
Indexing the Distance Using Chord:
A Distributed Similarity Search Structure

David Novák and Pavel Zezula

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xnovak8,zezula}@fi.muni.cz

Abstract. The need of search mechanisms based on data content rather
then attributes values has recently lead to formation of the metric-based
similarity retrieval. The computational complexity of such retrieval and
the large volume of processed data call for distributed processing. In this
paper, we propose chiDistance, a distributed data structure for similarity
search in metric spaces. The structure is based on the idea of a vector-
based index method iDistance which enables to transform the issue of
similarity search into the one-dimensional range search problem. A Peer-
to-Peer system based on the Chord protocol is created to distribute the
storage space and to parallelize the execution of similarity queries. In
the experiments conducted on our prototype implementation we study
the system performance concentrating on several aspects of parallelism
of the range search algorithm.

1 Introduction

In traditional data retrieval, the query specifies a pattern to exactly match at-
tributes of the required data. The present-day systems that manage complex data
types (such as images, videos, text documents or DNA sequences) require search
mechanisms based on the data content rather then data attributes. Therefore, the
field of content-based or similarity retrieval has made a rapid progress recently.
In principle, a similarity query works as follows: given a query data object q,
the search process extracts all indexed data objects that are “similar” to q. The
similarity of data can be generally defined by a dissimilarity function (distance
function) d that is measurable for every pair of objects. The data set together
with the distance function can be seen as a metric space.

Many metric index structures have been proposed – see recent surveys [1, 2].
In real-life applications, the distance function d is typically expensive to compute.
This fact, together with the volume of the data being managed nowadays,
lead to the need of distributed processing. Most of the recent effort in the
field of distributed indexes for similarity search has concentrated on the vector
(attribute) data (see, e.g., [3–5], or SWAM [6]). As far as we know, GHT∗ index,
proposed in [7], is the only published metric-based distributed data structure.

Recently, network architecture paradigms referred to as Peer-to-Peer (P2P)
and Grid systems [8] have been gaining in popularity. In short, P2P structures
are distributed systems without any hierarchical organization where each node

is running software with equivalent functionality. This concept is attractive for
our work because of its scalability and self-organizing nature.

In this paper, we introduce a new distributed data structure called chiDis-
tance. It is based on the idea of Indexing the Distance (iDistance) [9] and
generalizes this attribute-based index method to become a metric-based method.
Through this concept, the issue of similarity search is transformed into the one-
dimensional range search problem. Then, the P2P protocol Chord [10] is used to
form the distributed structure for chiDistance. The iDistance search algorithms
are generalized to the proposed architecture.

The paper is organized as follows. Section 2 provides background for the
metric-based similarity search and describes two techniques that are essential
for this paper – iDistance and Chord . In Section 3, we describe the proposed
chiDistance data structure in details. Section 4 presents results of the perfor-
mance experiments and the paper concludes in Section 5 with directions for our
future work.

2 Preliminaries

In the scope of our work there are general similarity search structures that are
not limited to any specific data set or application. Metric space is a suitable
structure to model data set and relationships between data objects.

2.1 Metric Space Searching

Mathematically, metric space M is a pair M = (U, d), where U is the domain
of objects and d is the total distance function d : U × U −→ R satisfying the
following conditions for all objects x, y, z ∈ U:

d(x, y) ≥ 0 and d(x, y) = 0 iff x = y (non-negativity),
d(x, y) = d(y, x) (symmetry),
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Let us define two essential types of similarity queries: the range query and
the k nearest neighbors query [2]. Let I ⊆ U be a finite set of indexed objects.

Definition 1. Given an object q ∈ U and a maximum search distance r, the
range query Range(q, r) selects all objects x ∈ I such that d(q, x) ≤ r.

Definition 2. Given an object q ∈ U and an integer k ≥ 1, the k nearest
neighbor query kNN(q, k) selects the k objects x ∈ I which have the shortest
distances from q.

The presented data structures focus on these types of similarity queries.

