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“Everything that’s worth understanding about a complex system
can be understood in terms of how it processes information.”

Lloyd’s Hypothesis [10]

Abstract. We look for computational limits of artificial, natural and
hybrid cognitive and intelligent systems. The common basis for such
studies is offered by computationalism, i.e., the belief that cognitive or
intelligent processes, respectively, are in essence computational processes.
We show that in principle cognitive systems might exist whose compu-
tational power outperforms that of Turing machines and that even in
practice we observe the rudiments of such systems. These results point
to the fact that the so–called Church–Turing Thesis, dealing with the
central position of Turing machines in the world of computations and
algorithms, must be seen in the context of physical principles exploited
by the cognitive systems, and in that of the communication scenario
between the system and its environment.

1 Introduction

The term “cognition” usually denotes the activities by which the living organ-
isms collect, process, store and utilize information. These activities especially
include perception, learning, memorization, and decision making [11]. W.r.t.
this definition intelligence can be seen as a part of cognition which is less in-
terested in perception and focuses mainly to the quality of cognitive processes.
Both cognition and intelligence are related to information processing. The so–
called computationalism heralds the belief that human, or biological cognition
and intelligence present a specific kind of computations (cf. [3]). The proponents
of this school of thoughts claim that the computational modelling of cognitive
abilities of living organisms is at least in principle possible and that in this way
one can achieve if not a genuine than at least an approximative capturing of all
mental faculties (inclusively of thinking and consciousness) and the explanation
of the underlying algorithmic principles. In the sequel we will be interested in
the efficiency of abstract computational devices used in computational cognition
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modelling of living organisms. We will measure this efficiency by the standard
methods used in the computational complexity theory, i.e., we will compare it
to the efficiency of standard basic models known within this theory. We will
look for the computational limits of the cognitive models. We will be especially
interested in their efficiently in processing the data in order to solve cognitive
problems and, last but not least, whether there are cognitive problems which, in
principle, cannot be solved by these models. In the rest of this abstract we will
be simply speaking only about cognition which in the framework of its previous
informal definition also seems to be a key notion for the definition of intelligence.

By the end of the past century computationalism has obtained an unexpected
support both from the theoretical physics and computer science. In 1985 a pa-
per by the theoretical physicist D. Deutsch appeared [5] showing that any real
(dissipative) finite physical system can be efficiently simulated by a quantum
computer. Since a quantum computer can be simulated by a Turing machine
(albeit, as it seems, quite inefficiently) we have a proof of the computationalis-
tic claim that, e.g., man can be genuinely simulated, at least in principle, by a
quantum computer. Another result from the computational complexity theory
asserts that this simulation will be efficient, indeed (it will be of polynomial time
complexity w.r.t. the size of the simulated physical system [2]).

In our approach we will further generalize the scope of computationalism by
proceeding beyond the cognitive abilities of living organisms per se: our con-
siderations will include any organisms (such as humans) equipped by whatever
device which will “strengthen” their cognitive capabilities, or allow their new
quality. The Hubble telescope mounted on a satellite encircling the Earth may
serve as an example of such a device of which the control and computing center
on the Earth is also a part. No doubts that such a machinery will strengthen the
cognitive abilities of an observer using this device. Clearly, using this device an
observer gets an access to data inaccessible to him by his own senses. Moreover,
these data are processed in a way which, without computers, is also beyond
men’s abilities. We will call the resulting system, i.e., an observer as well as his
or her apparatus, the cognitive system. The resulting “hybrid” cognitive system
is clearly endowed by a new quality of cognition which for a man without the
respective devices is unattainable. Let us be broad–minded by not insisting on
the cognitive device being really constructed and at one observer’s disposal in
his or hers experiments. We will be happy just with the gedankenexperiments,
i.e., with the situation when the assumed existence of a “cognitive amplifier”
does not violate any natural law. That is, we can be prevented in building such
a device by its price, its size, its large energy consumption, etc., but not by
the physical laws. We will also admit models comprising an unbounded, albeit
always finite, number of cognitive subjects. It means that in our thought experi-
ments we accept exploitation of all known properties of space–time, of quantum
and relativistic effects, the emergence of new universes, cultivation of the evolv-
ing colonies of living organisms, “growing-up” a human society communicating
over the Internet, etc. Standing firmly to the ground of computationalism, any
kind of devices just mentioned can eventually be thought of as a data processing
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system. In the end, using this rather general approach everything reduces to
the question about the limits of all “thinkable” cognitive (read: computational)
systems based on whatever principles obeying natural laws.

