
Exporting Relational Data into a Native XML Store

Jaroslav Pokorny and Jakub Reschke

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, 118 00 Praha, Czech Republic,
pokorny@ksi.ms.mff.cuni.cz

Introduction

XML, see Bray et al. (2004), has thoroughly established itself as the stan-
dard format for data interchange between heterogeneous systems. Its sig-
nificant role is also in the vision of so-called Semantic web specified in
W3C (2001) where it contributes to low-level representation of informa-
tion. As most of the enterprise’s data is stored in relational database sys-
tems, conversion problems of relational data into XML should be studied
in details. The publishing scenario can be twofold: relational data has to be
visible as XML data independently from how the data is stored or, and it is
more important today, relational data has to reside in a native XML store.
The former scenario is simple because the resulting structure mirrors the
original relational tables’ flat structure. The latter requires more advanced
techniques, for example preserving at least a part of integrity constraints
applied in the original relational database or ensuring non-redundant stor-
ing the database as XML data. Generally, it means to convert relational da-
tabase schemes into schemes expressed in XML Schema language (Fall-
side and Walmsley 2004).

Commercial RDBMS partially support these facilities mainly through
the XML features of the standard SQL:2003, see ISO (2003), particularly
its part SQL/XML (XML-Related Specifications) given in ISO (2004).
SQL/XML (hereinafter called “the standard”) has been embraced by most
major relational database vendors. Anyhow, there are many previously re-
leased proprietal solutions in their RDBMSs as well.

The standard treats not only XML publishing functions, but also map-
ping rules for transformations from the extended relational data model
(RDM) to XML Schema. By “extended” we mean mainly a possibility to
nest relations, which distinguishes the model from the original flat rela-
tions. According to usual terminology we call a description of XML data
expressed in XML Schema as XSD (XML Schema Definition). This paper
offers an algorithm doing this task and respecting recommendations of the

2 Jaroslav Pokorny and Jakub Reschke

standard. It covers also some integrity constrains. A prototype implementa-
tion by Reschke (2005) enables to generate an XSD, a conversion of rela-
tional data into an XML document, and its validation against the XSD.

The paper starts with a brief introduction to XML Schema and a rele-
vant part of the standard. After this we describe some existing algorithms,
particularly NeReFT developed by Liu et al. (2004). Then we introduce a
new algorithm, called XMLConversion here, which is based on NeReFT.
XMLConversion provides a number of improvements and keeps the rules
proposed in the standard. We also mention shortly its implementation and
conclude the paper.

XML Schema

We mention only the features of XML Schema that are important for the
transformation algorithms. Figure 1 shows the hierarchy of data types used
in the language.

user defined derived by restriction, by list, or
by union

simple
basic

built-in
derived

data types
simple content derived by restriction or by ex-

tension from a simple type
complex

complex content derived by restriction or by

 extension from complex type
 (all, choice, group, sequence)

Fig. 1. Taxonomy of data types in XML Schema.

As usually, simple data types include Boolean, string, float, etc. as well
as various time and date types. Among types derived from built-in string
types we can find e.g. ID, IDREF, and IDREFS. For expressing XML
structures of relational data, the complex types are of great importance.

Clauses unique, key, a keyref are useful for expressing identities.
Each identity constraint is expressed by an expression in XPath, see Clark
and DeRose (1999). We can express referential integrity similarly to rela-
tional databases with these clauses. A unique element contains exactly
one selector subelement and at lest one field subelement. The se-

Exporting Relational Data into a Native XML Store 3

lector determines a set of items (elements or attributes) inside of which
the items determined by element(s) field must be unique. By key ele-
ment we denote relational attributes or their combination whose resulted
value must be in a given area unique and always defined. The value of
keyref attribute must be a value of a key or unique element.

SQL:2003

Recently INCITS, ANSI, and ISO have added XML publishing functions
to SQL:2003. We refer here to the version FCD (Final Committee Draft).
It is expected that a movement from FCD to DIS (Draft Information Stan-
dard) should bring no significant changes influencing the approach used in
our transformation algorithm.

New Data Types

Comparing to the version SQL:1999, focused mainly on the object-
relational data model, the new standard contains the following extensions:

• data types BIGINT, MULTISET, and XML,
• functions for publishing XML data,
• mapping rules for description of XSD schemes and valid trans-

formed relational data that conforms these schemes.
For our paper we will consider as relevant only the data structures of

non-XML data, i.e. typed tables together with nesting via ARRAY and
MULTISET, and omit the repertoire of associated predicates and opera-
tions usable in SQL queries.

