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Abstract

A version of fuzzy description logic based on the basic (continuous
t-norm based) fuzzy predicate logic BL is presented. Problems of satis-
fiability, validity and subsumption of concepts are discussed and reduced
to problems of fuzzy propositional logic known to be decidable for any
continuous t-norm. For ÃLukasiewicz t-norm some stronger results are ob-
tained.

1 Introduction

Description logic has became extensively studied in last years; the handbook
[2] is an up-to-date reference. (See also [1].) It is known to be a fragment
of classical predicate calculus and has several variants; we restrict ourselves to
that named ALC. Its language consists of unary predicates A1, . . . (atomic con-
cepts), binary predicates R1, . . . (roles), variables x1, . . . and constants a1, . . . .
Concepts are built from atomic concepts using connectives ∧,∨,¬ and quantifi-
cation constructs denoted ∀R.C, ∃R.C. Think of instances of atomic concepts as
of formulas Ai(t) (t being a fixed constant or variable); this extends to (instances
of) concepts defined by connectives. Furthermore,

(∀R.C)(t) is to be read as (∀y)(R(t, y) → C(y))

(∃R.C)(t) as (∃y)(R(t, y) ∧ C(y)).

(For each construct always a new variable y is used.) Axioms may have the form
C(ai) (C a concept), R(ai, aj) (R a role) and (∀x)(C(x) → D(x)) (subsumption
of concepts). We simplify a little and will disregard (apriori) axioms. Typical
problems are:

satisfiability: does C(a) have a model?
subsumption: is (∀x)(C(x) → D(x)) true in all models?

∗This paper is a part of the Project number 1ET100300419 of the Program of the Infor-
mation Society of the Thematic Program II of the National Research Program of the Czech
Republic.
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Both problems are decidable (and are PSPACE-complete).
It is very natural, due to the intended applications, to make this system (and

related systems) fuzzy.1 The handbook [2] refers to papers [13, 11, 12]. These are
rather non-trivial papers but they restrict themselves to a rather poor apparatus
of fuzzy logic: just min and max as ∧ and ∨, 1− x (ÃLukasiewicz negation) and
max(1 − x, y) (Kleene-Dienes implication)2. The use of “minimalistic” fuzzy
apparatus has some technical advantages but makes the system(s) unnecessarily
weak.

Technically most developed are t-norm based fuzzy logics; the corresponding
propositional and predicate calculi are elaborated in the monograph [4] (basic
fuzzy logic BL and several stronger logics, notably ÃLukasiewicz, Gödel and prod-
uct logics).

The reader is assumed to be familiar with these logics, their standard and
general semantics. We just recall the definitions of ÃLukasiewicz, Gödel and
product t-norm and its residuum for x ∈ [0, 1],

x ∗ÃL y = max(x + y − 1, 0), x ∗G y = min(x, y), x ∗Π y = x · y

x ⇒ÃL y = x ⇒G y = x ⇒Π y = 1 for x ≤ y,

x ⇒ÃL y = 1− x + y, x ⇒G y = y, x ⇒Π y = y/x for x > y.

Note that in this paper we deal only with the standard semantics, given al-
ways by a fixed continuous t-norm; our set of truth values is just the unit real
interval [0, 1]. Our aim is to reformulate the description logic (ALC-like) using
this apparatus, formulate some typical problems and prove some preliminary
results; we also correct an (unessential) error in [13]. Our main technical con-
tribution is the systematic reduction of problems of satisfiability and validity of
concepts to problems of satisfiability and validity of some theories in proposi-
tional logic, problems that are known to be decidable. The paper should serve as
a programme of further deeper research, using more deeply results from the ex-
isting literature on description logic in combination with results of mathematical
fuzzy logic.

2 Main notions; an algorithm

Definition 1 (1) Given atomic concepts A1, . . . , An and roles R1, . . . , Rm, con-
cepts are defined as follows: atomic concepts are concepts; 0 (falsum) is a con-
cept; if C,D are concepts then so are C&D, C → D; if C is a concept and R a
role then ∀R.C and ∃R.C are concepts.

1Trivial example: the concept of a person, whose all children are tall; and of a person
having at least one tall child.