2.2 Indexing the Distance

The iDistance [9] is an indexing method for similarity search in vector spaces. It
partitions the data space into clusters and selects a reference object (pivot) pi

for each cluster Ci, 0 ≤ i ≤ k. Every data object is assigned a one-dimensional
iDistance key according to the distance to its cluster pivot. Having a cluster
separation constant c, the iDistance value for an object x ∈ Ci is

iDist(x) = d(pi, x) + i · c.

If c is large enough then all objects in cluster Ci are mapped to the interval
[i · c, (i + 1) · c). The data is stored in a B+-tree according to the iDistance
values.

Range Query The Range(q, r) search algorithm runs separate search proce-
dures for some of the clusters. The cluster Ci is selected for searching if the
following condition is satisfied:

d(q, pi)− r ≤ max-disti

where max-disti is the maximal distance between pi and objects in cluster Ci.
Fig. 1 illustrates this condition in two-dimensional space. The cluster searching
algorithm examines all objects from Ci which have the iDistance value within
the interval

[d(pi, q) + i · c− r, d(pi, q) + i · c + r].

The grey areas within the clusters in Fig. 1 represent the space specified by this
condition. To examine an object x means to calculate the distance d(q, x) and
to add x to the query answer set S if d(q, x) ≤ r.

k-Nearest Neighbor Query The kNN(q, k) algorithm executes a sequence
of Range(q, r) queries with growing radius r. The condition for adding accessed
objects into the answer set differs from the Range(q, r) condition. An accessed
object x is added into the kNN(q, k) answer set S if

either |S| < k or d(q, x) < d(q, farthest(S, q))

where farthest(S, q) is the object from S with the greatest distance from q.
The sequence of Range(q, r) queries terminates and the kNN(q, k) execution
is completed when

d(farthest(S, q), q) < r and |S| = k.

For each range iteration, the kNN(q, k) algorithm stores information about the
searched space (taking advantage of the B+-tree properties) in order not to
search any space redundantly.

p2

p
3

p
1

q
r

C

C

C1

3

2

Fig. 1. The iDistance search mechanism

N1
node1

0

N

N

N

2

3

4

2

node

node4

node

3

Fig. 2. The Chord structure

2.3 Chord

Chord is a purely decentralized structured P2P protocol [10] that provides
mechanisms for efficient localization of the node that stores a particular data
item (specified by a given search key). It is a message driven dynamic structure
that is able to adapt as nodes (cooperating computers) join or leave the system.

The protocol uses consistent hashing [11] which uniformly maps the domain
of search keys into Chord key domain of size 2m. The parameter m should be
large enough to make probability of the hash collisions negligible. Every Chord
node is assigned a key Ni from the interval [0, 2m) as well. The node with key Ni

is “responsible” for all keys from the interval (Ni−1, Ni] (mod 2m) – see Fig. 2
for visualization. A node stores objects with the keys the node is responsible for.

Every node maintains a routing table called finger table which stores physical
addresses of up to m other nodes [10]. The node knows physical addresses of its
predecessor and successor as well.

Due to the uniformity of the Chord key domain distribution, Chord structure
has the following properties:

– in an n-node system, the node responsible for a given key is located via
O(log n) number of messages to other nodes (number of hops);

– the load of particular nodes (number of objects stored in the node) is ap-
proximately equal for all nodes.

These properties are very important for performance of the data structure pro-
posed in this paper and are referenced below.

3 ChiDistance

In this section, we introduce chiDistance – a new distributed data structure and
algorithms for similarity search in metric spaces. The system is based on the
idea of iDistance (see Section 2.2) and extends it as follows:

– chiDistance employs metric pivot selecting techniques to generalize the iDis-
tance applicability to metric spaces. Having a finite sample data set S ⊆ U,

a set of k pivots is selected and then Voronoi -like partitioning [2] is used to
identify the clusters (see Section 3.1 for details).

– It uses the Chord protocol and the chiDistance key assignment mechanism
to distribute the storage space among arbitrary number of cooperating nodes
(Section 3.3).

– It provides distributed search algorithms for the Range and kNN queries
that parallelize the time-consuming queries execution (Section 3.4).

