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Abstract. The retrieval of objects from a multimedia database employs
a measure which defines a similarity score for every pair of objects. The
measure should effectively follow the nature of similarity, hence, it should
not be limited by the triangular inequality, regarded as a restriction in
similarity modeling. On the other hand, the retrieval should be as ef-
ficient (or fast) as possible. The measure is thus often restricted to a
metric, because then the search can be handled by metric access meth-
ods (MAMs). In this paper we propose a general method of non-metric
search by MAMs. We show the triangular inequality can be enforced for
any semimetric (reflexive, non-negative and symmetric measure), result-
ing in a metric that preserves the original similarity orderings (retrieval
effectiveness). We propose the TriGen algorithm for turning any black-
box semimetric into (approximated) metric, just by use of distance dis-
tribution in a fraction of the database. The algorithm finds such a metric
for which the retrieval efficiency is maximized, considering any MAM.

1 Introduction

In multimedia databases the semantics of data objects is defined loosely, while for
querying such objects we usually need a similarity measure standing for a judging
mechanism of how much are two objects similar. We can observe two particular
research directions in the area of content-based multimedia retrieval, however,
both are essential. The first one follows the subject of retrieval effectiveness,
where the goal is to achieve query results complying with the user’s expectations
(measured by the precision and recall scores). As the effectiveness is obviously
dependent on the semantics of similarity measure, we require the possibilities of
similarity measuring as rich as possible, thus, the measure should not be limited
by properties regarded as restrictive for similarity modeling.

Following the second direction, the retrieval should be as efficient (or fast) as
possible, because the number of objects in a database can be large and the simi-
larity scores are often expensive to compute. Therefore, the similarity measure is
often restricted by metric properties, so that retrieval can be realized by metric
access methods. Here we have reached the point. The ”effectiveness researchers”
claim the metric properties, especially the triangular inequality, are too restric-
tive. However, the ”efficiency researchers” reply the triangular inequality is the
most powerful tool to keep the search in a database efficient.



In this paper we show the triangular inequality is not restrictive for similarity
search, since every semimetric can be modified into a suitable metric and used
for the search instead. Such a metric can be constructed even automatically, just
with a partial information about distance distribution in the database.

1.1 Preliminaries

Let a multimedia object O be modeled by a model object O ∈ U, where U is a
model universe. A multimedia database is then represented by a dataset S ⊂ U.

Definition 1 (similarity & dissimilarity measure)
Let s : U × U 7→ R be a similarity measure, where s(Oi, Oj) is considered as a
similarity score of objects Oi and Oj . In many cases it is more suitable to use
a dissimilarity measure d : U × U 7→ R equivalent to a similarity measure s as
s(Q,Oi) > s(Q,Oj) ⇔ d(Q, Oi) < d(Q,Oj). A dissimilarity measure assigns a
higher score (or distance) to less similar objects, and vice versa.

The measures often satisfy some of the metric properties. The reflexivity
(d(Oi, Oj) = 0 ⇔ Oi = Oj) permits the zero distance just for identical objects.
Both reflexivity and non-negativity (d(Oi, Oj) ≥ 0) guarantee every two distinct
objects are somehow positively dissimilar. If d satisfies reflexivity, non-negativity
and symmetry (d(Oi, Oj) = d(Oj , Oi)), we call d a semimetric. Finally, if a
semimetric d satisfies also the triangular inequality (d(Oi, Oj) + d(Oj , Ok) ≥
d(Oi, Ok)), we call d a metric (or metric distance). This inequality is a kind of
transitivity property; it says if Oi, Oj and Oj , Ok are similar, then also Oi, Ok

are similar. If there is an upper bound d+ such that d : U×U 7→ 〈0, d+〉, we call
d a bounded metric. The pair M = (U, d) is called a (bounded) metric space. 2

Definition 2 (triangular triplet)
A triplet (a, b, c), a, b, c ≥ 0, a + b ≥ c, b + c ≥ a, a + c ≥ b, is called a triangular
triplet. Let (a, b, c) be ordered as a ≤ b ≤ c, then (a, b, c) is an ordered triplet. If
a ≤ b ≤ c and a + b ≥ c, then (a, b, c) is called an ordered triangular triplet. 2

A metric d generates just the (ordered) triangular triplets, i.e. ∀Oi, Oj , Ok ∈ U,
(d(Oi, Oj), d(Oj , Ok), d(Oi, Ok)) is triangular triplet. Conversely, if a measure
generates just the triangular triplets, then it satisfies the triangular inequality.

1.2 Similarity Queries

In the following we consider the query-by-example concept; we look for objects
similar to a query object Q ∈ U (Q is derived from an example object). Necessary
to the query-by-example retrieval is a notion of similarity ordering, where the
objects Oi ∈ S are ordered according to the distances to Q. For a particular
query there is specified a portion of the ordering returned as the query result.
The range query and the k nearest neighbors (k-NN) query are the most popular
ones. A range query (Q, rQ) selects objects from the similarity ordering for which
d(Q, Oi) ≤ rQ, where rQ ≥ 0 is a distance threshold (or query radius). A k-NN
query (Q, k) selects the k most similar objects (first k objects in the ordering).



1.3 Metric Access Methods

Once we have to search according to a metric d, we can use the metric access
methods (MAMs) [5], which organize (or index) a given dataset S in a way that
similarity queries can be processed efficiently by use of a metric index, hence,
without the need of searching the entire dataset S. The main principle behind
all MAMs is a utilization of the triangular inequality (satisfied by any metric),
due to which MAMs can organize the objects of S in distinct classes. When a
query is processed, only the candidate classes are searched (such classes which
overlap the query), so the searching becomes more efficient (see Figure 1a).