2[2] refers also to an older paper [14] dealing with different logical systems; [8] considers
use of various conjunctions and implications.
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(2) For each variable or constant t, the instance C(t) of a concept is defined
as follows: A(t) is the atomic formula in which A is understood as unary pred-
icate; 0(t) is 0; (C → D)(t) is C(t) → D(t), similarly (C&D)(t). Furthermore,
(∀R.C)(t) is (∀y)(R(t, y) → C(y)) and (∃R.C)(t) is (∃y)(R(r, y)&C(y)) where
y is a variable not occurring in C(t).

(3) Nesting of quantifiers in C (or C(t)) is defined inductively: nest(C) = 0
for atomic C, nest(C&D) = max(nest(C), nest(D)), nest(∀R.C) = nest(C)+1,
similarly for →,∃.

(4) Generalized atoms are instances of quantified concepts, i.e. (∀R.C)(t),
(∃R.C)(t). Evidently, each instance C(t) of any concept is a propositional combi-
nation of some atoms and generalized atoms; the latter will be called generalized
atoms of C(t).

Remark 1 Recall definable connectives ¬,∧,∨; thus if C, D are concepts then
also ¬C, C ∧D, C ∨D are concepts.

Example 1 ∀R1.∃R2.C &∀R2.D is a concept; its instance with a constant a is
(∀R1.∃R2.C)(a)&(∀R2.D)(a), i.e.

[(∀y)(R1(a, y) → (∃z)(R2(y, z)&C(z))]&(∀y)(R2(a, y) → D(y)].

Generalized atoms of our instance of this concept are (∀R1.∃R2.C)(a) and
(∀R2.D)(a).

Definition 2 Assign to each generalized atom G(a) (G atomic concept or a
quantified concept, a a constant) a propositional variable pG,a. Extend this to
all instances C(a) of concepts by defining

prop(0(a)) = 0,
prop(((C&D)(a)) = prop(C(a))&prop(D(a)) and similarly for (C → D)(a).

If T is a set of formulas (instances of concepts) let prop(T ) be the set of all
prop(α), α ∈ T.

∗
Now we describe an algorithm (in the style of cited papers on description

logic) assigning to each (closed) instance C0(a0) of a concept C0 with a constant
a0 a finite “witnessing” theory T (C0(a0)) important in what follows. The con-
struction takes steps 0, . . . , n where n is the degree of nesting of quantifiers in
C0. Each step will process some generalized atoms, produce some new constants
and new axioms and transfer some instances of concepts for processing in the
next step. The instances produced in step i will have degree of nesting n − i;
after step n is completed the algorithm will stop. The theory T in question
consists of all axioms produced in all steps. In details:

Definition 3 Given C0(a0), step 0 just transfers it to further processing in step
1; the constant a0 has level 0. For i > 0 step i processes generalized atoms of
formulas transferred from step i− 1; they have the form (QR.C)(b) where Q is
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∀ or ∃, R is a role, C a concept with nesting degree ≤ n− i and b is a constant
of level i. For each generalized atom α in question do the following:

If α is (∀R.C)(b) then produce a new constant dα and the axiom

(∀R.C)(b) ≡ (R(b, dα) → C(dα)).

If α is (∃R.C)(B) then produce dα and axiom

(∃R.C)(b) ≡ (R(b, dα)&C(dα)).

In both cases call the generated axiom the witnessing axiom for α and dα a
constant belonging to R, b.

After this is done for all α in question (in the present step) consider each α
once more and do the following:

If α is (∀R.C)(b) and dβ is any constant belonging to R, b and different from
dα, produce the axiom

(∀R.C)(b) → (R(b, dβ) → C(dβ)).

Similarly for α being (∃R.C)(b), produce

(R(b, dβ)&C(dβ)) → (∃R.C)(b).

All produced axioms and constants are of level i. Formulas C(dα), C(dβ) from
the axioms produced at this level and having positive nesting of quantifiers are
transferred for processing in the next level (if any). Observe that finitely many
constants, axioms and formulas for next processing have been generated and
that all the generated formulas for next processing have nesting of quantifiers
≤ n− i.

Clearly, the algorithm stops after the n steps are performed. As stated
above, T is the set of all axioms produced. We shall investigate properties of T
and of its propositional counterpart prop(T ).

From now on, fix a continuous t-norm ∗ (and its residuum ⇒); this gives
semantics of your fuzzy propositional and predicate calculus. In particular, each
evaluation e of propositional atoms by truth values from the real interval [0, 1]
defines uniquely the truth value e∗(ϕ) of each propositional formula built from
these atoms.