As mentioned in Section 2.3, the Chord protocol assumes the uniform distri-
bution of the key domain to keep its efficiency. Because iDistance distribution
is strongly non-uniform, the iDistance values must be transformed by a hash
function with a uniform distribution. Then the Chord protocol can be used to
divide the storage space among the cooperating nodes. Section 3.2 describes the
mechanism of finding the uniform key transformation.

Both, the pivot selection and the phase of determining the uniform hash
function, must proceed during the initialization phase of the algorithm. When
pivots {p1, . . . , pk} are selected, data set is divided into clusters {C1, . . . , Ck},
and the uniform transformation h is found, the chiDistance value of an object
x ∈ Ci is computed as follows:

chi(x) = h(d(pi, x) + i · c). (1)

Fig. 3 illustrates the process of the algorithm initialization and chiDistance
computation.

Sample set

Object Count
iDistance

chiDistance computation:

Use

Transform
Uniform

Find
Uniform

Transform
Select
Pivots

initialization phase:

chiDistance value

Fig. 3. Algorithm initialization and chiDistance computation process

3.1 Pivots Choosing Procedure

As mentioned in Section 2.2, the iDistance algorithm uses vector space properties
to partition the data space and then to select the reference points (pivots) of
identified partitions. In order to generalize the applicability of the method to
metric spaces, we use a metric-based technique to efficiently select a set of pivots.

Then, having a set of k pivots {p1, . . . , pk}, we divide objects from I (the set of
indexed objects) into clusters C1, . . . , Ck as follows:

Ci = {x ∈ I|d(pi, x) < d(pj , x), 1 ≤ j ≤ k, j 6= i}.

This partitioning technique is referred to as Voronoi-like partitioning [2].
Generally, the similarity search algorithms eliminate some data objects from

the search process without computing their distances to the query object. For
pivot-based data structures, the main objective of finding a suitable set of pivots
is to increase the effectiveness of such pruning of the search space.

Let us summarize the Range(q, r) search algorithm described in Section 2.2.
An object x from cluster Ci (with pivot pi) is accessed if its iDistance value
(iDist(x) = d(pi, x) + i · c) is within the interval

[d(pi, q) + i · c− r, d(pi, q) + i · c + r].

This condition can be reformulated as follows: An object x ∈ Ci can be elimi-
nated without accessing if

|d(pi, x)− d(pi, q)| > r.

Thus, the higher the value |d(pi, x)− d(pi, q)| for objects x ∈ Ci, ∀i ∈ {1, . . . , k}
the more effective the search algorithm.

The chiDistance pivot selection technique is based on the general technique
described in [12] which is tuned to fit our search algorithm. Having a sample
set of data objects S ⊆ U, we try to choose a set of k pivots {p1, . . . , pk} from
S in order to “maximize” the function |d(px, x) − d(px, y)| for every x, y ∈ S
where px ∈ {p1, . . . , pk} is the pivot closest to object x. One way to do this is
to maximize the mean of distribution of |d(px, x)− d(px, y)| on S. Let us denote
this mean value as µ{p1,...,pk} for set of pivots {p1, . . . , pk}. Now, we can say that
{p1, . . . , pk} is a better set of pivots than {p′1, . . . , p′k} when

µ{p1,...,pk} > µ{p′
1,...,p′

k}.

The µ{p1,...,pk} value is estimated in the following way: a set of n pairs
{(x1, y1), (x2, y2), . . . , (xn, yn)} is chosen randomly from the sample set S. For
each pair (xi, yi) the closest pivot pxi is found and value vi = |d(pxi , xi) −
d(pxi , yi)| is computed. The value µ{p1,...,pk} is estimated as

µ{p1,...,pk} =
1
n

n∑
i=1

vi.

We need k +1 distance computations to obtain value vi for each pair of objects.
Therefore, n · (k + 1) distance computations are needed to estimate µ{p1,...,pk}.

Now, knowing how to compare two sets of pivots, we can define the selection
technique itself. We use the incremental algorithm described in [12]. First, pivot
p1 is chosen from a set of s candidates (selected from the sample set S) such

that p1 has the maximum µ{p1} value. Then, a second pivot p2 is selected from
another set of s objects such that µ{p1,p2} is maximal considering p1 fixed. This
process is repeated k-times to get a set of k pivots.