In addition to the number of distance computations d(·, ·) needed (the com-
putation costs), the retrieval efficiency is affected also by the I/O costs. To mini-
mize the search costs, i.e. to increase the retrieval efficiency, there were developed
many MAMs for different scenarios (e.g. designed to secondary storage or main
memory management). Besides others we name M-tree, vp-tree, LAESA (we refer
to a survey [5]), or more recent ones, D-index [9] and PM-tree [27].

Fig. 1. Search by MAMs (a), DDHs indicating low (b) and high (c) intrinsic dim.

1.4 Intrinsic Dimensionality

The metric access methods are not successful for all datasets and all metrics;
the retrieval efficiency is heavily affected by distance distribution in the dataset.
Given a dataset S and a metric d, the efficiency limits of any MAM are indicated
by the intrinsic dimensionality, defined as ρ(S, d) = µ2

2σ2 , where µ and σ2 are the
mean and the variance of the distance distribution in S (proposed in [4]). In Fig-
ures 1b,c see an example of distance distribution histograms (DDHs) indicating
low (ρ = 3.61) and high (ρ = 42.35) intrinsic dimensionalities.

The intrinsic dimensionality is low if there exist tight clusters of objects.
Conversely, if all the indexed objects are almost equally distant, then intrinsic
dimensionality is high, which means the dataset is poorly intrinsically structured.
A high ρ value says that many (even all) of MAM’s classes created on S are
overlapped by every possible query, so that processing deteriorates to sequential
search in all the classes. The problem of high intrinsic dimensionality is, in fact,
a generalization of the curse of dimensionality [31, 4] into metric spaces.

1.5 Theories of Similarity Modeling

The metric properties have been argued against as restrictive in similarity mod-
eling [25, 28]. In particular, the reflexivity and non-negativity have been refuted



[21, 28] by claiming that different objects could be differently self-similar. Never-
theless, these are the less problematic properties. The symmetry was questioned
by showing that a prototypical object can be less similar to an indistinct one
than vice versa [23, 24]. The triangular inequality is the most attacked property
[2, 29]. Some theories point out the similarity has not to be transitive. Demon-
strated by the well-known example, a man is similar to a centaur, the centaur is
similar to a horse, but the man is completely dissimilar to the horse.

1.6 Examples of Non-Metric Measures

In the following we name several dissimilarity measures of two kinds, proved to
be effective in similarity search, but which violate the triangular inequality.

Robust Measures. A robust measure is resistant to outliers – anomalous
or ”noisy” objects. For example, various k-median distances measure the kth
most similar portion of the compared objects. Generally, a k-median distance
d is of form d(O1, O2) = k–med(δ1(O1, O2), δ2(O1, O2), . . . , δn(O1, O2)), where
δi(O1, O2) is a distance between O1 and O2, considering the ith portion of the
objects. Among the partial distances δi the k–med operator returns the kth small-
est value. As a special k-median distance derived from the Hausdorff metric, the
partial Hausdorff distance (pHD) has been proposed for shape-based image re-
trieval [17]. Given two sets S1,S2 of points (e.g. two polygons), the partial Haus-
dorff distance uses δi(S1,S2) = dNP(Si

1,S2), where dNP is the Euclidean (L2)
distance of the ith point in S1 to the nearest point in S2. To keep the distance
symmetric, pHD is the maximum, i.e. pHD(S1,S2) = max(d(S1,S2), d(S2,S1)).
Similar to pHD is another modification of Hausdorff metric, used for face detec-
tion [20], where the average of dNP distances is considered, instead of k-median.

The time warping distance for sequence aligning has been used in time series
retrieval [33], and even in shape retrieval [3]. The fractional Lp distances [1] have
been suggested for robust image matching [10] and retrieval [16]. Unlike classic
Lp metrics (Lp(u, v) = (

∑n
i=1 |ui−vi|p)

1
p , p ≥ 1), the fractional Lp distances use

0 < p < 1, which allows us to inhibit extreme differences in coordinate values.

Complex Measures. In the real world, the algorithms for similarity measuring
are often complex, even adaptive or learning. Moreover, they are often imple-
mented by heuristic algorithms which combine several measuring strategies. Ob-
viously, an analytic enforcement of triangular inequality for such measures can
be simply too difficult. The COSIMIR method [22] uses a back-propagation neu-
ral network for supervised similarity modeling and retrieval. Given two vectors
u, v ∈ S, the distance between u and v is computed by activation of three-
layer network. This approach allows to train the similarity measure by means
of user-assessed pairs of objects. Another example of complex measure can be
the matching by deformable templates [19], utilized in handwritten digits recog-
nition. Two digits are compared by deforming the contour of one to fit the edges
of the other. The distance is derived from the amount of deformation needed,
the goodness of edges fit, and the interior overlap between the deformed shapes.



1.7 Paper Contributions

In this paper we present a general approach to efficient and effective non-metric
search by metric access methods. First, we show that every semimetric can be
non-trivially turned into metric and used for similarity search by MAMs. To
achieve this goal, we modify the semimetric by a suitable triangle-generating
modifier. In consequence, we also claim the triangular inequality is completely
unrestrictive with respect to the effectiveness of similarity search. Second, we
propose the TriGen algorithm for automatic conversion of any ”black-box” semi-
metric (i.e. semimetric given in a non-analytic form) into (approximated) metric,
such that intrinsic dimensionality of the indexed dataset is kept as low as possi-
ble. The optimal triangle-generating modifier is found by use of predefined base
modifiers and by use of distance distribution in a (small) portion of the dataset.

