The membership usually ranges in real numbers interval of [0, 1]. For a set
A we denote the membership function as A here, so A(x) means the mem-
bership degree of the element x w. r. t. A. These fuzzy sets are called stan-
dard. For each standard fuzzy set there can be defined a standard crisp set
Aα = {x ∈ X|A(x) ≥ α}, which is called α-cut of the set A. A fuzzy relation
R on X × X is then defined as a mapping R : X × X → [0, 1]. Notions of
reflexivity, symmetry, transitivity etc. similar to those of classical relations
can be adopted even for fuzzy relations. This is very useful for example for
reasoning tasks (see [19]) based on set operations. However, this intriguing
topic will be discussed elaborately in another dedicated paper.

Many variations branching from the original Zadeh’s idea have been de-
veloped until now. Some of them (besides the original fuzzy sets) are quite
significant with respect to our research topic. The fuzzy rough sets and
rough fuzzy sets (as introduced by Dubois and Prade in [13]) are based
on approximations of (fuzzy) sets using a fuzzy similarity relation or crisp
equivalence classes. Using these theories we can structure our conceptual
universe as such approximation space in various perspectives (according
to the relation used). Intuitionistic fuzzy sets (see [9]) based on combina-
tion of membership and non-membership degree can be used when dealing
with negative knowledge in our ontologies.

33

5. REMARKS ON UNCERTAINTY REPRESENTATION

5.3 Proposal of ANUIC Format

ANUIC (Adaptive Net of Universally Interrelated Concepts) forms a back-
bone of the uncertainty representation in OLE. The formal definition of
ANUIC and issues regarding possible problems, modifications of basic em-
piric approach as well as reasoning perspectives are mentioned in this sec-
tion.

5.3.1 Formal Definition

The concepts are stored in a special fuzzy network structure. The network
is an oriented multigraph G = (V,E), where V is a set of stored concepts
and E is a set of ordered tuples (u, v), where u ∈ V, v ∈ V (more edges can
appear between two nodes). The edges are induced by imprecise concept
relations. Multiple edges are allowed as there can exist multiple relations
between concepts. A node is a tuple in the form of (c,R,A), where:

• c is a core word of the concept. It serves as a master reference index
and is computed as the most frequently occurring word in the scope
of the hyperohyponymy relation instance with the highest associated
µ-measure (see below what the µ-measure is). The hyperohyponymy
relation was chosen because it is commonly considered as a basic re-
lation when forming a knowledge basis.

• R is a relational set of tuples in the form of (r, cr , µ(r)), where r ∈ N

is an identifier of a relation from a given set N (its members can be
usual lexico-semantic relations, such as hyperohyponymy, holonymy,
meronymy, or domain-specific relations like used for, appears in, me-
thod of and so forth). The cr ∈ V is again a concept, which is related
with the current one by r, and µ(r) ∈ [0, 1] is the µ-measure assigned
to this observation.

• A is an associative centroid vector of words appearing in the context
of the core word (thus being a representation of the most common
context of a concept). However, the word vector is too specific, so it
is more reasonable to encode the context in the form of general con-
cepts covering the most frequent word occurring in the context. These
upper concepts are assigned from the current ontology. The notion of
an associative set supports the meaning potentials remark from Sec-
tion 5.1 as well as the feature assignment mentioned in Section 4.2.

34

5. REMARKS ON UNCERTAINTY REPRESENTATION

5.3.2 Conviction Function

For computation of the µ-measure (that is, the membership/appropriate-
ness function value) µ(r) for a relation r that is corresponding to a (c1, c2)

edge we devise the following heuristic ”conviction” formula (derived from
the standard sigmoid function):

µ(r) =
1

1 + e−s(fr−α)

where fr = f(r(c1,c2))∑
c∈V

f(r(c1,c))
is the relative frequency of relation observations

in input data, s is a parameter regulating the ”steepness” of the function
and α influences the placement of the inflexion point. The domain of the
function is real interval (0, 1〉 (but only rational numbers obviously appear
as an input). The range is real interval (0, 1).

