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Abstract. Recently, the significance of uncertain information represen-
tation has become obvious in the Semantic Web community. This paper
presents an ongoing research of uncertainty handling in automatically
created ontologies. Proposal of a specific framework is provided. The
research is related to OLE (Ontology LEarning), a project aimed at
bottom-up generation and merging of domain specific ontologies. Formal
systems that underlie the uncertainty representation are briefly intro-
duced. We will discuss a universal internal format of uncertain concep-
tual structures in OLE then. The proposed format serves as a basis for
inference tasks performed among an ontology. These topics are outlined
as motivations of our future work.

1 Introduction

The purpose of this paper is to introduce an initial proposal of a novel repre-
sentation of uncertain knowledge in domain specific ontologies. The framework
presented here has been currently under research in the scope of a broader OLE
project that comprises complex ontological support for automatic building of
scientific portals1.

The main objective of the OLE project is to implement a system that is able
to automatically create and update a domain specific ontology for any given
domain of human scientific knowledge. We emphasise an empiric approach to
the ontology construction by means of bottom-up acquisition of concepts from
the domain-relevant resources (documents, web pages, corpus data etc.). The
acquisition process is incrementally boosted by the knowledge already stored in
the ontology.

The concepts extracted from a single resource form so called miniontology
that is instantly integrated into the current domain ontology2. The integration
phase is the moment when the need of uncertainty representation arises. Even
if we could obtain precise conceptual constructions from single resources (e. g.

1 All projects mentioned here are part of the ‘Information Society’ program under
Czech Academy of Sciences, the research grant number AV T100300419.

2 Due to explicit orientation of this paper, the techniques of concept extraction and
ontology creation methods are described in more detail in another work.



birds fly), we will experience infeasible consistency difficulties when trying to
assign precise relations between the concepts in broader scope of the whole do-
main (as illustrated by the popular example: the fact birds fly collides with the
statements penguins are birds; penguins do not fly). Besides the inconsistency
handling, there are also important cognitive motivations of the utilisation of
uncertainty in our empiric ontologies that led us to the proposal of a novel
framework for representing uncertain knowledge. It is called ANUIC (Adaptive
N et of Universally Interrelated Concepts).

The rest of the paper is organised as follows. Section 2 summarises our overall
motivations. This section also overviews important ideas from the cognitive sci-
ence field that are both inspiring and relevant with respect to the topic. Formal
background of uncertain information representation is briefly recalled in section
3. Sections 4 and 5 offer the framework proposal itself and basic notes on its util-
isations. In section 6 there is given an illustrative example of uncertain ontology
fragment generation. We conclude the paper and outline future directions of our
research in section 7.

2 Motivation and Cognitive Observations

The knowledge repositories built by OLE tools must reflect the state of the
respective domain empirically according to information contained in the provided
resources. Such kind of knowledge is as much objective as possible, because
it is not influenced by arbitrary considerations about the domain’s conceptual
structure, but determined by the structure itself.

2.1 Remedy to Emerging Inconsistencies

However, the automated empiric approach has an obvious drawback – the threat
of inconsistency. As we do not generally have an infallible ”oracle” to tell us how
to precisely join or map newly extracted concepts to the ones that are already
stored in our ontology, crisp relations between concepts are virtually impossible.
We must deal with the inconsistencies somehow.

There are two general kinds of possible inconsistencies in an ontology (virtu-
ally any relational inconsistency can be modelled using these):

– subsumption inconsistency: given concepts C, D and E, the C ⊆ D and
C ⊆ E statements may collide when we represent for example crisp part-of

relation by the ⊆ symbol (e. g.: Turkey is both part of Europe and Asia)
– equivalence inconsistency: given concepts C, D and E, the C ≡ D, C ⊂ E

and D ≡ E statements are in conflict (for example when we find out in
a text that ’science’, ’knowledge’ and ’ erudition’ are synonyms and at the
same time we induce that ’knowledge’ is a super-concept of ’erudition’)

Such collisions are hard to be modelled in classic crisp ontology representa-
tion frameworks (see [13] or [18]). Implementation of the uncertainty into our
knowledge representation is a solution for dealing with conflicts in the continu-
ously updated ontology.



2.2 Mental Models Reflection

The second motivation lies in inspiration by the conceptual models that are char-
acteristic for human mind. This topic is closely related to the very definition of
concept and meaning. As stated for example in [12] or [4], people definitely do
not represent the meaning of concepts as static crisp structures. The meanings
are rather constructed as vague sets of dynamically overlapping referential as-
sociations ([12]), or so called ”meaning potentials” with particular instantiation
dependent on the context of concept-referring word or sequence of words ([1]).