XML Publishing Functions

The standard introduces a set of functions applicable directly in the
SELECT statement which make it possible to generate data of XML type.

• XMLELEMENT – creates an XML element of given name with op-
tional specification of namespaces (parameter XMLNAMESPACES)
and attributes (parameter ATTRIBUTES).

• XMLATTRIBUTES - lists XML attributes to be placed in the
XML element created by enclosing call of XMLELEMENT.

4 Jaroslav Pokorny and Jakub Reschke

• XMLFOREST – is a shortcut function for generating a forest of ele-
ments with only columnar content. It takes as its arguments a set
of column names or aliased column names.

• XMLCONCAT – based on a list of independently constructed XML
expressions (for example via XMLELEMENT) constructs one value
as a concatenation of values of these expressions.

• XMLAGG – aggregates a set of rows in the result set, emitting the
XML that is specified as the XMLAgg function's argument for each
row that is processed. It enables to express relationships with car-
dinality 1:N in XML.

For example, the statement
SELECT e.id,XMLELEMENT(NAME "Employee",
XMLELEMENT(NAME "Name",e.first_n||''||e.last_n),
XMLELEMENT(NAME "Subordinates",
 (SELECT COUNT (*) FROM Subordinates s
 WHERE s.chief = e.id)) AS Description
 FROM Employees e WHERE ...

can generate the table
ID Description
154 <Employee>
 <Name>John Smith</Name>
 <Subordinates>3</Subordinates>

 </Employee>

Mapping Rules

The standard introduces mapping rules for tables, schemes, and catalogues
to XML. Mapping rules include also coding data, NULL value representa-
tion, etc. They enable to express also simple integrity constraints allowing
to describe better the value set for a given simple or derived simple type.
Mapping tables to XML documents. The standard defines how to
map tables to an XML document. The source can be a single table, all ta-
bles, all tables in a schema, or all tables in a catalogue. As a result of the
mapping we obtain two documents, the first one contains data from tables
and the second one the associated XSD. The data document is valid against
the XSD. Although there is more possibilities for a table representation in
XML, the standard supports the one in which values of table columns are
mapped to subelements of a <row> element. Notice that with subelements
we fix an order of columns, which is not required in RDM. Modelling col-
umns by XML attributes would determine no order.

Exporting Relational Data into a Native XML Store 5

A database with more than one table can be mapped into XML by two
methods. Figure 2 represents two tables, Reader(R1, R2) and
Books(B1 ,B2), from a relational schema Library.

Which mapping is chosen depends fully on a user. Consequently, any
tool doing these transformations should be interactive or at least parame-
terizable.
<Library>
<Readers>
<row>
 <R1>1</R1>
 <R2>Kate</R2>
</row>
 ...
</Readers>
<Books>
<row>
 <B1>1</B1>
 <B2>Wings</B2>
</row>
 ...
</Books>
</Library>

Fig. 2. Two possibilities how to represent relations in XML Schema.

Mapping NULL values. A user has two flavours in the standard how to
map NULL values. In the first one, the attribute xsi:nil=“true“ indi-
cates that the column value is NULL. The person with NULL value of
Birth_date looks in XML as
<row>
 <Id>1</Id>
 <First_n>John</First_n>
 <Last_n>Smith</Last_n>
 <Birth_date xsi:nil="true"></Birth_date>
 <Degree xsi:nil="true"/>
</row>

In the second case, the relational representation of columns with NULL
value is omitted.
Mapping data types. The standard provides rules for transformation of
particular types. For example, SQL types based on strings are mapped on
XML Schema type xsd:string with subelements xsd:length or
xsd:maxLength specifying the string length and maximal length, re-

<Library>
<Readers>
 <R1>1</R1>
 <R2>Kate</R2>
</Readers>
<Readers>
 <R1>2</R1>
 <R2>John</R2>
</Readers>
...
<Books>

<B1>1</B1>
<B2>Wings</B2>

</Books>
...
</Library>

6 Jaroslav Pokorny and Jakub Reschke

spectively. The “xsd” namespace prefix is used to indicate the XML
Schema namespace.

For example, the SQL type CHAR restricted to 25 symbols has the fol-
lowing representation:
<xsd:simpleType name="CHAR_25">
 <xsd:restriction base="xsd:string">
 <xsd:length value="25"/>
 </xsd:restriction>
</xsd:simpleType>
Unfortunately, SMALLINT, INTEGER, and BIGINT are mapped in the

standard to types with the same name. This leads to inconsistencies in
situations when we have various constraints on values, e.g. of SMALLINT.
We correctly resolve this problem by renaming new types.