In every iteration of the described algorithm, we can store the closest pivot
pxi to xi and their distance d(pxi , xi) (for every 1 ≤ i ≤ n). Thus, only d(pj , x)
and (maybe) d(pj , y) values need to be computed when the jth pivot is added.
Therefore, maximally 2ns distance computations are needed while adding a new
pivot. Repeating this step k times, the total cost of the pivot selection process
is 2kns distance computations.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

cluster number

Fig. 4. Number of data objects in clusters

Fig. 4 shows an example of how the data is partitioned to clusters identified
by the described method (number of objects in each cluster). The data set is
composed of 100,000 three-dimensional vectors (see Section 4 for details about
the data set). The sample set consists of 1,000 object pairs (n = 1000); number
of pivot candidates in every algorithm step is 100 (s = 100) and the number of
selected pivots is twenty (k = 20).

3.2 Uniform Order-Preserving Transformation

The Chord routing protocol assumes a uniform layout of the nodes (peers) on
the key space circle to keep the property of logarithmic navigation through the
structure (Section 2.3). The objective our structure would like to reach is the
balanced storage load of the nodes (volume of data stored in the nodes). In order
to meet these two criteria, the key domain should have uniform distribution.

The distribution of the iDistance domain is strongly non-uniform. Fig. 5
visualizes a typical iDistance distribution using 20 pivots. This domain can be

 0

 2

 4

 6

 8

 10

 12

 14

 0 200000 400000 600000 800000 1e+06 1.2e+06

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

iDistance

Fig. 5. Distribution of the iDistance
domain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200000 400000 600000 800000 1e+06 1.2e+06

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

chiDistance

Fig. 6. Distribution of the chiDistance
domain – h function used

transformed by a hash function with a uniform distribution. Of course, such
transformation must be order-preserving to keep iDistance properties.

We use a technique described in [13] designed for finding order-preserving
uniform transformations between arbitrary domains. Let us denote the desired
transformation h : [0, A] −→ [0, B] (in our case the [0, A] interval is the iDistance
domain and the [0, B] interval is the chiDistance domain of optional size).

First, this method divides target space [0, B] into p intervals of the same
length where p is parameter of the algorithm (its precision). This partition-
ing gives a sequence of values b0, b1, . . . , bp from [0, B]. Then, having an non-
decreasing sample sequence a1, a2, . . . , an of keys from [0, A], we select the fol-
lowing p + 1 values from this sequence:

a0, adn
p e, . . . , adi·n

p e, . . . , an.

Let us denote a(i) element adi·n
p e for every 0 ≤ i ≤ p. The desired transformation

h maps h(a(i)) = bi for every 0 ≤ i ≤ p. These values are fixed and the h values
for all other keys from [0, A] are computed as the linear interpolation of them:

h(x) = (x− a(i−1)) ·
bi − bi−1

a(i) − a(i−1)
, for x ∈ (a(i−1), a(i)).

Thus, h is the piecewise-linear transformation. The “quality” of the uniformity of
the image domain distribution depends on the precision factor p. Fig. 6 shows the
distribution of the domain from Fig. 5 after applying function h. The precision
factor p = 200; the sample set {a0, a1, . . . , an} of size n = 5000 has been selected
randomly from the whole data set of size 100,000. Size of both domains is 220.

3.3 chiDistance Data Structure

The proposed data structure is a message driven structured P2P system based on
the Chord routing mechanism. Each node of the structure is logically composed
of two layers – Chord layer and chiDistance layer. The topology of the network

is given by the Chord protocol (the Chord layers of the nodes communicate with
each other to form and maintain the structure).

When a new node wants to join the structure, it contacts an already partic-
ipating node. It is assigned a key from the chiDistance domain and it receives
data objects with keys from the interval of its responsibility (Section 2.3). The
keys for nodes are chosen uniformly at random. The joining node receives the
“chiDistance configuration” as well – the selected pivots and the uniform trans-
formation h. To leave the system, a node notifies its successor node and sends
all stored data to it.

