
Transforming Current Web Sources

for Semantic Web Usage⋆

Martin Rimnac

rimnacm@cs.cas.cz

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodarenskou vezi 2, 182 07 Prague 8,

Czech Republic

Abstract. The paper proposes a data structure modelling method, which
aim is to estimate a structure model from a given input data set. The
model can be seen as an estimate of data semantics – the obtained re-
lations can be transformed into an RDF or OWL semantic web format
documents to be included into the semantic web portfolio. The proposed
method makes a connection between current web sources and the seman-
tic web vision to be realized. Finally, the method usage and conversion
rules are illustrated on an example.

The information retrieval ”on the web” [1] approach continually develops:
There are new methods for web pages mapping, for a similarity evaluation be-
tween documents or new methods for page ranks. Many of them interpret a
web page as a simple list of words, nothing else. Alternatively, information sys-
tem web interfaces or content managers presenting a view over databases via
a XHTML page or the plain text (CSV format) are important because of en-
abling an inverse task - an information extraction from a web page followed by
advanced data processing.

Alternatively, the semantic web vision [2] requires the presentation of infor-
mation also in machine-friendly formats primary describing information seman-
tics. The description can be made by the RDF format [3] using a predicate for-
malism organising a knowledge base as binary predicates feature(object, subject),
or by the OWL format [4], describing reality by item-set assignment.

The aim of the presented work combining these technologies is to enable
current web sources to be processed by semantic web tools with the best to be
known about these sources - their content estimated semantics.

The paper presents a data structure estimation process, gives a description
of the estimated model properties and finally shows how to convert the model
into the relational database schema or, as in [5], into semantic web RDF or OWL
formats, and discuses feasibility and usefullness of the format choice.

⋆ The work was supported by the project 1ET100300419 of the Program Informa-
tion Society (of the Thematic Program II of the National Research Program of the
Czech Republic) ”Intelligent Models, Algorithms, Methods and Tools for the Seman-
tic Web Realisation” and partly by the Institutional Research Plan AV0Z10300504
“Computer Science for the Information Society: Models, Algorithms, Applications”.

2 Martin Rimnac

1 Data Structure Estimation Method

The data structure estimation is a machine learning method estimating a re-
lational data model from a given input data set represented as a table (or in any
format transformable into a table). The model is described by an ”extensional
functional dependency system”, then data are stored in a repository implemented
via a universal relation [6, 7] according to the estimated model, which more-
over leads to an effective data storage. The model satisfying the third normal
form (3NF) is on-line updated upon a new table row insertion into a repository.
The method can be designed also as off-line one (processing all rows in one time),
but in such a case no incremental knowledge base building is possible.

As in the area of other machine learning methods, some inductive logic pro-
gramming tasks [8] can be transformed into the data structure estimation. Main
similarities are connected with decision tree generating algorithms [9] (the type
of knowledge organisation), but using different criteria: local (as an entropy) for
decision trees versus a global one for the structure estimation.

The data structure estimation method is partly based on a database model
decomposition. In the past, methods leading to relational data model modifica-
tions have been published. The input of these methods is usually a set of func-
tional dependencies describing the current model and requirements for a new one
(normal forms, multi-level relations, etc.). These methods use the theory of sets
or graph/hypergraph theory [10–12] for relation and subrelation interpretation.
An integral part of these methods is often a functional dependency set kernel
construction from a given dependency set [13] or the step by step decomposition
from one relation into its subrelations and removing redundant functional de-
pendencies [14]. The similar issue is about the relational data model conversion
into a multi-level secure one [15]. All of these methods fulfil requirements such
as minimal redundancy, representativeness or separativeness [16].

The previously cited approaches describe methods being designed for an in-
tensional functional dependency system (1). This paper topic belongs to the area
of the database dependency discovery [17–19] working with an (data driven)
extensional "functional dependency system" (2). The proposed method is
more focused on the problem of NP–complexity [20] reduction keeping all in-
stances in an input set to be processed instead of a random selection of several
ones and consideration of ”degree of true” measures for functional dependen-
cies [19]. The functional dependency system potentionally has a cyclic structure
being similar with the dependency network approach [21] enabling probabilistic
acyclic Bayesian networks to work with structures containing cycles.