SQL ARRAY a MULTISET types are mapped to complex types. The ba-
sic data type, whose values are stored into an array/multiset, is mapped to a
simple type. For example,
<xsd:complexType name="Array_5.Array_5.VARCH_10">
 <xsd:sequence>
 <xsd:element name="element" minOccurs="0"
 maxOccurs="25" nillable="true"
 type="VARCHAR_10"/>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

maps a two-dimensional array of 5×5 strings with maximum length equal
to 10.

SQL XML type is mapped to a complex type. The structure of values
stored in the XML type is not processed. An XML value is considered as a
plain text without a meaning. To forbid processing such value during a
validation, it is necessary to use the attribute processContents
with the value "skip".
<xsd:complexType name="XML" mixed="true">
 <xsd:sequence>
 <xsd:any name="element" minOccurs="0"
 maxOccurs="unbounded"
 processContents="skip"/>
 </xsd:sequence>
</xsd:complexType>

Generating schema in the language XML Schema. There are
many possibilities how to generate XSD describing relational database
schemes composed from particular table schemes. The standard considers

Exporting Relational Data into a Native XML Store 7

generating for each type and a table, own global type. These types are then
used in more complex definitions.

Related Works

We will overview shortly existing algorithms for conversion of the rela-
tional database schema to the languages DTD and XML Schema. We sup-
pose a relational database schema R = (R1,…,RK, K≥1; IC), where Ri are
relation schemes and IC is a set of integrity constraints. By R* we mean a
relation associated to R.
Target Language: DTD. In FT (Flat Translation) Lee et al. (2001)
transform relation schemes from R to elements of an XSD and attributes of
relation schemes to attributes or elements of the XSD. A usage of attrib-
utes or elements depends on a user, since the algorithm can work in both
modes. IC is not considered in the algorithm. The approach also does not
exploit non-flat features of XML model, e.g. regular expressions specify-
ing a number of element occurrences, and hierarchical nesting of elements.

NeT (Nesting-based Translation) algorithm presented in the same paper
tries to overcome drawbacks of FT using an operator Nest. The main idea
is to describe a structure of nested elements by Kleene operators. Unlike
NeT the CoT algorithm (Constraints-based Translation) by Lee et al.
(2002) considers also a referential integrity.
Target Language: XML Schema. The ConvRel (Relationship Conver-
sion) algorithm by Duta (2003) considers referential integrity and con-
straints expressed by UNIQUE and NULL. The author classifies cardinal-
ities 1:1, 1:N and M:N between rows of associated relations to determine a
nesting of elements. A key problem is to determine which relation will
create the outer element and which one its subelement.

ConvRel considers only simple links between two relations, while the
relations are actually connected by more complex links. Each table can re-
fer to or is referenced from more other tables. In the algorithm Conv2XML
Duta considers links among three tables.
NeReFT Algorithm. Li et al. (2003) approach the problem with rules
that are applicable for relation schemes of various types. These rules are
driven by referential integrity associations between schemes. NeReFT
(Nested Redundancy Free Translation) works also simply with NULL/NOT
NULL constraints by properly setting minOccurs attribute in XML
elements. UNIQUE constraints have a straightforward representation with
unique mechanism in XML Schema. The strategy of NeReFT is to reach

8 Jaroslav Pokorny and Jakub Reschke

nested XML structures and minimum redundancy in XML data. By redun-
dancy we mean here repeating data in the resulting XML data document1.

Thus, IC include primary keys, referential integrities, NULL/NOT
NULL, and UNIQUE constraints. As an output we obtain an XSD describ-
ing non-redundant XML documents.

Suppose a schema R(K1,…,Kn,An+1,…,An+m), where K1,…,Kn compose
the primary key (PKR) of R. For a referential integrity between relations R
and P, where a foreign key (FK) from R references to P, we denote this
fact as FKR→ P. Referential integrity naturally induces a digraph GR.
Schemes R and P are called child and parent, respectively. Each R from R
is classified into one of four categories dependent of PKR:
• regular – no FK occurs among K1,…,Kn.
• component – there is Ki which references to P. The rest of PKR

serves to local identification of rows under one Ki value.
• supplementary – the PKR is also an FKR, FKR→ P, for a P.
• association – the PKR contains more FKRs.
In practice, regular and component relations correspond to entity and

weak entity types, respectively. Supplementary relations correspond often
to members of an ISA hierarchy or a vertical decomposition of relation.
Finally, association relations are transformed relationship types.