In the rest of this paragraph, we will give a non-formal definition of a concept
and its meaning in the perspective of OLE. More precise formulations related to
the topic are presented in section 4. By concept we mean a representation of an
entity existing in real world and/or utterable in human language. A concept is
determined by its relations to another concepts in the universe then. Such ”rela-
tional” definition of a concept is partly inspired by poststructuralistic philosophy
(see for example [5]). Reference of a concept is then realised by instances of its
relational connections. By these instances we mean especially concrete uncer-
tainty measures assigned to each relation a concept is involved into (see section
4 for details).

Thus we can naturally represent the dynamic conceptual overlap in the mean-
ing of [12], because the assigned relations’ measures are continuously updated
within new knowledge incorporation process. And by introducing a special rela-
tion of association we can represent the notion of meaning potentials according
to [1]. Using this relation we can associate a concept with a representation of
co-occurring concepts and impose another useful restriction on the meaning con-
struction (helpful for example when resolving word-sense ambiguities).

3 Uncertainty Formalisations

The uncertain information representation frameworks are determined by three
significant fields of contemporary mathematics:

1. extending the theory of measure into a more general theory of monotonous
measures with respect to the classical measures of information

2. applications of (conditional) probability theory
3. extending the classical set theory into a more general fuzzy set theory

Various uncertainty extensions of the information measure theory are mentioned
by Klir in [14]. However, in the computer science field there are other probabilis-
tic theories generally accepted, mainly in the scope of:

– Bayesian networks (good overview of the topic is given in [17], specific ap-
plications are described in [18] or [13])

– non-monotonic reasoning and respective probabilistic (or possibilistic) ex-
tensions of ”classical” (mainly propositional, first order or description) logics
(see for example [11] or [10])



All these more or less probabilistic approaches are no doubt significant for
uncertainty representation. However, we dissociate from them in our work for
one main reason. As we want our ontologies to be built automatically in an
empiric manner, it would be very hard to find out appropriate (conditional)
probability assignments (especially in cases when the input data are sparse in
some subdomains of our interest) without any background knowledge (axioms
and/or inference rules) at our hand. That is why we prefer using the fuzzy sets
and fuzzy logic formalisms to motivate our uncertain knowledge representation
proposal.

Fuzzy sets were introduced by Zadeh in 1965 ([19]). The theory has been
quite developed and widely used in many application domains so far and is
quite well known. Perhaps the most important notion we will use here is a
membership function that uniquely defines each fuzzy set, assigning a certain
degree of respective set’s membership to each element in a universal set X .
Another crucial term is fuzzy relation (R on X×X) – it is defined as a mapping
R : X×X → [0, 1]. Notions of reflexivity, symmetry, transitivity etc. similar to
those of classical relations can be adopted even for fuzzy relations. This is very
useful for example for reasoning tasks (see [9]) based on set operations. However,
this intriguing topic will be discussed elaborately in another dedicated paper.

Many variations branching from the original Zadeh’s idea have been devel-
oped until now. Some of them (besides the original fuzzy sets) are quite signifi-
cant with respect to our research topic. The fuzzy rough sets and rough fuzzy

sets (as introduced by Dubois and Prade in [6]) are based on approximations of
(fuzzy) sets using a fuzzy similarity relation or crisp equivalence classes. Using
these theories we can structure our conceptual universe as such approximation
space in various perspectives (according to the relation used). Intuitionistic

fuzzy sets (see [3]) based on combination of membership and non-membership
degree can be used when dealing with negative knowledge in our ontologies.

4 ANUIC Proposal

ANUIC (Adaptive N et of Universally Interrelated Concepts) forms a backbone
of the uncertainty representation in OLE. The formal definition of ANUIC and
issues regarding possible problems, modifications of basic empiric approach as
well as reasoning perspectives are mentioned in this section.

4.1 Formal Definition

The concepts are stored in a special fuzzy network structure. The network is an
oriented graph G = (V, E), where V is a set of stored concepts and E is a set of
ordered tuples (u, v), where u ∈ V, v ∈ V . The edges are induced by imprecise
concept relations. Multiple edges are allowed as there can exist multiple relations
between concepts. A node is a tuple in the form of (c, S, R, A), where:

– c is a core word of the concept. It serves as a master reference index and
is computed as the most frequently occurring word in the scope of the hy-
perohyponymy relation instance with the highest associated µ-measure (see



below what the µ-measure is). The hyperohyponymy relation was chosen
because it is commonly considered as a basic relation when forming a knowl-
edge basis.

– S is a synonymic set of tuples in the form of (s, µ(s)), where s ∈ V is a
concept, that was found to be synonymous with this one (in the meaning of
the synonymy relation of respective core words). µ(s) ∈ [0, 1] is a µ-measure
assigned to this observation.