Several ideas used in the proposal are inspired by the vertical [22] and hori-
zontal [23] partitioning or the XML document integration [24, 25].

The main goal of the data structure estimation is to face up the self-describing
feature of data sets. It may be used not only for an effective storage (a schema
design) of data extracted from web sources followed by an sofistifycated structure
consideration, but also in the artificial intelligence area (similar with the induc-
tive logic programming [8]) or especially in this paper for repository instance
publication in any semantic web format respecting the estimated structure.

Transforming Web Sources 3

1.1 Functional Dependency System

The data structure estimation method uses the relational database theory as
a basic concept for structure description and the graph theory for functional
dependency interpretation (there exists an oriented arc between attributes rep-
resented by nodes in the data structure model graph, if the second attribute
functionally depends on the first one).

Let us denote by A = {Ai | i = 1 . . . n} the set of all single attributes Ai in the
relation R and by D(Ai) the domain of the attribute Ai. Further, let a model M
describes valid relationships between attributes in A. The reality corresponding
relationship between the (complex-)attributes Bi ⊂ A and Bj ⊂ A will be
called the (intensional) functional dependency (notation Bi → Bj) with
the meaning that a value of the attribute Bj is uniquely defined by a value of
the attribute Bi in all possible relations R. The consequence is the existence of
the corresponding injection P : D(Bi) → D(Bj).

(Bi → Bj) ∈ M ⇒ ∃P : D(Bi) → D(Bj) (1)

This notion of functional dependencies is used in relational database theory,
but the area of the dependency discovering approaches [17–19] uses a different
one. Let us denote by R′ the subrelation of R with the same attribute set A
and by DR′

α (Ai) the attribute Ai active domain related to R′. The in-
jection P ′ : DR′

α (Bi) → DR′

α (Bj) valid over R′ will define the extensional

functional dependency in R′ (notation Bi →R′ Bj ; the index R′ will be usu-
ally omitted in the rest of the paper). The dependency Bi →R′ Bj may not
be satisfied by another R′′ subrelation of R or may not respect a relationship
given by a reality. The model will be called extensional (notation ME), when it
contains at least one extensional functional dependency.

(Bi →R′ Bj) ∈ ME ⇔ ∃P
′ : D

R′

α (Bi) → D
R′

α (Bj) (2)

Note that the extensional functional dependency system model ME allways
principally depends on the given R′, but the intensional dependency system does
not (instances are depended on the logical – given by reality – relationships, but
the logical relationships are independent of instances). So the extensional func-
tional dependency system only aggregates the structural relationships as impor-
tant characteristics of R′. These structural relationships may be changed by an-
other R′′ considering. Comparison of (1) and (2) leads to the consequence that all
data driven reverse engineering methods can be seen only as an estimation

due to the fact:
M ⊆ ME (3)

In the following, the shortcut name ”functional dependency” will be used instead
of ”extensional functional dependency”.

1.2 Properties of Functional Dependencies

If attributes depend mutually, they have the same size of their active domains.

Ai → Aj ∧ Aj → Ai ⇒ ‖Dα(Ai)‖ = ‖Dα(Aj)‖ (4)

4 Martin Rimnac

The set of functional dependencies has a transitive property:

Ai → Aj ∧ Aj → Ak ⇒ Ai → Ak (5)

The functional dependency may exist only in the case, when the size of the de-
pending attribute active domain is not greater than the size of the active domain
of the attribute on which it depends.

Ai → Aj ⇒ ‖Dα(Ai)‖ ≥ ‖Dα(Aj)‖ (6)

Trivial functional dependencies in fact do not describe a model, they are valid
independently on the concrete model. They are, in most cases, in the form:

Ai → Ai

Ai → ⊘ (7)

If a value of the attribute Bj depends on the attribute Bi, the (complex-)attribute
Bj ∪ Aj depends also on the (complex-)attribute Bi ∪ Ai, where Ai, Aj ⊂ A.
These dependencies are sometimes also called trivial, if Ai ∪ Aj 6= ⊘.