Proper adjustment of the parameters defines the reflection of the im-
pact of frequency on the fuzzy appropriateness µ-measure of the observed
relation. Thus we can regulate for example the ”conservativeness” of the
system (in the meaning of the influence of major or minor observations
to the overall conviction). The function is continuous and thus can be im-
plemented in a very straightforward way. However, it can easily imitate
discontinuous jumps in the shape of the curve, which is also very useful.
Examples showing shapings of the conviction function are displayed in
Figure 5.1. In Table 5.1 there are given the parameter values correspond-
ing to the respective shapes of the conviction function. As we can see from

Plot number Curve name s α

1 f(x) 10 0.5
1 g(x) 20 0.5
1 h(x) 20 0.75
1 i(x) 10 0.2
2 j(x) 10 0.75
2 k(x) 2 0.5
2 l(x) 5000 0.97
2 m(x) 6 0.0

Table 5.1: The conviction function parameter settings

these examples, the proposed conviction function allows us to simulate nat-
urally the relative influence the observation frequency has on the relevancy

35

5. REMARKS ON UNCERTAINTY REPRESENTATION

of the observed relation instance. To be more specific, consider the follow-
ing overview:

• On the plot with label 1 there are given only slightly deformed curves
that are quite similar to the standard sigmoid shape. The functions
with α set to 0.5 and sufficiently high s reflect a symmetric impact of
the frequency on the µ-measure, raising from 0 to 1.

• The shapes presented on the plot 2 show us the flexibility of the pro-
posed conviction function more illustratively:

– Shape labelled as m(x) presents quite ”hesitating” function that
assigns quite high µ-measures (greater than 0.5) even to small
frequencies, thus making the system partially believe in almost
every evidence, yet preferring higher frequencies significantly.

– We can also acquire an almost ”linear” curve shape (the k(x) la-
bel), however it is more convenient to take directly the frequency
as the µ-measure if we want a reasonable linear formula.

– The j(x) function presents a shape assigning relatively low val-
ues (in the meaning that they are quite far from 1) even for fre-
quency near or equal to 1. It reflects an ”opinion” of the system
that even a provisionally sure fact can never be absolutely valid
if we consider future observations.

– The shape given by l(x) presents a very ”conservative” settings
– only very high frequency will get a µ-measure significantly
higher than 0, observations with minor frequencies are ignored.
The α parameter presents a threshold of these ignored frequen-
cies here.

5.3.3 Notes on the Interpretation of µ-measures

In the following few paragraphs we present basic ideas related to utilisa-
tions of the notions described in the previous section.

1. Learning and Propagation of the Conviction Function Parameters:
Given a reasonable and comprehensive portion of annotated concept
data from an ontology domain, we can learn specific settings of con-
viction function parameter for particular concepts (besides of selected
parameters valid for the rest of an ontology). Thus we can reflect for
instance whether a concept tends to have more instances of a rela-
tion at a time – the conviction function should assign almost same

36

5. REMARKS ON UNCERTAINTY REPRESENTATION

high values to almost equal (but relatively low) frequencies. The pa-
rameter settings can then spread over transitive strings in ontology
within reasoning operations performed on ANUIC format. However,
the annotation of data (and/or perhaps even implementation of un-
supervised learning methods) as well as concrete implementation are
still mostly subjects of future research.

2. Data View Perspectives:
The µ-measures of relations in ontology allow us to impose various
perspectives upon the stored data. The primary perspectives are set-
oriented perspective (e. g. fuzzy set constructed by the µ-measures of
subconcepts related to a concept or crisp approximations of the on-
tology structure given by some specific α-cuts) and relation-oriented
perspective (e. g. the fuzzy synonymy relation). These perspectives
allow us to develop reasoning procedures using the results of the ex-
isting theory of uncertain fuzzy inference (see for example [5], [19],
[14] or [23]).

3. Coping with Sparse Input Data:
The network constructed this way squares with the ideas presented in
Section 5.1 and conforms with the very intuitive notion of how peo-
ple natively represent concepts in their minds. The dynamics of the
system rests on continuous updating of all the µ-measures from the
observed data. However, the real world data are not homogeneous in
the frequency distribution of particular concepts. For some rarely oc-
curring but important words the empirically measure could easily be
unsuitable for further utilisation of such knowledge. Therefore addi-
tional ”referees” must be incorporated especially for terms with low
frequency (and even for the other ones). Existing lexical databases and
electronic thesauri are good for correcting the possibly invalid uncer-
tain measures gained by empiric evaluation of sparse data. In order to
combine more resources of such external judgement, usage of Word-
Net [16] lexical database with Bonito2 word sketches [38] and Roget’s
electronic thesauri services [33] is appropriate.

4. Conscious and Unconscious Operations:
In an analogy with human mind, two kinds of operations within the
ANUIC knowledge base are possible. We call them conscious and un-
conscious operations. The former are triggered by external incentives –
mainly observations from the input data, user queries, or administra-
tor commands (for example dumping the knowledge base in order to

37

5. REMARKS ON UNCERTAINTY REPRESENTATION

examine concept shifts over time later or learning the conviction func-
tion parameters). The unconscious operations are run by the knowl-
edge base itself and are of the same importance as the conscious ones.
These operations are mainly reasoning tasks like merging of concepts
that have a reasonable high measure of synonymy or an inverse op-
eration of splitting concepts. They should be run when there are no
extensive computational demands on the knowledge base. Proper im-
plementation of such operations helps to improve the consistency and
manage the redundancies in the stored data.