The algorithm core:
(1) For a schema R the algorithm creates a root element in the target XSD.
(2) For a regular or an association relation R, it creates an element with the

name R and puts it under the root element. The created element may be
moved down later depending on some constraints.

(3) For a component or a supplementary R, an element is created and
placed as a child element of the element for its parent relation. The
representations of both relation types differ only in the value of
maxOccurs attribute.

(4) For each single attribute PK of a regular R, an attribute of the element
for R is created with ID data type. For each multiple attribute PK of a
regular, a component or an association R, an attribute of the element
for R is created for each PK attribute with its corresponding data type;
a key element is defined with a selector to select the element for R
and several fields to identify all PK attributes.

(5) For each FK of a relation R, where FK ⊄ PK of a component or a sup-
plementary relation, if it is a single attribute FK, an attribute of the
element for R is created with IDREF data type; otherwise, an attribute

1 Problems of redundancy are discussed in details by Vincent et al. (2004).

Exporting Relational Data into a Native XML Store 9

is created for each FK attribute with its corresponding data type, a
keyref element is defined with a selector to select the element
for R and several fields to identify FK attributes.

(6) For a non-key attribute of R, an element is created under the element
for R.

(7) To achieve higher level of nesting, if a relation R has a NOT NULL
FKR, FKR → P, and there is no loop between R and P in GR, we can
move the element for R under the P element. This rule reflects N:1
cardinality among rows of R and P.

XML Conversion Algorithm

SQL data types are categorized into built-in and user defined types (UDT).
Built-in data types are further differentiated into simple and complex data
types. Simple (e.g. numeric or string) data types are straightforward trans-
lated into simple types in XSD.

Complex data types (as ARRAY, MULTISET, ROW) are processed in a
different way. ARRAY or MULTISET is a collection of the same basic
type. This basic type can be repeatedly complex data type, so the transla-
tion recursively generates all necessary definitions according mapping
rules given by SQL:2003. Data type ROW is translated into complex type
containing record for every simple item, which this data type ROW con-
tains. Simple items can be of complex data type, so they must be recur-
sively processed as well. These definitions result in a nested structure.

Let N be a type ARRAY, MULTISET, or ROW used in R. For purposes
of this paper we denote the nearest supertype of N in R as owner of N.
Clearly, there can be more such owners. These additional definitions are
used in more complex XSD definitions.

Processing of UDTs depends on their complexity. In the case of UDT
founded on a simple data type, a simple type is created in XSD. Otherwise,
a complex data type is created, as well as by complex data types.

As the standard uses as key constructs key, keyref clauses and does
not prefer combination ID and IDREF in the case of single-attribute keys,
we use in our algorithm key, keyref for all keys. Relation attributes are
transformed to elements in all cases.

Phase I. – Preparation. For nested types (tables) (see MULTISET,
ARRAY, and ROW possibilities) their owner types (tables) are deter-
mined. In this case, the definition of a new complex type describing such a
nested table has to be introduced first in the resulted XSD. Then the defini-

10 Jaroslav Pokorny and Jakub Reschke

tion of its owner relation can be introduced. It will contain the definition of
the nested table as an element.

 Suppose that all information about R were analyzed and stored. The fol-
lowing steps are performed:
1. Each schema R from R receives a type according to the NeReFT clas-

sification. This type depends on the number of FKRs in PKR and
whether the FKR is entire the PKR. In the case, if R is a component or
a supplementary relation, its parent relation is determined.

2. An order is assigned to all schemes of R. According to the order the Ri
will be processed. This order is implied by mapping rules (1) – (6).

a. First, regular relations are processed. For each such R the com-
ponent and supplementary relations dependent of R are pre-
ferred. They obtain lower order and will be processed earlier.
This process is done recursively because these dependent rela-
tions can be parents for other dependent relations. After proc-
essing all dependent component and supplementary relations the
R is incorporated into the ordered list of relations.

b. For each remaining (association) relation R an order is set. It fol-
lows the order in which the metadata concerning R is stored in
the XMLConversion implementation.

c. There are created records about the explicit nested relations.
3. Based of the rule (7) the order of relations to be processed is changed.

For each R is tested if the condition in (7) is fulfilled. If yes, then (7)
can be applied. The order is modified in this way that the parent rela-
tion of R will be processed later than the child relation.