Bi → Bj ⇒ Bi ∪ Ai → Bj ∪ Aj ∀Ai, Aj ⊂ A (8)

1.3 Model Skeleton

The method input is a table with n columns (coresponding to a relation with
n attributes) and m rows; the method output is a minimal functional dependency
set being satisfied by all input data. This set is called the model skeleton and
represents so called fundamental relationships in the model. This means no
trivial or derived via transitivity dependency occur in the model skeleton. More-
over all functional dependencies in the model can be derived from the skeleton.
In the set theory notion, the model skeleton corresponds to a kernel of functional
dependency set and all dependencies in the model to a transitive closure of the
kernel. The related repository is self-organised as instances (associative rules) of
functional dependencies contained in the model skeleton.

The kernel construction belongs in NP–complete tasks [16, 20] with not unique
solution. Due to an incremental model building together with the fact that af-
ter the first row gathered each attribute depending on another one, the model
skeleton can be created by one of two polynomially complex ways:

– The first skeleton type, called the linear skeleton – given on Fig. 1, is
based on a random order of attributes and the connection of attributes in
their neighbour by an oriented arc (a functional dependency). The number
of possible order configurations is n!, the maximum cycle length is 2(n− 1).

– The second skeleton type, the star skeleton, randomly chooses one from
attributes and consideres functional dependencies between this attribute and
all others, see Fig. 2. The number of possibilities is less, only n, and the cycle
length is 2 for mutually dependencies or 4 for the others.

All model skeletons must be a combination of these two basic types, the proper-
ties of these skeletons are given by the properties of the basic types. The following
process is still independent on the model skeleton configuration.

Transforming Web Sources 5

A2 A3 A4A1

Fig. 1. Linear Skeleton

A2

A3

A4

A1

Fig. 2. Star Skeleton

1.4 Initialising and Updating Model Skeleton

The model skeleton is initialised by the first row of an input table via one
of the previous ways. The model contains n2 functional dependencies Aj → Ai,
but implicitly covers n! of them (the n! includes also all the trivial ones). These n2

functional dependencies can be covered by only 2(n − 1) ones using the model
skeleton (see Fig. 1, 2).

Generally, from another point of view, the data structure estimation process
can be seen as a state space scanning one; the state space is bounded by the
functional dependency hierarchy given by (8) and the transitivity (5) together
with the model skeleton configuration choice. It is clear this can reduce the
effective problem complexity (bounds a state space of possible models to scan).

Let us assume the attribute order according to their active domain size given
by criterion:

‖Dα(Ai)‖ < ‖Dα(Aj)‖ ⇒ i < j (9)

This attribute order enables to define fundamentality of the functional de-
pendency Ai → Aj as δ(Ai, Aj) representing the distance between the given
attributes in the order (9).

The active domain size change leading to the swapping of attributes in the
order may cause the situation (10 or 11), where the model skeleton S includes
less fundamental functional dependency (which was the fundamental one before
the changes) than feasible, there exists more fundamental functional dependency
in the skeleton transitive closure S

(Ai → Ak), (Ai → Aj) ∈ S ∧ (Aj → Ak) ∈ S ∧ δ(Ai, Ak) > δ(Aj , Ak) (10)

(Ai → Ak), (Aj → Ak) ∈ S ∧ (Ai → Aj) ∈ S ∧ δ(Ai, Ak) > δ(Ai, Aj) (11)

In this case, the less fundamental functional dependency is removed out from
the model skeleton and the more fundamental is given into. The situation (10) is
illustrated in Fig. 3 and the skeleton after update in Fig. 4. The corresponding
modifications (transforming into the new skeleton) are made in a repository.