The investigation of the computational limits of various computational ma-
chineries belongs among the fundamental issues in the computability theory and
in the computational complexity theory. The computational power of a class of
computing devices relates to the set of computational problems which the device
at hand can in principle solve. The larger this set, the larger is the computational
power of devices in the given class. Along these lines, the standard upper bound
on the computational power of computational systems is offered by the so–called
Church–Turing Thesis (cf. [1], [7]) which, for our purposes, can be formulated
as follows1:

Church–Turing Thesis: The computational power of whatever class of com-
putational devices controlled by finite algorithms does not extend beyond the
Turing machines.

Of course, for the first time the Turing machine was defined by its inven-
tor, A.M. Turing in 1936 [12]. The Thesis itself was formulated later after the
first computers appeared. Note that what the Thesis claims is, in other words,
that there are no computational devices which could outperform Turing ma-
chines as far as their computational power is concerned. The Thesis cannot be
proven, since it does not specify exactly what is meant by “whatever class of
computational devices controlled by finite algorithms’ and henceforth one cannot
prove how a Turing machine could simulate such a class of devices. However,
provided we construct (or at least, we show how to construct) a device solving
the problems insolvable by any Turing machine, the Thesis will be refuted. In
the computability theory the problems which are in principle insolvable by any
Turing machine are called undecidable problems. The past has witnessed many
unsuccessful attempts to refute the Church–Turing Thesis. It is their failure
which eventually has lead to the thesis formulation and to the belief of its va-
lidity. Only quite recently has it appeared that the Thesis is to a certain extent
incompletely stated: the explicit assumptions under which the Thesis holds are
missing. These assumptions must concern the physical theory in the framework
of which the computational devices mentioned in the Thesis are realized (cf. [6])
and the way in which the system interacts with its environment [17]). As far
as the first condition is concerned, nowadays it seems that, roughly speaking,
as long as we stay within the world whose laws are well approximated by the
laws of the classical, newtonian physics and we only consider finite computa-
tions, the Thesis holds. However, should the “modern” physics be considered,
inclusively the quantum and relativistic physics, it appears that the Thesis need
not hold true [6], [8]. An alternate way for trespassing the Thesis is to consider a
more general scenario of computations than that assumed by Turing in its design
of the Turing machine. This idea leads to the so–called interactive evolutionary
computing systems characterized by potentially infinite computations interacting

1 The Thesis is known in many forms, we have chosen the one which stresses the
notion of the computational power.
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with their environment and by a continuous hardware modification during the
computations [16], [17]. Using these ideas one can capture the computational
behavior not only of living organisms over many generations, but also of the
Internet or similar evolving computing networks [17].