5.3.4 An Example of Ontology Fragment Creation

We offer a very simple example of uncertain ontology integration within
ANUIC below. In the Figure 5.2 there is given a sample text as an input for
miniontology extraction. The words referring to respective concepts in our
fragment are marked with an index that represents them in the Table 5.2.

The Table 5.2 shows relevant is-a taxonomic relations (noted as r) before
and after the merging of the miniontology with a domain ontology1. Both
halfs of the table present a matrix with indices from concept set and values
from the µ(r) range (for states before and after the integration). Semantics
of a matrix element ec1,c2 is: ”the concept c1 (the row index) is a concept c2

(the column index) with conviction given by the appropriateness measure
ec1,c2”.

µ(r) c1 c2 c3 c4 c1 c2 c3 c4

c1 1.0 0.976 0.908 0.0 1.0 0.953 0.881 0.296
c2 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0
c3 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0
c4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Table 5.2: The is-a relation µ-measure values before and after integration

5.4 From ANUIC to (F)OWL

The technical implementation of ANUIC is based on multiple–level hash
arrays with these levels:

1. The µ-measure function with parameters s = 10 and α = 0.2 is used. The initial relative
frequencies for observations r(c1, c2), r(c1, c4), r(c1, c3) are 4

7
, 0, 3

7
respectively.

38

5. REMARKS ON UNCERTAINTY REPRESENTATION

• relation identifiers form indices at the top–most level (for example is-a
ID);

• identifiers of concepts appearing as a first part of the given relation
form indices at the mid–level (the concept IDs are assigned according
to the domain dictionary, see Section 4.2.2 for details);

• identifiers of concepts appearing as a second part of given relation
form the lower–level indices.

Thus we encode the relation instances, with respective instance µ-measures
as values at the bottom level of the multiple hash structure. Objects that rep-
resent the concepts themselves are stored in another hash structure indexed
by their IDs.

When dumping an ontology, we process the hash from the top–most
level and assign specific OWL constructs to particular relations. We instan-
tiate these constructs according to concept identifiers stored at lower levels
and finally encode the respective µ-measure values (if they are present) us-
ing the special (F)OWL2 constructs presented in Appendix B.

2. The acronym stands for (Fuzzy)OWL.

39

5. REMARKS ON UNCERTAINTY REPRESENTATION

Figure 5.1: Examples of various shapes of the conviction function

... In the fairy book there is a lot of information on tritons, mermaidsc1 , sea
snakes and other mythical creatures

c2
...

... Mermaidsc1 are considered as femalesc3 ...
... for sylphs

c4
, especially mermaidsc1 , are banned to interfere with humans...

Figure 5.2: The text with concepts to be merged

40

Chapter 6

OLE Architecture

Technical issues regarding the OLE implementation are discussed in this
chapter. First section overviews general demands on the software tools de-
sign, the second one presents the OLE system architecture and the last one
deals with the implementation paradigm and external tools that are utilised
within OLE.

6.1 Design Considerations

The design of OLE has been influenced by the need for autonomy, efficiency
and precision of the resulting platform. The following list summarises the
major requirements:

• The tool should support interactive way of ontology acquisition, but
also the fully automatic process of knowledge mining that can run
without any human assistance.

• The efficiency of ontology acquisition is crucial, for the system will
process gigabytes of data.

• The precision is preferred over the recall. Even if the number of the
extracted conceptual structures will be relatively low (compared to
the number of relations a human can identify in the same resource), it
will be balanced by the extensive quantity of resources available.

• The relations between concepts stored in the resulting ontology need
not be precise — the explicit uncertain knowledge representation is
one of the essential parts of OLE reasoning tools to be devised. The
increased fuzzy precision of the whole process will balance the loss of
exactness.

6.2 System Components

The modular architecture of OLE is given in Figure 6.1.

41

6. OLE ARCHITECTURE

Figure 6.1: The architecture of the OLE platform

The OLE modules process plain text and create the miniontologies from
the extracted data. Miniontologies can be directly dumped then or passed to
the OLEMAN integration module. Here are comments on the figure above:

Resources — relevant documents provided by external tools (document
classifiers, existing databases of related resources etc.).

C. L. U. S. Tools — cross–language universality support tools that allow
OLE to preprocess data in a given language under specific conditions.