A2

A3
A1

Fig. 3. δ(A1, A3) > δ(A2, A3)

A2

A3
A1

Fig. 4. Skeleton after update

6 Martin Rimnac

1.5 Testing Functional Dependency Corruption

The next step after the model skeleton update is a testing to functional depen-
dency corruption. The extensional functional dependency is corrupted Aj 9 Ai

(at m′-th row insertion) respecting (2), when

∃k < m′ ≤ m ak
j = am′

j ∧ ak
i 6= am′

i (12)

The corrupted functional dependencies are removed from the model. Thanks
to (5) and transitive closure properties, it is necessary to test only functional
dependencies in the model skeleton and if any failure occurs, then also all func-
tional dependencies with the same left or right side must be tested. Note that
no corrupted functional dependency can be derived from the model skeleton.

1.6 Complex Attribute Nontrivial Functional Dependencies

If the functional dependency is corrupted Aj 9 Ai and there exists at least one
(denote n′) of corrupted functional dependencies Ak 9 Ai (for n′ = 2 see Fig. 5),
the attribute Ai may depend on the combination of n′ + 1 attributes, so it may
exists functional dependency {Aj , Ak} → Ai. If the test (12) passes, the complex
attribute is added into the model and the model skeleton is extended by this
new functional dependency (Fig. 6).

If n′ > 1 and the test passes, it is necessary to make sure the dependency
is not trivial before the new dependency insertion (Ai may depend on a sub-
part/subparts of the complex attribute (8), see Fig. 7). In this case, the complex
attribute is decomposed and non-trivial functional dependency/dependencies are
inserted into model skeleton by the same way as in the n′ = 1 variant.

Ak'

Ak

Ai
Aj X

Fig. 5. Aj 9 Ai

Ak'

Ak

Ai
Aj

Fig. 6. Complex attribute

Ak'

Ak

Ai
Aj

Fig. 7. Decomposition

It is easy to see the complex attribute decomposition is a binomial problem,
the number of possible combinations k is:

k = max
∀i<n′

(

n′

i

)

=

(

n′

n′/2

)

=
n′!

(n′/2)!2
(13)

This process makes the data structure estimation to be a task with non-polynomial
complexity.

Transforming Web Sources 7

1.7 Model Properties

The valid models during the estimation process can be ordered according to
the number |M | of functional dependencies they cover (skeleton, closure, triv-
ial). Because the functional dependencies are only removed (or transformed into
already covered ones), this number is monotonic non-increasing.

|M0| = n! (14)

Mi < Mj ⇒ |Mi| > |Mj | (15)

∀Mk : M0 ≤ Mk ≤ Mm ≤ M∞ (16)

The model Mm after all m rows are gathered may embody some differences
to the logical model M∞. They may be caused by:

– Data non-representativeness - a classical issue of machine learning methods.
– Dependency on sources - a structure or data may depend on a source.
– Granularity - a finite number of rows versus possibility of infinite domains.
– Extensional dependency system - the functional dependencies in the exten-

sional model may not be the same in the intensional model (3).

The first two reasons may be inhibited by an integration process, the last two are
fundamental limitations of the method. The problem can be expressed, for ex-
ample, by a relationship between real number attributes.

The method assumes an error-less input data set. The row containing er-
ror may cause a bad dependency test (12) result, the functional dependency
non-covered in M∞ may be covered by Mm; this error type looks like data
non-representativeness having no effect in the model. Alternatively, the error
corrupting functional dependency covered by M∞ causes

Mm > M∞ (17)

2 Interpreting Model Skeleton

The method described in previous section estimates the data structure and stores
all input instances into a repository. This section presents rules interpreting this
result to enable stored instances extended by structure metainformation to be
transformed to established data formats, which could be used for processing these
data by standard tools in given area. Especially, it enables to convert current
web sources into semantic web formats.

The conversion from a repository into the relational data model schema,
RDF or OWL format will be shown in the following example1 (Fig. 8) given as
a data structure estimation method result and complemented by one row from
a repository.