For each evaluation e of atoms of formulas in prop(T ) define an interpretation
Me of the predicate language as follows: Me is the set of all constants occur-
ring in formulas in T. For each atomic concept A let rA(d) = e(prop(A(d)))
if prop(A(d)) occurs in prop(T ); otherwise rA(d) = 0. Similarly, rR(c, d) =
e(prop(R(c, d)) if prop(R(c, d)) occurs in prop(T ), otherwise = 0.

Lemma 1 Let ∗ be a continuous t-norm. Assume that e is a ∗-model of
prop(T ). Then for each formula α = (∀R.C)(c) with prop(α) occurring in
prop(T ),

4



e(prop(α)) = ‖α‖∗Me
= ‖R(c, dα) → C(dα)‖∗Me

and for α = (∃R.C)(c) with prop(α) occurring in prop(T ),

e(prop(α)) = ‖α‖∗Me
= ‖R(c, dα)&C(dα)‖Me

Consequently, Me is a finite ∗-model of T (in the sense of predicate logic) and
e∗(prop(C0(a0)) = ‖C0(a0)‖∗Me

.

Proof: The proof is by induction on the degree of nesting of α. Assume α is
(∀R.C)(b); the proof for ∃R.C)(b) is dual. First let nesting degree of α be 1,
i.e. C does not contain any quantifiers. Then

‖(∀R.C)(b)‖∗Me
= ‖(∀y)(R(b, y) → C(y)‖∗Me

=
= inf

d∈Me

(‖R(b, d)‖ → C(d)‖∗Me
).

Observe that prop(R(b, d)) occurs in prop(T ) if and only if d belongs to
R, b in the sense of our algorithm; then ‖R(b, d)‖∗Me

= e(prop(R(b, d)) and
‖C(d)‖∗Me

= e(prop(C(d)) by the definition of Me since prop(R(b, d)) is a propo-
sitional variable and prop(C(d)) is a propositional combination of propositional
variables (due to the assumption on nesting.)

In particular, for the constant dα we get

e(prop(∀R.C)(b))) = ‖R(b, dα) → C(dα)‖∗Me
,

for any other constant d belonging to R, b we get

e(prop(∀R.C)(b))) ≤ ‖R(b, d) → C(d)‖∗Me

(since e gives value 1 to all axioms concerning R, b) and if d does not belong to
R, b then e(prop(R(b, d))) = 0, ‖R(b, d) → C(d)‖∗Me

= 1) and we get again

e(prop(∀R.C)(b))) ≤ ‖R(b, d) → C(d)‖∗Me
.

Thus infd∈Me ‖R(b, d) → C(d)‖∗Me
= e(prop((∀R.C)(b))) and hence

e(prop(∀R.C)(b)) = ‖(∀R.C)(b)‖∗Me
.

Similarly for nesting (i + 1), nesting i having been verified; now C(d) is a
propositional combination of atoms and generalized atoms with nesting ≤ i and
for all such formulas the e-value equals to the ∗-value in Me. 2

Observe that the Me-value of (∀R.C)(c) is ∗-witnessed in the following sense:
for any M, a closed formula (∀y)ϕ(y) is *-witnessed if ‖(∀y)ϕ(y)‖∗M (which is
the infimum of values of M -instances of ϕ(y)) is in fact equal to ‖ϕ(u)‖∗M for
some u ∈ M, thus the infimum is in fact the minimum. Similarly for witnessed
‖(∃y)ϕ(y)‖∗M (maximum). More generally, (∀y)ϕ(y, x1, . . . , xn) is *-witnessed
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in M if for any choice v1, . . . , vn ∈ M of values of x1, . . . , xn, the truth value
‖(∀y)ϕ(y, v1, . . . , vn)‖∗M equals ‖ϕ(u, v1, . . . , vn)‖∗M for some u ∈ M . Similarly
for (∃y)ϕ(y, x1, . . . , xn) and maximum. M is *-witnessed if all quantified for-
mulas are *-witnessed in M.

Lemma 2 Conversely, let M be a witnessed interpretation; expand the lan-
guage by constants from T and expand M by interpreting the added constants as
respective witnesses. For atoms α of formulas in prop(T ) define eM(α) = ‖α‖∗M.
Then eM is a ∗-model of prop(T ) and hence eM(C0(a0)) = ‖C0(a0)‖∗M.