OLITE — the core of the extraction module responsible for creation of on-
tologies according to provided preprocessed data, utilising some of
the knowledge extraction plugins. The ontologies are primarily pro-
duced in the internal ANUIC format (see Chapter 5), but they can be
translated into the OWL format as well.

KE Plugins — knowledge extraction plugins implementing various meth-
ods for miniontology or even whole domain ontology generation.

Add. & Conf. Files — additional and configuration files (such as PES pat-
tern representation file).

M. O. Dump — direct dump of miniontology as a product of OLITE mod-
ule.

OLEMAN — module that merges the miniontologies resulting from the
OLITE module and updates the base domain ontology. Basic method

42

6. OLE ARCHITECTURE

described in Section 4.3 has been implemented so far. However, tech-
niques of uncertain information representation will be employed fur-
ther for the phase of ontology merging.

D. O. — continuously updated domain ontology.

More detailed descriptions of particular parts depicted in the list above
are given mainly in Section 4, Section 4.1.1 and Section 4.3.

6.3 Implementation Remarks

All the OLE software components are implemented in the Python program-
ming language. A special attention has been paid to the object oriented
design. Another reason for choosing Python was the wide range of freely
available relevant modules and application interfaces.

For example, NLTK natural language toolkit [1] and Princeton WordNet
interface PyWordNet [2] are used. Besides the fact that it is programmed in
Python, we use the NLTK toolkit instead of ready-made platforms (such as
GATE, see [10]) mainly due to implementation of our own custom prepro-
cessing tools. This approach allows us to port the system easily for different
languages, not only English.

Python as an interpreted language can be inefficient for the implementa-
tion of some parts of the OLE platform. Special tools improving the compu-
tational efficiency of the Python code are available. For example, we are go-
ing to take advantage of Psyco [36] which is similar to the Java just-in-time
compiler. Moreover, the computationally demanding parts can be straight-
forwardly implemented as C extensions for the main Python modules.

43

Chapter 7

Evaluation and Preliminary Results

In the following sections we present preliminary results of the ontology ex-
traction and merging techniques that are used in OLE and described in this
work. The chapter is divided into three sections that cover pattern–based
extraction technique, method grounded in hierarchical clustering and basic
merging of ontologies.

The evaluation of ontology is a problematic task even for hand–crafted
ontologies. As stated for example in [6], the well known notions of precision
and recall cannot be easily used. Following the source cited, we would like
the precision to reflect the amount of knowledge correctly represented in an
ontology with respect to all knowledge in ontology. The recall should reflect
the amount of knowledge stored in an ontology with respect to all available
knowledge then. It is obviously very hard to define a correctly represented
knowledge, as well as to decide automatically what is all available knowledge.
Therefore we cannot perform an exact and exhaustive evaluation similar
for example to evaluation techniques used for POS tagging or disambigua-
tion NLP tasks. We could use qualitative measures introduced for example
in [44]. Theses measures reflect branching of relations, balance of relation
trees in an ontology etc. However, these measures are devised mainly for
manually created ontologies, whereas automatically gained OLE ontologies
present only one kind of basic taxonomic relation. So it is not very useful to
use the devised measures as an objective quality factor.

Due to the complications mentioned in the previous paragraph, we ma-
nually analysed representative or illustrational samples of ontologies hav-
ing been gained from various (computer science related) resources. The pre-
sented values of precision are orientational ratios of number of relations
that were found to be ”reasonable” compared to number of all relations in
an ontology. The recall values are even more difficult to be specified as we
further develop in the following sections.

44

7. EVALUATION AND PRELIMINARY RESULTS

7.1 Pattern-based Method

We tested the OLITE pattern–based extraction module on a set of about
12, 000 documents from computer science domain. We used the hand–craf-
ted patterns (some of them were adopted according to [24] and [15]) that
are given in Table 7.1. Other patterns can be added easily, but the patterns

Id The pattern
1 NP such as (NPList | NP)
2 such NP as (NPList | NP)
3 (NPList | NP) (and | or)other NP
4 NP (including | especially) (NPList | NP)
5 (NPList | NP) (is | was)an? NP
6 (NPList | NP) is the NP
7 (NPList | NP) and similar NP
8 NP like (NPList | NP)

Table 7.1: Patterns for is-a relation

presented in the table were found to be sufficient for basic evaluation.
The average time of processing of a resource (only extraction without

miniontology dumping or merging) was 0.94 seconds1. Average size of a
document in the sample that was used for this performance test was about
66.7 kilobytes (approximately 9, 500 words). This results in a processing
speed of about 10, 100 words per second which we find satisfactory.