1 The rules have been verified by the experimental application on the Czech National
Bank exchange rates available at <http://wdb.cnb.cz/CNB TXT/KURZY.K CURRTXT>

8 Martin Rimnac

Fig. 8. Example - A row instance of the model skeleton

2.1 Relational Data Model Schema

The way, how to make a schema from a functional dependency set, is well-known
from other algorithms [13, 14]. The functional dependencies with same left side
are joined into one relation, the left side represents the primary key (signed PK).

(Ai → Aj) ∈ S ∧ (Ai → Ak) ∈ S
(Ai → Aj) /∈ S′ ∧ (Ai → Ak) /∈ S′

(Ai → {Aj , Ak}) ∈ S′ (18)

The converted relation schema of the given example in Fig. 8 using the rule (18)
is (a relation structure is given on the left side, the example instance on the right
side):

tableM {MPK : A, D} {m : a, d}
tableA {APK : M, B} {a : m, b}
tableAD {APK , DPK : C} {a, d : c}

(19)

Note the output schema may contain instances of trivial functional dependencies
given by the rule (18), but these dependencies can be automatically decomposed
by the rule

(Ai → {Aj , Ak}) ∈ S′
 (Ai → Aj) ∈ S ∧ (Ai → Ak) ∈ S (20)

This rule enables sources with a known relation schema to be transformed
into the model given in previous section.

2.2 RDF Format Document

The same principle as the (18) rule can be used for an RDF transformation
(see [5]). Let AL be the set of attributes being a left side of any functional
dependency and T (Ai) be a bijection, which gives an unique tag name to each
attribute in A.

AL = {Ai|(Ai → Aj) ∈ S} (21)

Let be IAi→Aj
a set of all instances of the functional dependency Ai → Aj and

ai, respective aj a value of given attribute in the instance. Now, let R be a set of
tags t(Ai, ai) for each Ai ∈ AL, ai ∈ Dα(Ai). The tag t(Ai, ai) name is <T (Ai)>
and the tag has a attribute @rdf : about set to the value ai. The other attributes
@T (Aj) of the tag t(Ai, ai) corresponds to all attributes Aj |(Ai → Aj) ∈ S and
has value aj according to the corresponding instance in IAi→Aj

.

Transforming Web Sources 9

If Ai is a complex attribute, the values of all simple attribute of the Ai

are inserted by the same way as previous ones. Note, there is no other standard
feature to describe a complex attribute in the RDF (the last row in the fragment).

The fragment of the RDF document corresponding to Fig. 8. example is

<dse:M rdf:about="m" dse:A="a" dse:D="d" />

<dse:A rdf:about="a" dse:B="b" dse:M="m" />

<dse:A-D rdf:about="a-d" dse:A="a" dse:D="d" dse:C="c" />

The possible improvement of this way is to specify a value of tag attribute
indirectly by a reference, for example instead of @T (Aj) to create new tag
<T (Aj)> with attribute @rdf : resource set to aj .

2.3 OWL Format Document

There are many ways a structure can be represented in the OWL format [2, 4].
The proposed one maps a functional dependency system to the relationships be-
tween sets. The set Aai

i represents an attribute-value pair (Ai, ai) – the fact that
ai ∈ Dα(Ai). If there exits the functional dependency Ai → Aj with instances
IAi→Aj

, all the relationships Aai

i ⊑ A
aj

j are inserted into the ontology.

(Ai → Aj) ∈ S ∧ (ai → aj) ∈ IAi→Aj
 Aai

i ⊑ A
aj

j (22)

The idea is a unique table row identifier (represented by 〈m〉) activates all
pairs of attributes, which depends on this row identifier attribute. Thanks to
these activations, next pairs can be activated according to the functional depen-
dency system and attribute values of thw row represented by 〈m〉. The 〈m〉 item
is a member of all attribute-value pairs in the given row. It enables to recon-
struct the row and also, when the pairs (Ai, ai) are ”generalised” to (Ai, ∗), the
functional dependency system.