Phase II. - Generating XSD
1. XML declaration is generated and information about namespaces is

put into tags <xsd:schema> and <xsd:import>.
2. All relations are processed in the given order according to the mapping

rules included in the standard. If a relation depends on a currently
processed relation R (or other relations are nested in R), in the defini-
tion of complex type describing R a new element is included. The type
of this element was defined earlier in Phase II. This means, that ex-
plicit nested relations are processed too and definitions of their types
are used for new elements included in R.

3. After creating the types defining structures of all relations, a new type
TR describing the entire schema R is created. TR contains elements
whose types are the types describing particular Ri. Only the types are
used that are not nested and do not occur in other types.

4. A new element is created, whose type is TR. This element will contain
all definitions of keys and references to keys via elements

Exporting Relational Data into a Native XML Store 11

<xsd:key>, <xsd:unique> and <xsd:keyref>. The XSD is
closed with </xsd:schema>.

Phase III. - Generating XML document.
1. XML declaration is generated. In the start tag of the root element, with

name corresponding to R, attributes with information about name-
spaces are stored.

2. According to the predefined order of the relations, processing all un-
nested tables are consecutively taken. For each relation R* all its nested
relations are determined. The relation R* is then processed in the fol-
lowing way:

a. For each row of R*, a part of XML document containing row’s
data is generated. Then the associated nested data follows. Values
of FK attributes of rows of nested data match values of PK attrib-
utes in this part of XML document.

b. When input of nested data is finished, the part of XML document
associated to one row from R* is closed. The closing depends on a
way how the tables are mapped to the document.

3. According to the given order all yet non-processed R are consecutively
chosen. Data of each R* is processed according to the mapping rules.
The entire XML document is closed by the end tag of the root element.

Implementation

For implementation it is necessary to gain all important about R. This in-
formation is stored in the system tables in a way which differs in various
RDBMSs. A lot of special parameterized SQL queries have to be con-
structed for this purpose. For our implementation the Interbase RDBMS
has been used and application development environment Delphi 6. Any
transfer of the system to another RDBMS would require a change of this
part.

Generating schemes is completely independent on RDBMS. As a parser
and validator of XML documents we used Altova XMLSpy 2005 tool.

Conclusions

The problem addressed in this paper is related to exporting relational data
in a native XML store. Our algorithm is designed with respect to the rules
recommended by the specification SQL/XML. In implementation we had

12 Jaroslav Pokorny and Jakub Reschke

to change some details of this specification, as it not followed through. In
opposite case, the generated XML documents could be not valid against
the generated XSD.

An open problem is how to preserve more integrity constraints in XSD,
i.e. these ones contained in the CHECK clause of CREAT TABLE state-
ment of SQL. As yet this case is not tackled in a satisfactory way.

Acknowledgement

This research was supported in part by the National programme of research
(Information society project 1ET100300419).

References

Bray T, Paoli J, Sperberg-McQueen CM, Maler E (2004) Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). W3C, www.w3.org/TR/REC-xml.

Clark J, DeRose S (1999) XML Path Language (XPath) Version 1.0. W3C, No-
vember www.w3.org/TR/xpath.

Duta C (2003) Conversion from Relational Schema to XML Nested-Based
Schema. MSc. Thesis, Calgary, Canada.

Fallside DC, Walmsley P (2004) XML Schema Part 0: Primer. W3C,
www.w3.org/TR/xmlschema-0/.

ISO (2004) Information technology – Database languages – SQL – Part 14: XML-
Related Specifications (SQL/XML). ISO/IEC 9075-14:2004.

ISO 2003 Information technology – Database languages – SQL – Part 2: Founda-
tion (SQL/Foundation). ISO/IEC 9075-2:2003.

Lee D, Mani M, Chiu F, Chu WW (2001) Nesting-based Relational to XML
Schema Translation. Int'l Workshop on the Web and Databases (WebDB),
Santa Barbara, CA.

Lee D, Mani M, Chiu F, Chu WW (2002) Effective Schema Conversions between
XML and Relational Models. Proc. of European Conf. on Artificial Intelli-
gence (ECAI), Knowledge Transformation Workshop (ECAI-OT), Lyon,
France.

Liu Ch, Liu J, Guo M (2003) On Transformation to Redundancy Free XML
Schema from Relational Database Schema. Proc. of APWeb 2003, LNCS
2642, pp 35-46.

Reschke J (2005) Transformations of relational database schemes to XML
schemes. MSc. Thesis, Charles University, Prague, (in Czech).

Vincent MW, Liu J, Liu Ch (2004) Redundancy Free Mappings from Relations to
XML. Proc. of WAIM 2004, LNCS 3129, pp 346-356.

W3C (2001) Semantic web. http://www.w3.org/2001/sw/.