2 Related Work

The simplest approach to non-metric similarity search is the sequential search
of the entire dataset. The query object is compared against every object in the
dataset, resulting in a similarity ordering which is used for the query evaluation.
The sequential search often provides a baseline for other retrieval methods.

2.1 Mapping Methods

The non-metric search can be indirectly carried out by various mapping methods
[11, 15] (e.g. MDS, FastMap, MetricMap, SparseMap). The dataset S is em-
bedded into a vector space (Rk, δ) by a mapping F : S 7→ Rk, where the dis-
tances d(·, ·) are (approximately) preserved by a cheap vector metric δ (often
the L2 distance). Sometimes the mapping F is required to be contractive, i.e.
δ(F (Oi), F (Oj)) ≤ d(Oi, Oj), which allows to filter out some irrelevant objects
using δ, but some other irrelevant objects, called false hits, must be re-filtered
by d (see e.g. [12]). The mapped vectors can be indexed/retrieved by any MAM.

To say the drawbacks, the mapping methods are expensive, while the dis-
tances are preserved only approximately, which leads to false dismissals (i.e.
to relevant objects being not retrieved). The contractive methods eliminate the
false dismissals but suffer from a great number of false hits (especially when k
is low), which leads to lower retrieval efficiency. In most cases the methods need
to process the dataset in a batch, so they are suitable for static MAMs only.

2.2 Lower-Bounding Metrics

To support similarity search by a non-metric distance dQ, the QIC-M-tree [6] has
been proposed as an extension of the M-tree (the key idea is applicable also to
other MAMs). The M-tree index is built by use of an index distance dI , which is
a metric lower-bounding the query distance dQ (up to a scaling constant SI→Q),
i.e. dI(Oi, Oj) ≤ SI→Q dQ(Oi, Oj),∀Oi, Oj ∈ U. As dI lower-bounds dQ, a query



can be partially processed by dI (which, moreover, could be much cheaper than
dQ), such that many irrelevant classes of objects (subtrees in M-tree) are filtered
out. All objects in the non-filtered classes are compared against Q using dQ.
Actually, this approach is similar to the usage of contractive mapping methods
(dI is an analogy to δ), but here the objects generally need not to be mapped
into a vector space. However, this approach has two major limitations. First, for
a given non-metric distance dQ there was not proposed a general way how to find
the metric dI . Although dI could be found ”manually” for a particular dQ (as
in [3]), this is not easy for dQ given as a black box (an algorithmically described
one). Second, the lower-bounding metric should be as tight approximation of dQ

as possible, because this ”tightness” heavily affects the intrinsic dimensionality,
the number of MAMs’ filtered classes, and so the retrieval efficiency.

2.3 Classification

Quite many attempts to non-metric nearest neighbor (NN) search have been
tried out in the classification area. Let us recall the basic three steps of clas-
sification. First, the dataset is organized in classes of similar objects (by user
annotation or clustering). Then, for each class a description consisting of the
most representative object(s) is created; this is achieved by condensing [14] or
editing [32] algorithms. Third, the NN search is accomplished as a classification of
the query object. Such a class is searched, to which the query object is ”nearest”,
since there is an assumption the nearest neighbor is located in the ”nearest class”.
For non-metric classification there have been proposed methods enhancing the
description of classes (step 2). In particular, condensing algorithms producing
atypical points [13] or correlated points [18] have been successfully applied.

The drawbacks of classification-based methods reside in static indexing and
limited scalability, while the querying is restricted just to approximate (k-)NN.

3 Turning Semimetric into Metric

In our approach, a given dissimilarity measure is turned into a metric, so that
MAMs can be directly used for the search. This idea could seem to disclaim the
results of similarity theories (mentioned in Section 1.5), however, we must realize
the task of similarity search employs only a limited modality of similarity
modeling. In fact, in similarity search we just need to order the dataset objects
according to a single query object and pick the most similar ones. Clearly, if we
find a metric for which such similarity orderings are the same as for the original
dissimilarity measure, we can safely use the metric instead of the measure.

3.1 Assumptions

We assume d satisfies reflexivity and non-negativity but, as we have mentioned in
Section 1.5, these are the less restrictive properties and can be handled easily; e.g.
the non-negativity is satisfied by a shift of the distances, while for the reflexivity



property we require every two non-identical objects are at least d−-distant (d− is
some positive distance lower bound). Furthermore, searching by an asymmetric
measure δ could be partially provided by a symmetric measure d, e.g. d(Oi, Oj) =
min{δ(Oi, Oj), δ(Oj , Oi)}. Using the symmetric measure some irrelevant objects
can be filtered out, while the original asymmetric measure δ is then used to rank
the remaining non-filtered objects. In the following we assume the measure d is a
bounded semimetric, nevertheless, this assumption is introduced just for clarity
of the following presentation. Finally, as d is bounded by d+, we can further
simplify the semimetric such that it assigns distances from 〈0, 1〉. This can be
achieved simply by scaling the original value d(Oi, Oj) to d(Oi, Oj)/d+. The
same way a range query radius rQ must be scaled to rQ/d+, when searching.