Proof: The constant a0 is assumed to be interpreted in M; in step i+1 assume
the constants of level i have been interpreted in M. For each generalized atom
α = (∀R.C)(c) processed in step i choose an element u ∈ M witnessing that
atom and interpret dα by u (calling the expansion of M by these constants
again M). This means that ‖(∀R.C)(c) ≡ (R(c, dα) → C(dα))‖M = 1 and
analogously for α = (∃R.C)(c). Also the remaining axioms produced in this
step are obviously true in M. Thus setting, for each atom and generalized atom
α, e(prop(α)) = ‖α‖∗M , we get e∗(prop(ϕ)) = ‖ϕ‖∗M for each propositional
combination of atoms and generalized atoms occurring in T. In particular, the
(expanded) model M is a model of T and e is a model of prop(T ). 2

Remark 2 Let M be the (expanded) model as above and let M′ be its re-
striction to the (interpretations of) all constants of all levels. Then evidently
‖C(d)‖∗M = ‖C(d)‖∗M′ for all formulas C(d) processed in the construction of
T (proof by induction on the complexity of C; in particular, ‖C0(a0)‖M =
‖C0(a0)‖M′ and obviously, M′ is finite.

Corollary 1 If there is a ∗-witnessed ∗-model M with ‖C0(a0)‖∗M = v ∈
[0, 1] then there is a finite ∗-model M′ with ‖C0(a0)‖∗M′ = v. Consequently,
if (∀x)C0(x) is true in all finite models then it is true in all witnessed models (in
particular, for ÃLukasiewicz logic (∀x)C0(x) is then true in all models, see Sect.
3 for details).

Example 2 We show that in Gödel fuzzy logic we can have a concept satisfiable
in degree 1 in an infinite model but having value 0 in each finite model (and in
each witnessed model). The example in (¬∀R.A)& (¬∃R.¬A). Let N be the set
of natural numbers, let a = 0, ‖R(m,n)‖ = 1 iff m = 0 and n > 0, for n > 0 let
‖A(n)‖ = 1

n . Then

‖(∀x)(R(a, x) → A(x)‖ = inf
n
‖R(a, n) → A(n)‖ = 0, thus ‖¬(∀R.A)(a)‖ = 1,

‖(∃x)(R(a, x)&¬A(x)‖ = sup
n
‖R(a, n)&¬A(n)‖ = 0, thus ‖¬(∃R.¬A)(a)‖ = 1,

Now assume a model M in which an element a satisfies our concept in degree
1 and the formula (∀R.A)(a) is witnessed, i.e. for some d ∈ M, ‖R(a, d) →
A(d)‖ = 0. It follows ‖R(a, d)‖ > 0 and ‖A(d)‖ = 0 (Gödel implication!). Then
‖R(a, d)∧¬A(d)‖ = ‖R(a, d)∧ 1‖ = ‖R(a, d)‖ > 0, thus ‖(R(a, d)∧¬A(d)‖ = 0
and ‖(¬∃R.¬C)(a)‖ = 0, thus our concept has value 0, a contradiction.
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Remark 3 Let T be a theory over G∀ and ϕ a (closed) formula. Let ‖ϕ‖G
T

be inf{‖ϕ‖G
M |M a [0, 1]G-model of T}. Observe that ‖ϕ‖G

T is 0 or 1. Indeed,
if there is an M such that ‖ϕ‖G

M is an element of the open interval (0, 1) then
applying an increasing 1 − 1 mapping of [0, 1] onto itself you can produce an
isomorphic model M′ of T in which ‖ϕ|GM′ , is as small (positive) as you like;
thus inf{‖ϕ‖G

M|M an [0, 1]∗G-model of T} = 0. This applies to the infimum of
degrees of satisfiability of a concept: it is 1 or 0.

3 Satisfiability, validity, subsumption of concepts

Definition 4 A concept C is ∗-satisfiable if there is an interpretation M such
that ‖C(a)‖∗M = 1 (a being a constant); C is ∗-valid if for all M, ‖(∀x)C(x)‖∗M =
1; in particular, C is ∗-subsumed by D if C → D is ∗-valid.

Note that C is ∗-valid iff for all M, ‖C(a)‖∗M = 1 where a is a constant (since
C(x) contains no constants). Here we allow no apriori axioms; if you would have
some, a would have to be a new constant not occuring in your axioms. Our aim
is to discuss decidability of the three notions just introduced. How can we use
the algorithm from the preceding section? What is the impact of witnessing
quantified formulas?