This way keeps all the data structure description, which allows the inverse
transformation into the functional dependency system by:

Aai

i ⊑ A
aj

j
(Ai → Aj) ∈ S
ai ∈ Dα(Ai), aj ∈ Dα(Aj) ∧ (ai → aj) ∈ IAi→Aj

(23)

The generated ontology using the rule (22) from the example on Fig. 8 is:

Aa ⊑ Mm Mm ⊑ Aa

Dd ⊑ Mm Bb ⊑ Aa

Cc ⊑ Aa ⊓ Dd Mm ⊑ {〈m〉}
(24)

The drawback of this solution is an indirect searching in the generated on-
tology. It may be particularly solved by the index generation by the rule

Ai : ai ∈ Dα(Ai) Aai

i ⊑ 〈ai〉 (25)

These ”index items” occur, that the inverse rule (23) can not be used, because
there does not exist the set Aai

i corresponding to the 〈ai〉. It may be solved by the
insertion of the special set V which all 〈ai〉 are members and following inhibition
of this set consideration during the reconstruction process.

10 Martin Rimnac

3 Conclusion

The paper dealt with a data structure estimation method, its properties and
the complexity reduction due to the model skeleton usage. The method has
a non-polynomial complexity due to a binomial complexity part (13) determining
complex attribute non-trivial functional dependencies. The used model skeleton
notation may reduce average time for the input relation decomposition process.
Finally, the features of the estimated model were given as well.

The second part introduced the method usage as a service for a semantic web
transforming current web sources and several ways were detailly mentioned.

The RDF format transformation works on similar principle as methods ge-
nerating a schema from known functional dependency set. The data stored in
a repository can be transformed into a RDF document by given algorithm, but
there is generally no support to reconstruct a functional dependency system from
the document because of no way how directly express complex attributes and
their values (it is not known, which attributes depend on the key given by the
@rdf : about value and which ones are decomposition of the complex attribute).

Alternatively, the OWL format uses the attribute-value pairs and relation-
ships between pairs according to the estimated functional dependency system.
The ontology generation rule (22) keeps all information needed to the direct
functional dependency system reconstruction – the rule (23), where are consid-
ered generalised pairs for attributes. The improvement for a retrieval process is
mentioned – the rule (25), but it disables a direct reconstruction in general case.

The OWL format thanks to the complementary rules (22/23) is preferred
(keeping all structure information, the direct ontology transformation back, the
extended version with (25) allowing a direct accessing values).

The presented work aim was to provide a connection tool between current
web sources and semantic web tools. It enables these sources to be processed
by the same tools as semantic web ones with the best metadata available – with
the estimated data structure. These data can be stored in the knowledge base,
be published in any semantic web format and may be used for exploration of
other web sources by an incremental knowledge portal building. A continuous
exploration may lead to the data structure estimation to be more precise.
The future work will be oriented towards combining sources using different ways
to express attribute names or values and related primitive value matching issues.

References

1. A.A.Barfourosh, M.L. Anderson, H.R.M.Nezbad, D Perlis. ”Information Retrieval
on the World Wide Web and Active Logic: A Survey and Problem Definition”.
http://citeseer.ist.psu.edu/barfourosh02information.html [online]. 2002.

2. Grigoris Antoniou, Frank van Harmelen. “A Semantic Web Primer”.
MIT Press, 2004. ISBN: 0-262-01210-3.

3. Eric Miller, Ralph Swick, Dan Brickley. “Resource Description Framework”.
<http://www.w3.org/RDF/> [on-line]. 2004.

Transforming Web Sources 11

4. Eric Miller, Jim Hendler. “Web Ontology Language”.
<http://www.w3.org/2004/OWL/> [on-line]. 2005.

5. T.B. Lee “Relational Databases on the Semantic Web”.
<http://www.w3.org/DesignIssues/RDB-RDF.html> [on-line]. 1998.

6. S.M.Kuck, Y. Sagiv. “A Universal Relation Database System Implemented Via the
Network Model” In Symp. on Principles of Database Systems, pp.147-157. 1982.