3.2 Similarity-Preserving Modifications

Based on the assumptions, the only property we have to solve is the triangular
inequality. To do so, we apply some special modifying function on the semimetric,
such that the original similarity orderings are preserved.

Definition 3 (similarity-preserving modification)
Given a measure d, we call df (Oi, Oj) = f(d(Oi, Oj)) a similarity-preserving
modification of d (or SP-modification), where f , called the similarity-preserving
modifier (or SP-modifier), is a strictly increasing function for which f(0) = 0.
Again, for clarity reasons we assume f is bounded, i.e. f : 〈0, 1〉 7→ 〈0, 1〉. 2

Definition 4 (similarity ordering)
We define SimOrderd : U 7→ 2U×U, ∀Oi, Oj , Q ∈ U as 〈Oi, Oj〉 ∈ SimOrderd(Q) ⇔
d(Q,Oi) < d(Q,Oj), i.e. SimOrderd orders objects by their distances to Q. 2

Lemma 1

Given a metric d and any df , then SimOrderd(Q) = SimOrderdf (Q),∀Q ∈ U.
Proof: As f is increasing, then ∀Q, Oi, Oj ∈ U it follows that
d(Q,Oi) > d(Q,Oj) ⇔ f(d(Q, Oi)) > f(d(Q,Oj)). �

In other words, every SP-modification df preserves the similarity orderings gen-
erated by d. Consequently, if a query is processed sequentially (by comparing all
objects in S to the query object Q), then it does not matter if we use either d or
any df , because both ways induce the same similarity orderings. Naturally, the
radius rQ of a range query must be modified to f(rQ), when searching by df .

3.3 Triangle-Generating Modifiers

To obtain a modification forcing a semimetric to satisfy the triangular inequality,
we have to use some special SP-modifiers based on metric-preserving functions.



Definition 5 (metric-preserving SP-modifier)
A SP-modifier f is metric-preserving if for every metric d the SP-modification
df preserves the triangular inequality, i.e. df is also metric. Such a SP-modifier
must be additionally subadditive (f(x) + f(y) ≥ f(x + y),∀x, y). 2

Lemma 2
(a) Every concave SP-modifier f is metric-preserving.
(b) Let (a, b, c) be a triangular triplet and f be metric-preserving,
then (f(a), f(b), f(c)) is a triangular triplet as well.
Proof: For the proof and for more about metric-preserving functions see [8]. �

To modify a semimetric into metric, we have utilized a class of metric-preserving
SP-modifiers, denoted as the triangle-generating modifiers.

Fig. 2. (a) Several TG-modifiers. Regions Ω, Ωf ; (b) f(x) = x
3
4 (c) f(x) = sin(π

2
x)

Definition 6 (triangle-generating modifier)
Let a strictly concave SP-modifier f be called a triangle-generating modifier (or
TG-modifier). Having a TG-modifier f , let a df be called a TG-modification. 2

The TG-modifiers (see examples in Figure 2a) not only preserve the trian-
gular inequality, they can even enforce it, as follows.

Theorem 1
Given a semimetric d, then there always exists a TG-modifier f , such that the
SP-modification df is a metric.
Proof: We show that every ordered triplet (a, b, c) generated by d can be turned
by a single TG-modifier f into an ordered triangular triplet.
1. As every semimetric is reflexive and non-negative, it generates ordered triplets
just of forms (0, 0, 0), (0, c, c), and (a, b, c), where a, b, c > 0. Among these, just
the triplets (a, b, c), 0 < a ≤ b < c, can be non-triangular. Hence, it is sufficient
to show how to turn such triplets by a TG-modifier into triangular ones.
2. Suppose an arbitrary TG-modifier f1. From TG-modifiers’ properties it follows
that f1(a)

f1(c)
> a

c , f1(b)
f1(c)

> b
c , hence f1(a)+f1(b)

f1(c)
> a+b

c (theory of concave functions).
If (f1(a) + f1(b))/f1(c) ≥ 1, the triplet (f1(a), f1(b), f1(c)) becomes triangular



(i.e. f1(a) + f1(b) ≥ f1(c) is true). In case there still exist triplets which have
not become triangular after application of f1, we take another TG-modifier f2

and compose f1 and f2 into f∗(x) = f2(f1(x)). The compositions (or nestings)
f∗(x) = fi(. . . f2(f1(x)) . . .) are repeated until f∗ turns all triplets generated by
d into triangular ones – then f∗ is the single TG-modifier f we are looking for. �

The proof shows the more concave TG-modifier we apply, the more triplets
become triangular. This effect can be visualized by 3D regions in the space
〈0, 1〉3 of all possible distance triplets, where the three dimensions represent the
distance values a,b,c, respectively. In Figures 2b,c see examples of region1 Ω of
all triangular triplets as the dotted-line area. The super-region Ωf (the solid-line
area) represents all the triplets which become (or remain) triangular after the
application of TG-modifier f(x) = x

3
4 and f(x) = sin(π

2 x), respectively.

3.4 TG-Modifiers Suitable for Metric Search

Although there exist infinitely many TG-modifiers which turn a semimetric d
into a metric df , their properties can be quite different with respect to the
efficiency of search by MAMs. For example, f(x) =

(
0 (for x = 0)
x+d+

2 (otherwise)
turns every

d+-bounded semimetric d into a metric df . However, such a metric is useless for
searching, since all classes of objects maintained by a MAM are overlapped by
every query, so the retrieval deteriorates to sequential search. This behavior is
also reflected in high intrinsic dimensionality of S with respect to df .