For the manual evaluation we randomly chose ten resources from the
whole document set. For each miniontology created by OLE system we
computed the ratio of ”reasonable” relations compared to all extracted re-
lations2. Reasonability of a relation was decided with respect to the corre-
sponding resource. This ratio presents an orientational measure of the preci-
sion. As an approximate measure of the recall we chose the ratio of sentences
that matched with the patterns compared to all sentences in a resource. This
is not an exact measure of recall with respect to all knowledge present in a
resource, but it can give us a glimpse of how the data in a resource are cov-
ered by the pattern–based module. All of the measures mentioned here are
summed up in Table 7.2 and provided with respective file size and num-

1. On a machine with 3.2 GHz Intel Pentium 4 processor and 2GB of RAM, powered by
Ubuntu Linux operating system.
2. For simplicity, we consider the relations for a concept in common, defining a relation
”unreasonable” if any of the respective relations has not been found to be reasonable.

45

7. EVALUATION AND PRELIMINARY RESULTS

ber of all concepts extracted. See Appendix A for concrete examples of ex-
tracted taxonomies.

File File sz. No. of No. of Prec. (%) Rec. (%) I (%)
(words) conc. rel.

1 3330 7 5 60.00 23.52 840.34
2 2606 9 5 80.00 5.21 1438.85
3 5387 33 24 62.50 5.88 4401.41
4 2274 16 11 63.63 3.31 2179.11
5 3936 25 14 71.43 7.51 4277.25
6 4943 27 18 61.11 5.84 3892.36
7 3937 22 15 46.67 4.27 3070.39
8 7438 25 16 68.75 7.37 3756.83
9 1826 10 5 60.00 6.19 1801.80

10 5250 52 32 37.50 18.42 8333.33
average 4093 22.6 14.5 61.16 8.75 3399.17

Table 7.2: Results of pattern–based extraction

The precision values are quite high when we look at the I column in the
table. The I values present an improvement in precision over a base–line,
which is computed as RR

N(N−1) , where RR stands for number of reasonable
relations and N is the number of concepts in an ontology3. Moreover, it is
precision of the extraction phase and it would be significantly improved by
utilisation of a proper reasoning engine. This is one of the main goals of our
future work.

7.2 CAANNO Technique

The CAANNO algorithm hierarchically clusters all single noun terms in a
resource and then assigns a common label for each class in the resulting
dendrogram. We do not define either formal or informal measure of re-
call this time, because all identified nouns in a resource set are clustered.
However, we use the same notion of precision as was used in the previous
section.

Due to the strenuousness of manual evaluation of large ontologies we
used only a set of 131 concepts (non–unique individuals) from a coherent
computer science domain resource. 62 unique individuals and 47 classes
were induced. We distinguished between class–class relationships and class–

3. The N(N − 1) is number of all is-a relations that can be assigned among all concepts.

46

7. EVALUATION AND PRELIMINARY RESULTS

individual relationships when analysing the precision. The precision values
are given in Table 7.3, supplemented by the number of respective relations.

Rel. kind No. of relations Precision (%)
class–class 47 44.68

class–individual 62 51.61
average 54.5 48.15

Table 7.3: Results of CAANNO extraction

The precision is lower than for the pattern–based method, but it slightly
increases with more data. Moreover, the absolute recall is no doubt much
higher. Relatively low precision could also be improved by utilisation of
reasoning supported by integration of more precise ontologies and even
by heuristic comparison of different cuts of a dendrogram for the same re-
source set.

7.3 Basic Ontology Merging

The method used for ontology merging is provisional in the scope of future
OLE development. Therefore we performed only very simple evaluation of
the technique described in this work. We took the domain ontology with
size of 62 individuals and 47 classes and integrated it with miniontologies
with common size of 44 concepts (classes and implicit individuals). New
ontology has 88 individuals and 60 classes. Table 7.4 shows the orienta-
tional precision of implemented merging. The informal precision Pmerged is
computed as Pmerged =

Precupd

Precorig
, where Precupd and Precorig are the pre-

cisions assigned to updated and original domain ontology as defined in
the previous two sections4. We consider the obtained precision values as a

Rel. kind Precorig (%) Precupd (%) Pmerged(%)

class–class 44.68 40.98 91.72
class–individual 51.61 49.44 95.80

average 48.15 45.21 93.76

Table 7.4: Results of merging

4. The recall measure is of no significance again, because we merge all relations present in
the input ontologies.

47

7. EVALUATION AND PRELIMINARY RESULTS

good foundation of the base–line definition for devising and evaluation of
improved ontology merging techniques.