The chiDistance layer forms the interface of the system on every node. When
receiving an insert/delete/exact-match operation request, first, it calculates the
chiDistance value for the object passed by the operation (Equation 1). Then the
Chord layer locates the node that is responsible for the computed key and the
operation request is passed to that node to store/delete/get the object.

Due to usage of the constant c in the chiDistance key formula (1), the domain
consists of separated segments that correspond to particular clusters. It may
happen that one node is responsible for intervals of keys belonging to several
clusters. Vice versa, the interval corresponding to a cluster can be divided among
several adjacent chiDistance nodes.

Every node stores the data separately for every covered cluster. The data
objects are stored in a Red-Black tree based structure that provides guaranteed
log(n) time cost for get, put and remove operations and provides range(from, to)
operation as well. This storage policy is convinient for the search algorithm.

3.4 Range Search Algorithms

The chiDistance Range(q, r) search algorithm follows the basics of iDistance
algorithm and distributes it parallelizing the query execution. The query pro-
cessing starts on the initiating node and then spreads over the other nodes.

The algorithm searches the clusters C1, C2, . . . , Ck separately. The segment
of data to be searched within each cluster Ci is dependent on the chiDistance
key that would be assigned to object q if object q was in cluster Ci:

chii(q) = h(d(pi, q) + i · c).

This value is computed for every cluster Ci and the requests for clusters search
are sent to the nodes that are responsible for these chii keys – let us denote
these nodes Ni.

Within cluster Ci, all objects with chiDistance keys from the following inter-
val must be examined:

[h(d(pi, q) + i · c− r), h(d(pi, q) + i · c + r)].

Thus, the Ni node explores all data objects from this interval that are stored
in Ni. But objects from cluster Ci can be stored in several adjacent nodes so
– if Ni is not responsible for the terminal points of this interval – the search
request is forwarded to the predecessor and/or successor node(s) of Ni. In order

to parallelize the execution, node Ni first forwards the requests and then searches
its own data space.

For every accessed data object x, the distance d(q, x) is computed and if
d(q, x) ≤ r then x is added to the Range(q, r) query answer set S. The partial
answer sets from all visited nodes are returned to the query originating node
and are joined together to form the final anwer set of the range query.

4 Performance Evaluation

In this section, we present results of experiments we conducted on our prototype
implementation of chiDistance data structure. The system forms a logical overlay
network independent of the physical location of the participating nodes. The
communication among the nodes is realized via messages using the UDP and
TCP communication protocols.

4.1 The Data Sets and Parameter Settings

We executed our experiments on two data sets. The first is a set of artificially
generated three-dimensional vectors of real numbers with the L2 (Euclidian)
metric distance function (VEC). This data set has a uniform distribution of
distances between objects and all objects have the same size.

The second data set is a real-life set of sentences from the Czech national
corpus with the edit distance function as the metric (TXT). The length of
the sentences varies significantly and the distribution of the distances is rather
skewed – most of the distances are within a small range of values.

Both data sets consist of 100,000 objects. All experiments are performed on
a structure formed by up to 100 cooperating nodes running on PCs connected by
a high-speed local network. The first executed process is given a sample data set
of 5,000 objects randomly selected from the whole data set. This sample set is
used during the pivot selection (Section 3.1) and then to determine the uniform
hash function h (Section 3.2). The number of pivots/clusters is fixed to k = 20 –
exploring the influence of this parameter to the performance is part of our future
work. The precision parameter p of the hash function h is set to 200 which seems
to be sufficient for the size of the used chiDistance domain [0, 220).

4.2 Domain Coverage and Load Factor

Every node joining the system is assigned a key from the chiDistance domain
and covers a domain segment (predecessor ,node] (Section 3.3). Fig. 7 shows the
size of intervals covered by each of 100 nodes (the domain size is 220 = 1048576).