In fact, we look for an optimal TG-modifier, i.e. a TG-modifier which turns
only such non-triangular triplets into triangular ones, which are generated by d.
The non-triangular triplets which are not generated by d should remain non-
triangular (the white areas in Figures 2b,c), since such triplets represent the
”decisions” used by MAMs for filtering of irrelevant objects or classes. The more
often such decisions occur, the more efficient the search is (and the lower the
intrinsic dimensionality of S is). As an example, given two vectors u, v of dimen-
sionality n, the optimal TG-modifier for semimetric d(u, v) =

∑n
i=1 |ui − vi|2 is

f(x) =
√

x, turning d into the Euclidean (L2) distance.
From another point of view, the concavity of f determines how much the

object clusters (MAMs’ classes respectively) become indistinct (overlapped by
other clusters/classes). This can be observed indirectly in Figure 2a, where the
concave modifiers make the small distances greater, while the great distances
remain great; i.e. the mean of distances increases, whereas the variance decreases.
To illustrate this fact, we can reuse the example back in Figures 1b,c, where the
first DDH was sampled for d1 = L2, while the second one was sampled for a
modification d2 = Lf

2 , f(x) = x
1
4 .

In summary, given a dataset S, a semimetric d, and a TG-modifier f , the
intrinsic dimensionality is always higher for the modification df than for d, i.e.
ρ(S, df ) > ρ(S, d). Therefore, an optimal TG-modifier should minimize the in-
crease of intrinsic dimensionality, yet generate the necessary triangular triplets.
1 The 2D representations of Ω and Ωf regions are c-cuts of the real 3D regions.



4 The TriGen Algorithm

The question is how to find the optimal TG-modifier f . Had we known an an-
alytical form of d, we could find the TG-modifier ”manually”. However, if d is
implemented by an algorithm, or if the analytical form of d is too complex (e.g.
the neural network representation used by COSIMIR), it could be very hard to
determine f analytically. Instead, our intention is to find f automatically, re-
gardless of analytical form of d. In other words, we consider a given semimetric
d generally as a black box that returns a distance value from a two-object input.

The idea of automatic determination of f makes use of the distance distri-
bution in a sample S∗ of the dataset S. We take m ordered triplets, where each
triplet (a, b, c) stores distances between some objects Oi, Oj , Ok ∈ S∗ ⊆ S, i.e.
(a=d(Oi, Oj), b=d(Oj , Ok), c=d(Oi, Ok)). Some predefined base TG-modifiers fi

(or TG-bases) are then applied on the triplets; for each triplet (a, b, c) a modified
triplet (fi(a), fi(b), fi(c)) is obtained. The triangle-generating error ε∆ (or TG-
error) is computed as the fraction of triplets remaining non-triangular, ε∆ =
mnt

m , where mnt is the number of modified triplets remaining non-triangular. Fi-
nally, such fi are selected as candidates for the optimal TG-modifier, for which
ε∆ = 0 or, possibly, ε∆ ≤ θ (where θ is a TG-error tolerance). To control the
degree of concavity, the TG-bases fi are parameterizable by a concavity weight
w ≥ 0, where w = 0 makes every fi the identity, i.e. fi(x, 0) = x, while with
increasing w the concavity of fi increases as well (a more concave fi decreases
mnt; it turns more triplets into triangular ones). In such a way any TG-base can
be forced by an increase of w to minimize the TG-error ε∆ (possibly to zero).

Among the TG-base candidates the optimal TG-modifier (fi, w) is chosen
such that ρ(S∗, df∗(x,w∗)) is as low as possible. The TriGen algorithm (see List-
ing 1) takes advantage of halving the concavity interval 〈wLB, wUB〉 or doubling
the upper bound wUB, in order to quickly find the optimal concavity weight w
for a TG-base f∗. To keep the computation scalable, the number of iterations
(in each iteration w is improved) is limited to e.g. 24 (the iterLimit constant).

Listing 1 (the TriGen algorithm)

Input: semimetric d, set F of TG-bases, sample S∗, TG-error tolerance θ, iteration limit iterLimit
Output: optimal f , w

f = w = null; minIDim = ∞ 1
sample m distance triplets into a set T (from S∗ using d) 2
for each f∗ in F 3

wLB = 0; wUB = ∞; w∗ = 1; wbest = -1; i = 0 4
while i < iterLimit 5

if TGError(f∗,w∗,T ) ≤ θ then wUB = wbest = w∗ else wLB = w∗ 6
if wUB 6= ∞ then w∗ = (wLB + wUB)/2 else w∗ = 2 * w∗ 7
i = i + 1; 8

end while 9
if wbest ≥ 0 then 10

idim = IDim(f∗,wbest,T ) 11
if idim < minIDim then f = f∗; w = wbest; minIDim = idim 12

end if 13
end for 14

In Listing 2 the TGError function is described. The TG-error ε∆ is computed by
taking m distance triplets from the dataset sample S∗ onto which the examined



TG-base f∗ together with the current weight w∗ is applied. The distance triplets
are sampled only once – at the beginning of the TriGen’s run – whereas the
modified triplets are recomputed for each particular f∗, w∗.

The not-listed function IDim (computing ρ(S∗, df∗(x,w∗)) makes use of the
previously obtained modified triplets as well, however, the values in the triplets
are used independently; just for evaluation of the intrinsic dimensionality.