48

Chapter 8

Conclusions and Future Work

We presented OLE — a novel ontology learning platform in this work. OLE
is primarily intended for autonomous creation and management of domain
specific ontologies. The bottom–up approach to the ontology acquisition is
emphasised, as well as the need for uncertainty representation. The OLITE
component implements two basic knowledge acquisition methods, First of
them is pattern–based extraction. The second one is an original technique
CAANNO that utilises automatic hierarchical annotation of word clusters
using WordNet lexical database. Other modules can be easily added. Sim-
ple heuristic ontology merging technique was introduced as well.

The preliminary results clearly show that OLE provides a modular and
flexible platform for integration of knowledge extraction techniques. More-
over, the results also prove that the purely automatic construction of knowl-
edge bases of quite a reasonable quality is more than feasible.

We also presented an ANUIC framework for natural dealing with un-
certain knowledge in ontologies. The framework is motivated by intuitive,
yet valuable notion of representation of uncertainty in a human mind. The
theoretical background of fuzzy sets methodology allows to develop an ap-
propriate calculus and consecutively build inference tools to reason among
the concepts stored in ANUIC.

The research results presented here are mostly in the phase of proposal
and proof of concept, so a lot of work still has to be done in order to acquire
really complex ontologies. An elaborate interface with server–client archi-
tecture should be build for OLE tools. Such an interface should be user–
friendly when considering both human and artificial agents. Challenging
work remains to be done in the area of dynamic acquisition of new patterns
and extraction techniques that are not limited only to is-a relation. Many
advanced techniques for concept mining still wait for their implementa-
tion. The ontology merging process in OLE will benefit from significantly
increased coverage implied by other extraction approaches as well as from
the automatic induction of semantic relation patterns.

The second big objective for future work is to find efficient implementa-

49

8. CONCLUSIONS AND FUTURE WORK

tion methods for the proposed fuzzy ontologies. Additional psycholinguis-
tic experiments should help with proper configuration of the parameters
for the µ-measure function presented in Section 5.3 then. Invention and for-
mal validation of a specific calculus for ANUIC is also needed. Then we
can evaluate the framework using real world data from distinct domains
of OLE project. All of the mentioned tasks are no doubt difficult, but we
demand it would be very challenging to pursue them and refine the ideas
behind to gain a sustainable and efficient universal model of representation
and processing of uncertain knowledge. Thus we can make our automati-
cally gained OLE ontologies as complex and empirically valid as possible
within the future research.

50

Acknowledgements

This work has been supported by Academy of Sciences of Czech Republic,
‘Information Society’ program, the national research project 1ET100300419.

51

Bibliography

[1] NLTK: Natural Language Toolkit – Technical Reports, 2005. Available at:
http://nltk.sourceforge.net/tech/index.html.

[2] PyWordNet: Python Interface to Princeton WordNet, 2005. Available at:
http://osteele.com/projects/pywordnet/.

[3] J. Allwood. Meaning potentials and context: Some consequences for the analysis of variation and
meaning. In Cognitive Approaches to Lexical Semantics, pages 29–66. Mouton de Gruyter, Berlin,
2003.

[4] J. C. Arpirez, O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. Webode in a nutshell. AI
Magazine, 24(3):37–47, 2003.

[5] X. Li B. Wang, W. Liu, and Y. Shi. A new sparse rule-based fuzzy reasoning method. In Pro-
ceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04), pages
462–467. IEEE Computer Society, 2004.

[6] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data driven ontology evaluation. In Pro-
ceedings of LREC 2004, 2004.

[7] E. Brill. A report of recent progress in transformation-based error-driven learning. In Proc. ARPA
Human Language Technology Workshop ’94, Princeton, NJ, 1994.

[8] O. Corcho, A. Gomez-Perez, A. Lopez-Cima, and V. Lopez. Odesew. automatic generation of
knowledge portals for intranets and extranets. In Proceedings of International Conference on The
Semantic Web — ISWC 2003, pages 802–817, Berlin Heidelberg, 2003. Springer–Verlag.

[9] C. Cornelis and E. Kerre. Inclusion measures in intuitionistic fuzzy set theory. In ECSQARU
’03: Proceedings of the 7th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pages 345–356, London, UK, 2003. Springer-Verlag.

[10] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework and graphical
development environment for robust NLP tools and applications. In Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics, 2002.

[11] H. Cuyckens, R. Dirven, and J. R. Taylor, editors. Cognitive Approaches to Lexical Semantics,
volume 23. Mouton de Gruyter, Berlin, cognitive linguistics research edition, 2003.

[12] J. Derrida. A Derrida Reader: between the Blinds. Harvester Wheatsheaf, New York, 1991.