7. D.Bednarek, D.Obdrzalek, J.Yaghob, F. Zavoral. ”Access Rights Definition and
Management in an Information System based on a DataPile Structure”. In ITAT

2004, Workshop on Information Technologies, Application and Theory, 2004.
8. M. Rimnac. ”Odhadovani struktury dat a induktivni logicke programovani”.

In ITAT 2005, Workshop on Information Technologies, Appl. and Theory, 2005.
9. V. Marik, O. Stepankova. “Umela Inteligence 1”. Academia. ISBN 80-200-0496-3.

10. G. Ausiello, A. D’Atri, M. Moscarini. “Chordality Properties on Graphs and Min-
imal Conceptual Connections in Semantic Data Models”. In Symposium on Prin-

ciples of Database Systems, pp. 164–170. 1985.
11. B.T. Messmer, H.Bunke. ”Efficient Subgraph Isomorphism Detection: A Decom-

position Approach”. In IEEE Transactions on Knowledge and Data Engineering.

pp. 307-323. 2000.
12. G. Ausiello, A.D’Atri, D.Secca ”Graph Algorithms for Functional Dependency

Manipulation”. In Journal of ACM. Volume 30. Issue 4. pp. 752-766. 1983. ISSN:
0004-5411.

13. J. Biskup, U. Dayal, P.A. Bernstein. “Synthesising Independent Database
Schemas”. In SigMod, pp. 143–150, 1979.

14. P.A. Bernstein, J.R. Swenson, D.C. Tsichristzis. “A Unified Approach to Func-
tional Dependencies and Relations”. In SigMod, pp. 237–245, 1975.

15. F. Cuppens, K. Yazdanian. ”A Natural Decomposition of Multi-level Relations”.
In IEEE Symposium on Security and Privacy, pp. 273-284. 1992.

16. G. Grahme, K. Räihä. “Database Decomposition into Fourth Normal Form”. In
Conference on Very Large Databases, pp. 186–196, 1983.

17. P.A.Flach, I.Savnik. “Database Dependency Discovery: A Machine Learnig Ap-
proach”. In AI Communications, Volume 12/3, pp. 139–160. 1999.

18. H. Mannila, K.J. Räihä “Dependency Inference”. In Proc. of VLDB. pp. 155–158.
ISBN: 0-934613-46-X. 1987.

19. J. Kivinen, H. Mannila “Approximate Inference of Functional Depentencies from
Relations”. In Proc. of 4. int. conf. on Database Theory, Berlin, Germany. pp. 129–
149. ISSN: 0304-3975. 1995.

20. C. Beeri, P.A.Bernstein. ”Computational Problems Related to the Design of Nor-
mal Form Relation Schemes”. In ACM Trans. on Db. Sys.. 4,1. pp 30-59. 1979.

21. D. Heckerman, D.M. Chickering, Ch. Meek, R. Rounthwaite, C. Kadie. “Depen-
dency Networks for Inference, Collaborative Filtering and Data Visualization”. In
Journal of Machine Learning Research, Volume 1, pp. 49–75. 2001. ISSN 1533-7928.

22. B.N. Shamkant, R. Minyoung. “Vertical Partitioning for Database Design –
a Graphical Algorithm”. In SigMod, pp. 440–450, 1989.

23. L. Bellatreche, K. Karlapalem, A. Simonet. “Algorithms and Support for Horizon-
tal Class Partitioning in Object–Oriented Databases”. In Distributed and Parallel

Databases, 8, Kluwer Academic Publisher. pp. 115–179, 2000.
24. D. Rosaci, G. Terracina, D. Ursino. “A Framework for Abstracting Data Sources

Having Heterogennous Representation Formats”. In Data & Knowledge Engineer-

ing, vol. 48, pp. 1–38. 2004.
25. M. Golfarelli, S. Rizzi, B. Vrdoljak “Data Warehouse Design from XML Sources”.

In Proc of Data Warehousing and OLAP, pp. 40–47. ISBN: 1-58113-437-1. 2001.