In the paper we concentrate on the cognitive systems of a certain type which
possess the potential for going beyond the Church–Turing Thesis. In order to
be able to speak about their deviations from the classical computations as re-
alized by Turing machines referred to by the Thesis, we first mention briefly
the computational systems whose computing mechanisms are akin to those of
the Turing machine and which do not refute the Thesis. Nevertheless, these
systems, modeling the cognitive subjects, will present a basis for construction
of more complex systems opening the door for attacking the Thesis (cf. [18]).
Based on works [6], [19] we then describe a relativistic cognitive system which
outperforms the Turing machines by realizing infinitely many computational
steps in a finite time when seen from a suitable observer’s point of view. We
will then proceed to the so–called evolutionary interactive systems which can
be realized either by the artificial systems resembling the Internet or by evolv-
ing communities of living organisms [18]. All machines refuting the thesis will
make heavy use of the external non–computational elements entering into the
design of the underlying machines (cf. [4]). In the theory, the non–computational
elements are modelled by so–called non-uniform algorithms. In fact, these algo-
rithms are algorithms of infinite length which exist in two forms. First, they
can be supported by infinite sequences of simple finite–size devices each of them
being capable to process inputs of greater size than its predecessors (cf. [1], [14],
[17]). Second, non–uniform computational device (or algorithms) can take form
of universal (i.e., programmable) machines making use of oracles [13] or of their
weaker relatives called advices [9]. The purpose of oracles or advices is to provide
non–computable information on demand. We show that all devices mentioned
above trespass the computational barrier imposed by the Turing machines and
all are equivalent to the so–called interactive Turing machine with advice [16].
We conclude our overview by stating the extended Church–Turing Thesis cap-
turing the computational potential of the contemporary computing technologies
as well as that of information processing in biological systems.

Extended Church–Turing Thesis: The computational power of whatever
class of interactive computational devices controlled by non–uniform algorithms
does not extend beyond the interactive Turing machines with advice.

The purpose of this survey has been to bring the recent developments related
to the Church–Turing Thesis to the attention of researchers working within the
field of artificial intelligence and artificial life. Irrespectively, whether the com-
putationalism is right in its approach to cognition and intelligence, the Thesis
and its modern form is crucial for understanding the limits of the computational
potential of any natural or artificial system whose behavior is based on data
processing.
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2 Should we rather model organisms by finite automata
or by Turing machines?

The basic notion we shall be using for a while is the notion of configuration
of some finite artefact, organism, or of a matter in a fixed space volume. All
these categories will be termed as devices. A configuration of a device is a term
relative w.r.t an observer of this device. Namely, an observer will say that in
two successive times a device is in the same configuration if for this observer
the device appears to be the same in these times. Of course, in order to be able
to tell apart the two configurations the observer can be equipped by a special
device. This means that for an observer the number of distinguishable configura-
tions is determined by the resolution ability of that observer. The contemporary
quantum physics sets a theoretical upper bound on the number of (quantum)
configurations a device of a given mass and volume can enter. S. Lloyd has
shown [10] that the number of quantum configurations which can be entered by
1 kg of a matter in a volume of 1 liter can be of order at most 1031. This is a
huge, but finite number which can bee seen as an upper limit on the memory
capacity of thinkably the most efficient memory of a given size. Matter achieves
such a capacity under extreme conditions existing perhaps during the big–bang.
Nonetheless, within the framework of the previous consideration any finite de-
vice can serve as a memory of a capacity given by observable, or measurable
physical parameters of this device.

Any device can be seen as a device computing in accordance with the given
sequence of transition rules (i.e., with a program) if and only if it fulfills the
following rather general conditions:

1. there must be a possibility to change the configuration of the device by the
input data interacting in a predetermined manner with the device;

2. it must be possible to set the device into a distinguished initial configuration;
3. the device in a given configuration interacting with the given input must

enter the next configuration; the dynamics of such a transition must cor-
respond to the transition rules, i.e., the device must “all by itself” cause
the transition from one configuration into the other in accordance with its
program;

4. the computational dynamics depends on the input data.

The property ensuring that the device causes something “all by itself” means
nothing else that there is a mechanism in the device working in the desired way:
the device is “made” in this way. The transition rule need not be known — it
is enough id it exists and it it finitely describable. The classical real computer
can serve as the prime example of such a device; here the transition rules are
known, similarly as in the case of of automatic teller machines, mobile phones,
etc. The brain presents another example of a computing device with the un-
known set of transition, but the computationalists believe that it does exist).
A rock, a picture, a memory card, a mathematical model of a Turing machine
are examples of devices which do not compute in the sense defined above. Note
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that we did not define neither the result of the computation, nor its termina-
tion. The has been done intentionally — our computing device should realize
potentially never ending computations. Stated differently, the device transforms
a potentially infinite stream of input data (which are called stimuli in the case of
cognitive systems)into a potentially infinite stream of output data called action
in the case of living organisms; the sequence of actions correspond to the be-
havior. In this case it is possible and the definition admits that some input data
can represent reaction of the environment to some actions. Hence we can speak
about interactive computations. Obviously, with the the device just described
we can also realize finite computations — simply by artificially restricting the
input stream. E.g., from a certain position the input stream will consist but of
empty symbols and we will be interested only in terminating computations.