[13] D. Dubois and H. Prade. Rough fuzzy sets and fuzzy rough sets. International Journal of General
Systems, 17:191–209, 1990.

[14] I. Düntsch. A logic for rough sets. Theoretical Computer Science, 179(1-2):427–436, 1997.

[15] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld,
and A. Yates. Web-scale information extraction in knowitall: (preliminary results). In WWW ’04:
Proceedings of the 13th international conference on World Wide Web, pages 100–110, New York,
NY, USA, 2004. ACM Press.

52

8. CONCLUSIONS AND FUTURE WORK

[16] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[17] R. Fikes. Ontologies: What are they, and where’s the research? In KR’96: Principles of Know
ledge Representation and Reasoning, pages 652–654. Morgan Kaufmann, San Francisco, Califor-
nia, 1996.

[18] A. Gangemi, R. Navigli, and P. Velardi. Corpus driven ontology learning: a method and its appli-
cation to automated terminology translation. IEEE Intelligent Systems, pages 22–31, 2003.

[19] L. Garmendia and A. Salvador. Computing a transitive opening of a reflexive and symmet-
ric fuzzy relation. In ECSQARU ’05: Proceedings of the 7th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, pages 587–599, London, UK, 2005.
Springer-Verlag.

[20] M. R. Genesereth. Knowledge Interchange Format: draft proposed American National Standard
(dpANS), NCITS.T2/98-004. Available at:
http://logic.stanford.edu/kif/dpans.html.

[21] R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D) for proba-
bilistic ontologies in the semantic web. In JELIA ’02: Proceedings of the European Conference on
Logics in Artificial Intelligence, pages 86–97, London, UK, 2002. Springer-Verlag.

[22] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199–220,
1993.

[23] C. M. Teng H. E. Kyburg, J. Kyburg. Uncertain Inference. Cambridge University Press, Cambridge,
2001.

[24] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics, pages 539–545, Morristown, NJ, USA, 1992.
Association for Computational Linguistics.

[25] M. A. Hearst and E. Stoica. Nearly–automated metadata hierarchy creation. In Proceedings of
HLT-NAACL’04, 2004.

[26] D. Hofstadter. Fluid Concepts & Creative Analogies: Computer Models of the Fundamental Mech-
anisms of Thought. Basic Books, New York, 1995.

[27] M. Holi and E. Hyvönen. A method for modeling uncertainty in semantic web taxonomies. In
WWW Alt. ’04: Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, pages 296–297, New York, NY, USA, 2004. ACM Press.

[28] G. J. Klir and M. J. Wierman. Uncertainty-Based Information: Elements of Generalized Informa-
tion Theory. Physica-Verlag/Springer-Verlag, Heidelberg and New York, 1999.

[29] H. Knublauch. Ontology driven software development in the context of the semantic web: An
example, scenario with protégé/owl. In Proceedings of 1st International Workshop on the Model-
Driven Semantic Web (MDSW2004), 2004.

[30] T. B. Lee, D. R. Karger, L. A. Stein, R. R. Swick, and D. J. Weitzner. Semantic Web Development -
Technical Proposal, 2000. Available at: http://www.w3.org/2000/01/sw/DevelopmentProposal.

[31] P. Materna. Rehabilitation of concepts. Available at:
http://www.phil.muni.cz/˜materna/rehabilitation of concepts.html.

[32] R. Meersman. Ontologies and databases: More than a fleeting resemblance, 2001.

[33] J. L. Old. The semantic structure of roget’s, a whole-language thesaurus, 2003.

53

8. CONCLUSIONS AND FUTURE WORK

[34] E. Hovy P. Pantel, D. Ravichandran. Towards terascale knowledge acquisition. In Proceedings of
Conference on Computational Linguistics (COLING-04), pages 771–777, 2004.

[35] P. Pantel and D. Lin. Discovering word senses from text, 2002.

[36] A. Rigo. The Ultimate Psyco Guide, 2005. Available at:
http://psyco.sourceforge.net/psycoguide/index.html.

[37] M.-C. Rousset. Small can be beautiful in the semantic web. In ISWC 2004: Third International
Semantic Web Conference. Proceedings, pages 6–16. Springer-Verlag Berlin Heidelberg, 2004.

[38] P. Rychlý and P. Smrž. Manatee, bonito and word sketches for czech. In Proceedings of the Second
International Conference on Corpus Linguisitcs, pages 124–132. Saint-Petersburg State University
Press, 2004.

[39] A. Silberschatz, H. F. Korth, and S. Sudershan. Database System Concepts. McGraw-Hill, Inc.,
New York, NY, USA, 1998.