Listing 2 (the TGError function)

Input: TG-base f∗, concavity weight w∗, set T of m sampled distance triplets
Output: TG-error ε∆

mnt = 0 1
for each ot in T // ”ot” stands for ”ordered triplet” 2

if f∗(ot.a, w∗) + f∗(ot.b, w∗) < f∗(ot.c, w∗) then mnt = mnt + 1 3
end for 4
ε∆ = mnt / m 5

4.1 Sampling the Distance Triplets

Initially, we have n objects in the dataset sample S∗. Then we create an n × n
distance matrix for storage of pairwise distances dij = d(Oi, Oj) between the
sampled objects. In such a way we are able to obtain up to m =

(
n
3

)
distance

triplets for at most n(n−1)
2 distance computations. Thus, to obtain a sufficiently

large number of distance triplets, the dataset sample S∗ needs to be quite small.
Each of the m distance triplets is sampled by a random choice of three among the
n objects, while the respective distances are retrieved from the matrix. Naturally,
the values in the matrix could be computed ”on-demand”, just in the moment
a distance retrieval is requested. Since d is symmetric, the sub-diagonal half of
the matrix can be used for storage of the modified distances df

ji = f∗(dij , w
∗),

however, these are recomputed for each particular f∗, w∗. As in case of distances,
also the modified distances can be computed ”on-demand”.

4.2 Time Complexity Analysis (simplified)

Let |S∗| be the number of objects in the sample S∗, m be the number of sampled
triplets, and O(d) be the complexity of single distance computation. The com-
plexity of f(·) computation is supposed O(1). The overall complexity of TriGen
is then O(|S∗|2 ∗ O(d)+iterLimit∗|F| ∗m), i.e. the distance matrix computation
plus the main algorithm. The number of TG-bases |F| as well as the number
of iterations (variable iterLimit) are assumed as (small) constants, hence we get
O(|S∗|2 ∗ O(d) + m). The size of S∗ and the number m affect the precision of
TGError and IDim values, so we can trade off the TriGen’s complexity and the
precision by choosing |S∗| = O(1), O(|S|) and m = O(1), O(|S∗|), or e.g. O(|S∗|2).

4.3 Default TG-Bases

We propose two general-purpose TG-bases for the TriGen algorithm. The simpler
one, the Fractional-Power TG-base (or FP-base), is defined as FP(x, w) = x

1
1+w ,



see Figure 3a. The advantage of FP-base is there always exists a concavity weight
w for which the modified semimetric becomes metric, i.e. the TriGen will al-
ways find a solution (after a number of iterations). Furthermore, when using the
FP-base, the semimetric d needs not to be bounded. A particular disadvantage
of the FP-base is that its concavity is controlled globally, just by the weight w.

Fig. 3. (a) FP-base (b) RBQ(a,b)-base

As a more flexible TG-base, we have utilized the Rational Bézier Quadratic
curve. To derive a proper TG-base from the curve, the three Bézier points are
specified as (0, 0), (a, b), (1, 1), where 0 ≤ a < b ≤ 1, see Figure 3b. The Rational
Bézier Quadratic TG-base (simply RBQ-base) is defined as RBQ(a,b)(x,w) =
−(Ψ − x + wx− aw) · (−2bwx + 2bw2x− 2abw2 + 2bw − x + wx− aw + Ψ(1−
2bw))/(−1 + 2aw− 4awx− 4a2w2 + 2aw2 + 4aw2x + 2wx− 2w2x + 2Ψ(1−w)),
where Ψ =

√
−x2 + x2w2 − 2aw2x + a2w2 + x. The additional RBQ parameters

a, b (the second Bézier point) are treated as constants, i.e. for various a, b values
(see the dots in Figure 3b) we get multiple RBQ-bases, which are all individually
inserted into the set F of TriGen’s input. To keep the RBQ evaluation correct,
a possible division by zero or Ψ2 < 0 is prevented by a slight shift of a or w.
The advantage of RBQ-bases is the place of maximal concavity can be controlled
locally by a choice of (a, b), hence, for a given concavity weight w∗ we can achieve
lower value of either ρ(S∗, df∗(x,w∗)) or ε∆ just by choosing different a, b.

As a particular limitation, for usage of RBQ-bases the semimetric d must be
bounded (due to the third Bézier point (1,1)). Furthermore, for an RBQ-base
with (a, b) 6= (0, 1) the TG-error ε∆ could be generally greater than the TG-error
tolerance θ, even in case w → ∞. Nevertheless, having the FP-base or the
RBQ(0,1)-base in F , the TriGen will always find a TG-modifier such that ε∆ ≤ θ.

4.4 Notes on the Triangular Inequality

As we have shown, the TriGen algorithm produces a TG-modifier which gener-
ates the triangular inequality property for a particular semimetric d. However, we
have to realize the triangular inequality is generated just according to the dataset
sample S∗ (to the sampled distance triplets, actually). A TG-modification df be-
ing metric according to S∗ has not to be a ”full metric” according to the entire
dataset S (or even to U), so that searching in S by a MAM could become only



approximate, even in case θ = 0. Nevertheless, in most applications a (random)
dataset sample S∗ is supposed to have the distance distribution similar to that of
S∪{Q}, and also the sampled distance triplets are expected to be representative.

Moreover, the construction of such a TG-modifier f , for which (S, df ) is
metric space but (U, df ) is not, can be beneficial for the efficiency of search,
since the intrinsic dimensionality of (S, df ) can be significantly lower than that
of (U, df ). The above claims are verified experimentally in the following section,
where the retrieval error (besides pure ε∆) and the retrieval efficiency (besides
pure ρ(S, df )) are evaluated. Nonetheless, to keep the terminology correct let us
read a metric df created by the TriGen as a TriGen-approximated metric.