In the sequel we will only deal with classical (i.e., with the discrete, non–
quantum) computational devices of a finite size. Formally, such a device is equiv-
alent to so–called interactive finite–state automaton with output, which are also
called interactive transducers [17].

Definition 1. An interactive finite–state transducer (IFT) T is a finite–state
automaton consisting of the finite–state control and the input and the output
port.

– The input port serves as the entry point through which T reads the input
data. These data are symbols from a finite input alphabet Σ. At each step
there is a symbol from Σ on the input port (it can also be the empty input
symbol ε ∈ Σ denoting “no input”); once a symbol is read, in the next step
a next input symbol will appear on the input port.

– The output port is the place where T sends in each move so–called output
symbols — the elements from the finite output alphabet Γ.

– The finite–state control is defined formally with the help of a finite set of
states Q and of a transition relation ∆. At each step the control is in one
state of Q. Transition relation is of form ∆ ⊆ Σ ×Q× Γ ×Q. An element
δ = (σ, q1, γ, q2) ∈ ∆ has the following meaning:“reading σ at the input port,
T in state q1 sends γ to its output port and enters state q2”.

Each IFT defines a relation between the input and output streams. In the
deterministic case to each input stream there is at most one output stream. This
is achieved by considering the transition function ∆ : Σ× → Γ × Q instead of
a relation of the form as described in Def. 1. In this case we speak about the
translation of the input stream to an output stream.

Thus, comparing an IFT with the commonly known finite–state automaton
with output (so–called Mealy automaton) we see that the input data for an IFT
are not given on an input tape before the start of a computation and there need
not be a finite number of them. That is why the output of an IFT can be an
infinite stream.

Some computing devices can have a specific ability to increase their memory
capacity. This can be achieved either by an additional mechanism or by connect-
ing several computing mechanisms together. This additional memory capacity
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enables these devices to create and explite a potentially unbounded set of con-
figurations. A so–called interactive Turing machine (ITM) (cf. [17]) can serve as
an example of such a device. An ITM is basically a standard Turing machine
which has no input tape. Instead, it reads the input symbols via the input port
and sends the output symbols to its output port. An ITM can be seen as an IFT
which in order to increase its memory capacity (depending on the cardinality
of Q) makes use of a potentially infinite tape. This tape alone cannot compute,
but in a symbiosis with an IFT which is endowed by the ability to move along
the tape while reading and rewriting the symbols on the tape, leads to a more
powerful computational device than was the IFT alone. An ITM computes all
what was computed by an IFT, but also more than that. This is because it can
enter more than a finite number of configurations.

In fact, an ITM computes more that the classical Turing machine. From the
viewpoint if its construction an ITM is the extension of a classical Turing machine
for the case of infinite input streams; this is what enables to an ITM to compute
“more” than the classical Turing machine. For instance, an ITM can process
an infinite sequence of finite data segments. Of course, each such segment can
also be processed by a standard Turing machine. However, the latter machine
has no means for “transferring” information obtained from processing a finite
segment in one run into the next run. This is simply because the standard Turing
machine, after terminating its computation, cannot be restarted from the state
in which it terminated its previous computation: according to its definition, the
standard Turing machine must start a new computation from its initial state,
with all its tapes empty. For instance, the standard Turing machine cannot
realize the following translation: if a segment of a stream gets accepted (the
machine produces 1), then the following segment will always be rejected (the
machine produces 0.) The computational abilities of ITMs are studied in [15].
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