[40] J. F. Sowa. Conceptual graphs for a data base interface. IBM Journal of Research and Development,
20(4):336–357, 1976.

[41] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foundations.
Brooks Cole Publishing Co., 2000.

[42] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit: Collaborative ontol-
ogy development for the semantic web. In ISWC 2002: First International Semantic Web Confer-
ence. Proceedings, pages 221–235. Springer-Verlag Berlin Heidelberg, 2002.

[43] T. H. Cao T. T. Quan, S. C. Hui. Automatic generation of ontology for scholarly semantic web. In
ISWC 2004: Third International Semantic Web Conference. Proceedings, pages 726–740. Springer-
Verlag Berlin Heidelberg, 2004.

[44] S. Tartir, I. B. Arpinar, M. Moore, A. P. Sheth, and B. Aleman-Meza. Ontoqa: Metric-based ontology
quality analysis. In Proceedings of IEEE Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge Sources, 2005.

[45] A. Ushioda. Hierarchical clustering of words. In Proceedings of the 16th conference on Compu-
tational linguistics, pages 1159–1162, Morristown, NJ, USA, 1996. Association for Computational
Linguistics.

[46] P. Vossen, editor. EuroWordNet: A Multilingual Database with Lexical Semantic Networks.
Kluwer, Dordrecht, Netherlands, 1998.

[47] Y. Xiang. Probabilistic Reasoning in Multi-agent Systems: A Graphical Models Approach. Cam-
bridge University Press, Cambridge, 2002.

[48] R. Pan Y. Peng, Z. Ding. Bayesowl: A probabilistic framework for uncertainty in semantic web.
In Proceedings of Nineteenth International Joint Conference on Artificial Intelligence (IJCAI05),
2005.

[49] L. A. Zadeh. Fuzzy sets. Journal of Information and Control, 8:338–353, 1965.

54

Appendix A

OLE Ontologies — Basic Real Data Examples

The figures below represent illustrational samples from ontologies created
by OLE. We use the following graphic notation:

• classes are depicted as ellipses;

• individuals as squares;

• and arrows from hyperonyms to hyponyms encode the is-a relation.

A.1 Sample from an Ontology Extracted Using Patterns

55

A. OLE ONTOLOGIES — BASIC REAL DATA EXAMPLES

A.2 Sample from an Ontology Extracted by CAANNO

56

Appendix B

(F)OWL — Fuzzy OWL Extension

<?xml version="1.0"?>

<!--

Created on Dec. 12, 2005 by Vit Novacek

Defining Fuzzy Extension Markups

Example:

The class referred by ID=135875 is a class referred by ID=869723

with conviction 0.9235...

<Conviction rdf:ID="is a(135875,869723)">

<hasRelation>isa</hasRelation>

<hasClass>135875</hasClass>

<hasClass>869723</hasClass>

<hasConvValue>0.9235</hasConvValue>

</Conviction>

-->

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://nlp.fi.muni.cz/projects/ole/owl/fuzzy.owl#"

>

<owl:Ontology rdf:about="http://nlp.fi.muni.cz/projects/ole/owl/

fuzzy.owl#">

<owl:versionInfo>v1.0</owl:versionInfo>

</owl:Ontology>

<owl:Class rdf:ID="Conviction">

<owl:unionOf rdf:parseType="Collection">

<owl:Class>

<rdfs:subClassOf>

57

B. (F)OWL — FUZZY OWL EXTENSION

<owl:Restriction>

<owl:onProperty rdf:resource="#hasClass"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasClass"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasValue"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasIndividual"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasClass"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasValue"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

58

B. (F)OWL — FUZZY OWL EXTENSION

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasClass"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasIndividual"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasValue"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasIndividual"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasIndividual"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

59

B. (F)OWL — FUZZY OWL EXTENSION

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasValue"/>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/

XMLSchema#nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

</owl:unionOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasRelation">

<rdfs:domain rdf:resource="#Conviction"/>

<rdfs:range rdf:resource="http://www.w3.org/2002/07/owl#

ObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasClass">

<rdfs:domain rdf:resource="#Conviction"/>

<rdfs:range rdf:resource="http://www.w3.org/2002/07/owl#

Class"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasIndividual">

<rdfs:domain rdf:resource="#Conviction"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/

rdf-schema#Literal"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasConvValue">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#

FunctionalProperty"/>

<rdfs:domain rdf:resource="#Conviction"/>

<rdfs:range rdf:resource="http://nlp.fi.muni.cz/projects/

/ole/owl/dt.xsd#between0and1"/>

</owl:DatatypeProperty>

</rdf:RDF>

60