5 Experimental Results

To examine the proposed method, we have performed extensive testing of the
TriGen algorithm as well as evaluation of the generated distances with respect to
the effectiveness and efficiency of retrieval by two MAMs (M-tree and PM-tree).

5.1 The Testbed

We have examined 10 non-metric distance measures (all described in Section
1.6) on two datasets (images and polygons). The dataset of images consisted of
10,000 web-crawled images [30] transformed into 64-level gray-scale histograms.
We have tested 6 semimetrics on the images: the COSIMIR measure (denoted
COSIMIR), the 5-median L2 distance (5-medL2), the squared L2 distance (L2square),
and three fractional Lp distances (p = 0.25, 0.5, 0.75, denoted FracLpp). The
COSIMIR network was trained by 28 user-assessed pairs of images.

The synthetic dataset of polygons consisted of 1,000,000 2D polygons, each
consisting of 5 to 10 vertices. We have tested 4 semimetrics on the polygons:
the 3-median and 5-median Hausdorff distances (denoted 3-medHausdorff, 5-

medHausdorff), and the time warping distance with δ chosen as L2 and L∞, re-
spectively (denoted TimeWarpL2, TimeWarpLmax). The COSIMIR, 5-medL2 and
k-medHausdorff measures were adjusted to be semimetrics, as described in Sec-
tion 3.1. All the semimetrics were normed to return distances from 〈0, 1〉.

5.2 The TriGen Setup

The TriGen algorithm was used to generate the optimal TG-modifier for each
semimetric (considering the respective dataset). To examine the relation be-
tween retrieval error of MAMs and the TG-error, we have constructed several
TG-modifiers for each semimetric, considering different values of TG-error toler-
ance θ ≥ 0. The TriGen’s set of bases F was populated by the FP-base and 116
RBQ-bases parametrized by all such pairs (a, b) that a ∈ {0, 0.005, 0.015, 0.035,
0.075, 0.155}, where for a value of a the values of b were multiples of 0.05 lim-
ited by a < b ≤ 1. The dataset sample S∗ used by TriGen consisted of n = 1000
randomly selected objects in case of images (10% of the dataset), and n = 5000
in case of polygons (0.5% of the dataset). The distance matrix built from the
respective dataset sample S∗ was used to form m = 106 distance triplets.



In Table 1 see the optimal TG-modifiers found for the semimetrics by TriGen,
considering θ = 0 and θ = 0.05, respectively. In the first column, best RBQ
modifier parameters (best in sense of lowest ρ depending on a, b) are presented.
In the second column, the achieved ρ for a concavity weight w of the FP-base is
presented, in order to make a comparison with the best RBQ modifier. Among
RBQ- and FP-bases, the winning modifier (with respect to lowest ρ) is printed
in bold. When considering θ = 0.05, FracLp0.5, 3-medHausdorff, 5-medHausdorff

even need not to be modified (see the zero weights by the FP-base), since the
TG-error is already below θ. Also note that for L2square and θ = 0 the weight
of FP-base modifier is w = 0.99, instead of w = 1.0 (which would turn L2square

into L2 distance). That is because the intrinsic dimensionality of the dataset
sample S∗ is lower than that of the universe U (64-dimensional vector space).

Table 1. TG-modifiers found by TriGen.
θ = 0.00 θ = 0.05

best RBQ-base FP-base best RBQ-base FP-base
semimetric (a, b) ρ ρ w (a, b) ρ ρ w

L2square (0, 0.15) 3.74 4.22 0.99 (0, 0.05) 2.82 3.02 0.59
COSIMIR (0, 0.45) 12.2 27.2 4.33 (0.005, 0.15) 3.19 3.80 0.63
5-medL2 (0, 0.1) 37.7 19.8 16.5 (0, 0.05) 4.28 3.17 3.88

FracLp0.25 (0, 0.45) 12.7 15.2 2.29 (0.035, 0.05) 3.50 3.30 0.30
FracLp0.5 (0, 0.05) 7.57 8.37 0.87 (0, 0.2) 3.28 3.34 0.06

FracLp0.75 (0, 0.75) 5.13 5.69 0.30 any 3.77 3.77 0
3-medHausdorff (0, 0.05) 3.77 5.11 0.60 any 2.28 2.28 0
5-medHausdorff (0, 0.05) 3.42 4.12 0.35 any 2.45 2.45 0

TimeWarpL2 (0, 0.55) 10.0 9.48 1.48 (0.035, 0.1) 2.72 2.76 0.23
TimeWarpLmax (0.005, 0.3) 8.75 9.69 1.52 (0, 0.1) 2.83 2.86 0.26

In Figure 4 see the intrinsic dimensionalities ρ(S∗, df ) with respect to the
growing TG-error tolerance θ (f is the optimal TG-modifier found by TriGen).

Fig. 4. Intrinsic dimensionality of images and polygons

The rightmost point [θ, ρ] of a particular curve in each figure means θ is the
maximum ε∆ value that can be reached; for such a value (and all greater) the
concavity weight w becomes zero. Similar ”endpoints” on curves appear also in
other following curves that depend on the TG-error tolerance.