One of the characteristics influencing the system performance is how the data
set is distributed among the nodes. Fig. 8 shows number of data objects stored
in each of the nodes (load factor). As discussed in Section 3.2, the distribution of
the chiDistance domain is broadly uniform and therefore the load factor rather
copies the domain coverage from Fig. 7.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100

d
o
m
a
i
n

r
a
n
g
e

c
o
v
e
r
e
d

chiDistance node #

Fig. 7. Segments of chiDistance domain
covered by individual nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

n
u
m
b
e
r

o
f

o
b
j
e
c
t
s

chiDistance node #

Fig. 8. Number of data objects stored by
individual nodes

4.3 Key Locating – Insert, Delete, Exact-match

The Chord routing mechanism used by our system is able to locate the node
responsible for given chiDistance key in O(log n) number of hops (where n is the
number of nodes in the system). The key locating mechanism is used by most
of the operations on the structure and its complexity is very important. Fig. 9
shows the experimental results – the hop count with respect to the number
of nodes in the system (n). The values were obtained as an average over 100
operations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

n
u
m
b
e
r

o
f

h
o
p
s

number of nodes

hop count for key location operation

Fig. 9. Number of hops to locate the node responsible for given chiDistance key.

The complexity of the key localization is the complexity of the insert, delete,
and exact-match operations as well.

4.4 Range Search Performance

In this section, we present results of experiments analyzing the performance of
the Range(q, r) search algorithm. To measure the computational cost of the
operation, we use the number of distance computations on the participating
nodes. This performance metric is common for similarity search algorithms
because the actual cost of the distance computation may differ signifiantly for
various distance functions. In the experiments, we have neglected the inter-
nodes communication time because the distance computations are more time
consuming than sending a message between nodes.

Thus, most of the analyses in this section are based on observing how the
distance computations are distributed on the set of nodes (under various circum-
stances). The first observation is that the total number of distance computations
(total cost) remains the same for any number of nodes as well as for the cen-
tralized iDistance method. This quantity predicates generally about this search
method efficiency with respect to our pivot choosing technique.

One of the very important contributions of distributed structures is the
parallelism of a query execution. In our experiments, we observe several aspects
of the intraquery and interquery parallelism [14]. We quantify the intraquery
parallelism as the parallel computational cost of one query execution – maximal
number of distance computations performed in sequence (the parallel cost).

Fig. 10 presents results of the experiment which measured the parallel cost
with respect to the growing search radius. The second curve in the graph shows
the total number of distance computations (divided by 10 to see both shapes
properly). All values presented in this section are taken as an average over 100
queries with different query objects randomly chosen from the data set.

TXT data set VEC data set

parallel cost
total cost/10

parallel cost
total cost/10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

range query radius

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30
range query radius

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

Fig. 10. The total and parallel cost for range queries increasing the radius.

This experiment results show that, for larger query radii, the parallel cost
corresponds to the nodes load factor – some nodes access all the data objects
they store. Let us denote Cq the cluster which the query object belongs to. The

search algorithm principles imply that (for larger radii) most of the objects in
cluster Cq must be accessed. Very likely, some node(s) store(s) only objects from
cluster Cq because, in our setting, the number of nodes is higher than the number
of pivots/clusters. This causes the rapid increase of the parallel cost. Obviously,
most of the nodes are computationally loaded significantly less than the parallel
cost is, because the average cost per server (total cost/100) is lower. This fact is
analyzed by the interquery parallelism experiments.

The interquery parallelism refers to the ability of the system to accept multi-
ple queries at the same time. Let us denote the set of active nodes {n1, . . . , nm}
and the numbers of distance computations on node ni as cost1

i , cost
2
i , . . . , cost

k
i

for the sequence of k queries. We measure the interquery parallelism through
summation of the number of distance computations over a sequence of range
queries (on each node separately):

inter-cost i =
k∑

j=0

costj
i .

Maximizing this value over the set of nodes {n1, . . . , nm} we get a total parallel
cost of the sequence of k queries:

inter-cost = max{inter-cost1, . . . , inter-costm}.