– R is a relational set of tuples in the form of (r, cr, µ(r)), where r ∈ N

is an identifier of a relation from a given set N (its members can be usual
lexico-semantic relations, such as hyperohyponymy, holonymy, meronymy, or
domain-specific relations like used for, appears in, method of and so forth).
The cr ∈ V is again a concept, which is related with the current one by r,
and µ(r) ∈ [0, 1] is the µ-measure assigned to this observation.

– A is an associative set of tuples in the form of (r, W ), where r ∈ N is
identifier of a relation. W is a limited set of tuples (w, fw) of top-most super-
concept identifiers of word classes (w) and respective absolute frequencies
(fw) of their appearances in the context that led to induction of relation
r (with respect to the core word c). Only the most frequent contexts are
recorded. This set supports the meaning potentials remark from section 2.

4.2 Conviction Function

For computation of the µ-measure (that is, the membership/appropriateness
function value) µ(r) for a relation r that is corresponding to a (c1, c2) edge we
devise the following heuristic ”conviction” formula (derived from the standard
sigmoid function):

µ(r) =
1

1 + e−s(fr−α)

where fr = f(r(c1,c2))∑
c∈V

f(r(c1,c))
is the relative frequency of relation observations in

input data, s is a parameter regulating the ”steepness” of the function and α

influences the placement of the inflexion point. The domain of the function is
real interval (0, 1〉 (but only rational numbers obviously appear as an input).
The range is real interval (0, 1).

Proper adjustment of the parameters defines the reflection of the impact of
frequency on the fuzzy appropriateness µ-measure of the spotted relation. Thus
we can regulate for example the ”conservativeness” of the system (in the mean-
ing of influence of major or minor observations to the overall conviction). The
function is continuous and thus can be implemented in a very straightforward
way. However, it can easily imitate discontinuous jumps in the shape of the curve,
which is also very useful. Examples showing shapings of the conviction function
are displayed in Figure 1. In Table 1 there are given the parameter values cor-
responding to the respective shapes of the conviction function. As we can see
from these examples, the proposed conviction function allow us to naturally sim-
ulate the relative influence the observation frequency has on the relevancy of the
spotted relation instance. To be more specific, consider the following overview:



Fig. 1. Examples of various shapes of the conviction function

Plot number Curve name s α

1 f(x) 10 0.5
1 g(x) 20 0.5
1 h(x) 20 0.75
1 i(x) 10 0.2
2 j(x) 10 0.75
2 k(x) 2 0.5
2 l(x) 5000 0.97
2 m(x) 6 0.0

Table 1. The conviction function parameter settings

– On the plot with label 1 there are given only slightly deformed curves that
are quite similar to the standard sigmoid shape. The functions with α set to
0.5 and sufficiently high s reflect symmetric impact of the frequency on the
µ-measure, raising from 0 to 1.

– The shapes presented on the plot 2 show us the flexibility of the proposed
conviction function more illustratively:
• Shape labelled as m(x) presents quite ”hesitating” function that assigns

relatively high µ-measures (greater than 0.5) even to small frequencies,
thus making the system partially believe in almost every evidence, yet
preferring the higher frequencies significantly.

• We can also acquire an almost ”linear” curve shape (the k(x) label),
however it is more convenient to take directly the frequency as the µ-
measure if we want a reasonable linear formula.

• The j(x) function presents a shape assigning relatively low values (in the
meaning that they are quite far from 1) even for frequency near or equal



to 1. It reflects an ”opinion” of the system that even a provisionally sure
fact can never be absolutely valid if we consider future observations.

• The shape given by l(x) presents a very ”conservative” settings – only
very high frequency will get a µ-measure significantly higher than 0, ob-
servations with minor frequencies are ignored. The α parameter presents
a threshold of these ignored frequencies here.

5 Notes on the µ-measures Interpretation and Processing

In the following few paragraphs we present basic ideas related to utilisations of
the notions described in the previous section.

5.1 Learning and Propagation of the Conviction Function

Parameters

Given a reasonable and comprehensive portion of annotated concept data from
an ontology domain, we can learn specific conviction function parameter settings
for particular concepts (besides of selected parameters valid for the rest of an
ontology). Thus we can reflect for instance whether a concept tends to have
more instances of a relation at a time – the conviction function should assign
almost same high values to almost equal (but relatively low) frequencies. The
parameter settings can then spread over transitive strings in ontology within
reasoning operations performed on ANUIC format. However, the annotation of
data (and/or perhaps even implementation of unsupervised learning methods)
as well as concrete implementation are still mostly subjects of future research.