The Figure 5a shows the impact of m sampled triplets (used by TGError) on
the intrinsic dimensionality, considering θ = 0 and only the FP-base in F . The
more triplets, the more accurate value of ε∆ and the more concave TG-modifier is
needed to keep ε∆ = 0, so the concavity weight and the intrinsic dimensionality



grow. However, except for 5-medHausdorff, the growth of intrinsic dimensionality
is quite slow for m > 106 (and even slower if we set θ > 0).

For the future we plan to improve the simple random selection of triplets
from the distance matrix, in order to obtain more representative triplets, and
thus more accurate values of ε∆ together with keeping m low.

5.3 Indexing & Querying

In order to evaluate the efficiency and effectiveness of search when using TriGen-
approximated metrics, we have utilized the M-tree [7] and the PM-tree [27].

For either of the datasets several M-tree and PM-tree indices were built,
differed in the metric df employed – for each semimetric and each θ value a df

was found by TriGen, and an index created. The setup of (P)M-tree indices is
summarized in Table 2 (for technical details see [7, 26, 27]).

Table 2. M-tree and PM-tree setup
disk page size: 4 kB avg. page utilization: 41%–68%

PM-tree pivots: 64 inner node pivots, 0 leaf pivots
image indices size: 1–2 MB (M-tree) 1.2–2.2 MB (PM-tree)

polygon indices size: 140–150 MB (both M-tree and PM-tree)
construction method: MinMax + SingleWay (+ slim-down)

To achieve more compact MAM classes, the indices (both M-tree and PM-tree)
built on the image dataset were post-processed by the generalized slim-down al-
gorithm [26]. The 64 global pivot objects used by PM-tree indices were sampled
among the n objects already used for the TriGen’s distance matrix construction.

Fig. 5. Impact of triplet count; 20-NN queries on images (costs)

All the (P)M-tree indices were used to process k-NN queries. Since the
TriGen-generated modifications are generally metric approximations (especially
when θ > 0), the filtration of (P)M-tree branches was affected by a retrieval error
(the relative error in precision and recall). The retrieval error was computed as
the Jaccard distance ENO (or normed overlap distance) between the query result
QRMAM returned by a (P)M-tree index and the correct query result QRSEQ

(obtained by sequential search of the dataset), i.e. ENO = 1− |QRMAM∩QRSEQ|
|QRMAM∪QRSEQ| .

To examine retrieval efficiency, the computation costs needed for query eval-
uation were compared to the costs spent by sequential search. Every query was
repeated for 200 randomly selected query objects, and the results were averaged.



In Figures 5b,c see the costs of 20-NN queries processed on image indices,
depending on growing θ. The intrinsic dimensionalities decrease, and so the
searching becomes more efficient (e.g. down to 2% of costs spent by sequential
search for θ = 0.4 and the TG-modification of L2square). On the other hand,
for θ = 0 the TG-modifications of COSIMIR and FracLp0.25 imply high intrinsic
dimensionality, so the retrieval deteriorates to almost sequential search.

In Figures 6a,b the retrieval error ENO is presented for growing θ. In Figures
6c and 7a see the retrieval efficiency and error for 20-NN querying on the poly-
gon indices. As supposed, the error grows with growing TG-error tolerance θ.
Interestingly, the values of θ tend to be the upper bounds to the values of ENO,
so we could utilize θ in an error model for prediction of ENO.

In case of 5-medL2, 3-medHausdorff (and partly COSIMIR, 5-medHausdorff)
indices, the retrieval error was non-zero even for θ = 0. This was caused by
neglecting some ”pathological” distance triplets when computing the TGError
function (see Section 4), so the triangular inequality was not preserved for all
triplets, and the filtering performed by (P)M-tree was sometimes (but rarely)
incorrect. In other cases (where θ = 0) the retrieval error was zero.

Fig. 6. 20-NN queries on images and polygons (retrieval error, costs)

The costs and the error for k-NN querying are presented in Figures 7b,c –
with respect to the increasing number of nearest neighbors k.

Fig. 7. 20-NN queries on polygons (retrieval error); k-NN queries (costs, retrieval error)

Summary. Based on the above presented experimental results, we can observe
that non-metric searching by MAMs, together with usage of the TriGen algo-
rithm as the first step of the indexing, can successfully merge both aspects, the



retrieval efficiency as well as the effectiveness. The efficiency achieved is by far
higher than simple sequential search (even for θ = 0), whereas the retrieval error
is kept very low for reasonable values of θ. Moreover, by choosing different values
of θ we get a trade-off between the effectiveness and efficiency thus, the TriGen
algorithm provides a scalability mechanism for non-metric search by MAMs.

On the other hand, some non-metric measures are very hard to use for effi-
cient exact search by MAMs (i.e. keeping ENO = 0), in particular the COSIMIR

and the FracLp0.25 measures. Nevertheless, for approximate search (ENO > 0)
also these measures can be utilized efficiently.

6 Conclusions

In this paper we have proposed a general approach to non-metric similarity
search in multimedia databases by use of metric access methods (MAMs). We
have shown the triangular inequality property is not restrictive for similarity
search and can be enforced for every semimetric (modifying it to a metric).
Furthermore, we have introduced the TriGen algorithm for automatic turning
of any black-box semimetric into metric (or at least approximation of a met-
ric) just by use of distance distribution in a fraction of the database. Such a
”TriGen-approximated metric” can be safely used to search the database by any
MAM, while the similarity orderings with respect to a query object (the retrieval
effectiveness) are correctly preserved. The main result of the paper is a fact that
we can quickly search a multimedia database when using unknown non-metric
similarity measures, while the retrieval error achieved can be very low.
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