Fig. 11 shows the inter-cost value for growing number of parallel queries (k) and
for selected radii. The query objects were chosen at random and the graph values
are taken as an average over 10 executions of different sets of k queries. As dis-
cussed above, mainly the nodes storing objects from cluster Cq are significantly
computationally loaded during the Range(q, r) execution. Thus, the inter-cost
is significantly smaller than k-multiple of the parallel cost of one range query
(with corresponding radius).

VEC data setTXT data set

radius = 5
radius = 2

radius = 10
radius = 5
radius = 2

radius = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

number of parallel queries

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30

d
i
s
t
a
n
c
e

c
o
m
p
u
t
a
t
i
o
n
s

number of parallel queries

Fig. 11. The interquery parallelism for growing number of parallel queries

5 Conclusions and Future Work

So far, the field of distributed index structures for metric data has not been much
investigated. We consider this topic very relevant for needs of the preset-day
applications processing large volumes of digital data. We propose chiDistance, a
distributed data structure for similarity search in metric spaces. The structure
is based on the idea of iDistance index method. The applicability of iDistance
is generalized from vector spaces to metric spaces by a pivot selection technique
tuned in order to fit the chiDistance search algorithm. A Peer-to-Peer structure
based on the Chord protocol is created to distribute the storage space and to
parallelize the execution of similarity queries.

We present results of performance experiments conducted on our prototype
implementation and on two data sets. Among other things, we have studied
several aspects of parallelism of the range search algorithm. The results show
that the computational cost on participating nodes varies but the cost on a
single node is always upper bounded by the number of data objects stored by
the node. Recall that the data is quite uniformly distributed among the nodes.
At the same time, very good interquery parallelism is achieved when processing
a set of range queries in parallel.

Our future work will concern the kNN(q, k) search algorithm. As well, we
want to study the influence of number of pivots to the search algorithms perfor-
mance. In this paper, we have considered the presented structure rather static by
using fixed quantity of sources (nodes) regardless of the volume of stored data.
In future, we want to study the scalability of the system by adding nodes as the
volume of stored data increases. Finally, we plan to conduct tests that would
compare the performance of GHT∗ [7] and chiDistance – both implemented over
the same network infrastructure. We see this as a unique opportunity to compare
structures and algorithms under the very same conditions.

References

1. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM
Trans. Database Syst. 28 (2003) 517–580

2. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33 (2001) 273–321

3. Koudas, N., Faloutsos, C., Kamel, I.: Declustering spatial databases on a multi-
computer architecture. In: EDBT. (1996) 592–614

4. Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries
in peer-to-peer systems. In: Proceedings of the First Biennial Conference on
Innovative Data Systems Research, Asilomar, California, United States (2003)

5. Tanin, E., Harwood, A., Samet, H.: A distributed quadtree index for peer-to-peer
settings. In: ICDE. (2005)

6. Banaei-Kashani, F., Shahabi, C.: Swam: a family of access methods for similarity-
search in peer-to-peer data networks. In: CIKM ’04: Proceedings of the Thirteenth
ACM conference on Information and knowledge management, ACM Press (2004)
304–313

7. Batko, M., Gennaro, C., Zezula, P.: Scalable similarity search in metric spaces.
In: Proceedings of the DELOS Workshop on Digital Library Architectures: Peer-
to-Peer, Grid, and Service-Orientation, Edizioni Libreria Progetto, Padova (2004)
213–224

8. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer file sharing
technologies (2002)

9. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.: Indexing the distance: An efficient
method to KNN processing. In: VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Morgan
Kaufmann (2001) 421–430

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
ACM SIGCOMM, ACM Press (2001) 149–160

11. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.:
Consistent hashing and random trees: distributed caching protocols for relieving
hot spots on the world wide web. In: STOC ’97: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, ACM Press (1997) 654–663

12. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. In: SCCC 2001, Proceedings of the XXI Conference of
the ChileanComputer Science Society, IEEE CS Press (2001) 33–40

13. Garg, A.K., Gotlieb, C.C.: Order-preserving key transformations. ACM Trans.
Database Syst. 11 (1986) 213–234

14. Özsu, M.T., Valduriez, P.: Distributed and parallel database systems. ACM
Comput. Surv. 28 (1996) 125–128