5.2 Data View Perspectives

The µ-measures of relations in ontology allow us to impose various perspectives
upon the stored data. The primary perspectives are set-oriented perspective (e. g.
fuzzy set constructed by the µ-measures of subconcepts related to a concept or
crisp approximations of the ontology structure given by some specific α-cuts) and
relation-oriented perspective (e. g. the fuzzy synonymy relation). These perspec-
tives allow us to develop reasoning procedures using the results of the existing
theory of uncertain fuzzy inference (see for example [2], [9], [7] or [11]).

5.3 Coping with Sparse Input Data

The network constructed this way squares with the ideas presented in section
2 and conforms with the very intuitive notion of how people natively represent
concepts in their minds. The dynamics of the system rests on continuous updat-
ing of all the µ-measures from the spotted data. However, the real world data
are not homogeneous in the frequency distribution of particular concepts. For
some rarely occurring but important words the empirically measure could eas-
ily be unsuitable for further utilisation of such knowledge. Therefore additional



”referees” must be incorporated especially for terms with low frequency (and
even for the other ones). Existing lexical databases and electronic thesauri are
good for correcting the possibly invalid uncertain measures gained by empiric
evaluation of sparse data. In order to combine more resources of such external
judgement, usage of WordNet ([8]) lexical database with Bonito2 word sketches
([16]) and Roget’s electronic thesauri services ([15]) is appropriate.

5.4 Conscious and Unconscious Operations

In an analogy with human mind, two kind of operations within the ANUIC
knowledge base are possible. We call them conscious and unconscious operations.
The former are triggered by external incentives – mainly observations from the
input data, user queries, or administrator commands (for example dumping the
knowledge base in order to examine concept shifts over time later or learning
the conviction function parameters).

The unconscious operations are run by the knowledge base itself and are
of the same importance as the conscious ones. These operations are mainly
reasoning tasks like merging of concepts that have a reasonable high measure of
synonymy or inverse operation of splitting concepts. They should be run when
there are no extensive computational demands on the knowledge base. Proper
implementation of such operations helps to improve the consistency and manage
the redundancies in the stored data.

6 An Example of Uncertain Ontology Fragment Creation

We offer a very simple example of uncertain ontology integration within ANUIC
below. In the Figure 2 there is given a sample text as an input for miniontol-
ogy extraction. The words referring to respective concepts in our fragment are
marked with a index that represents them in the Table 2.

... In the fairy book there is a lot of information on tritons, mermaidsc1 , sea snakes

and other mythical creatures
c2

...

... Mermaidsc1 are considered as femalesc3 ...

... for sylphs
c4

, especially mermaidsc1 , are banned to interfere with humans...

Fig. 2. The text with concepts to be merged

The Table 2 shows relevant is-a taxonomic relations (noted as r) before and
after the merging of the miniontology with a domain ontology3. Both halfs of
the table present a matrix with indices from concept set and values from the

3 The µ-measure function with parameters s = 10 and α = 0.2 is used. The initial
relative frequencies for observations r(c1, c2), r(c1, c4), r(c1, c3) are 4

7
, 0, 3

7
respec-

tively.



µ(r) range (for states before and after the integration). Semantics of a matrix
element ec1,c2

is: ”the concept c1 (the row index) is a concept c2 (the column
index) with conviction given by the appropriateness measure ec1,c2

”.

µ(r) c1 c2 c3 c4 c1 c2 c3 c4

c1 1.0 0.976 0.908 0.0 1.0 0.953 0.881 0.296
c2 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0
c3 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0
c4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

Table 2. The is-a relation µ-measure values before and after integration

7 Conclusion and Future Work

We presented an ANUIC framework for natural dealing with uncertain knowl-
edge in ontologies. The framework is motivated by intuitive, yet valuable notion
of representation of uncertainty in human mind. The theoretical background of
fuzzy sets methodology allows to develop an appropriate calculus and consecu-
tively build inference tools to reason among the concepts stored in ANUIC.

The research results presented here are mostly in the phase of proposal, so
a lot of work still has to be done. First objective for future work is to find effi-
cient implementation methods as a proof of concept for the proposed structure.
Additional psycholinguistic experiments should help with proper setting of the
parameters for the µ-measure function presented in section 4 then. Invention
and formal validation of a specific calculus for ANUIC is also needed. Then we
can evaluate the framework using real world data from distinct domains of OLE
project. Finally, the mutual correspondence and lossless transformation possi-
bilities between ontologies represented in ANUIC and in current formats like
OWL must be examined. All of the mentioned tasks are no doubt hard, but we
demand it would be very challenging to pursue them and refine the ideas behind
to gain a sustainable and efficient universal model of representation of uncertain
knowledge.
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