First, clearly each finite model is ∗-witnessed, whatever your t-norm ∗ is
(finite suprema are maxima, analogously infima). Also clearly, there are infinite
models with some formulas not witnessed: if M interprets a unary predicate A,
for all elements u ∈ M the value ‖A(u)‖M is positive but the infimum over all
u is 0 then in M the formula (∀x)A(x) is not witnessed. Similarly for (∃x)A(x),
if sup ‖A(u)‖M is bigger than each ‖A(u)‖M.

Here we mention an error in [13]: In the proof of Lemma 13 point (1) part 4
(page 10) the authors assume that in a model (A, τ) the formula (∃R.C)(x) has
a value t and conclude that there is an element ξ in the model such that t is the
minimum (conjunction) of the values of R(x, ξ) and (ξ), i.e. that the formula
(∃R.C)(x), thus (∃y)(R(x, y) ∧ C(y)) has a witness. This may not be the case
as we have seen. Below we shall see how to overcome this defect.

Lemma 3 For ÃLukasiewicz t-norm ∗ and each ∗-model M (of a given predicate
language) there is an ∗-witnessed model M′ such that M is a submodel of M′

and M is elementarily equivalent to M′ (in the sense that for any closed formula
α, ‖α‖∗M = 1 iff ‖α‖∗M′ = 1).

Proof: Clearly it is enough to prove it for one fixed formula (∃x)ϕ(x) (since in
ÃLukasiewicz logic, (∀x)ϕ(x) is equivalent to ¬(∃x)¬ϕ(x)) and then to iterate
the construction countably many times. We use the extension of ÃL∀ by rational
truth constants r̄ for any rational r ∈ [0, 1] called RPL (rational Pavelka logic)
in [4]. Assume that the language of M contains names of all elements of M and
the crisply interpreted equality predicate (r=(a, b) = 1 iff a = b). The rational
theory RTh(M) of M is the union over all closed formulas α of the sets

Lα = {r̄ → α | r ≤ ‖α‖ÃLM, r rational}
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Uα = {α → r̄, | r ≤ ‖α‖ÃLM, r rational}.
In particular, RTh(M) contains these sets for each atomic closed formula
P (m1, . . . mn), P being a predicate and mi being (names of) particular elements
of M. RTh(M) is a consistent theory over RPL∀ and adding a new constant
c and the witnessing axiom (∃x)ϕ(x) ≡ ϕ(c) we get a conservative extension
T̂ of RTh(M) (see Appendix). By [4] 5.4.17 T̂ has a standard model M′.
We may identify each element m ∈ M with the corresponding element of M′

(named with the same constant); this is a one-one relation due to the presence
of crisp equality. And due to the presence of the axioms from Lα, Uα we see
that ‖α‖ÃLM = ‖α‖LM′ for each α. 2

But e.g. for Gödel t-norm this fails: think of a model M in which
‖(∀x)P (x)‖G

M = 0 but ‖P (u)‖G
M > 0 for all u ∈ M. Then ‖(∃x)¬P (x)‖G

M = 0
(Gödel negation), hence no M′ ⊇ M elementarily equivalent to M can contain
a witness for (∀x)P (x). The same for product logic and any logic having Gödel
negation.

Corollary 2 (1) Over ÃLukasiewicz logic, a concept C is satisfiable iff it is sat-
isfiable by a finite model iff the associated finite set prop(C(a))∪prop(T (C(a)))
is propositionally satisfiable.

(2) Over ÃLukasiewicz logic, a concept C is valid iff it is valid in all finite
models iff the propositional theory prop(T (C(a)) entails prop(C(a)), i.e. each
evaluation e of propositional variables which is an ÃL-model of prop(T (C(a)))
gives prop(C(a)) the ÃL-value 1.

Corollary 3 Over ÃLukasiewicz logic, the (standard) satisfiability and (stan-
dard) validity of a concept are decidable problems. (See the Appendix for
details.)

Remark 4 (1) Propositional satisfiability of a formula (or a finite set of for-
mulas) is NP in its size; but the size of the theory prop(T ) is not polynomial in
the size of C(a)). Similarly for entailment and co-NP. Recall that satisfiability
of a concept over classical logic is PSPACE-complete; thus our problems are
PSPACE-hard too.

(2) Note that the “minimalistic” logic of min, max, 1 − x is a sublogic of
ÃLukasiewicz logic and the Kleene-Dienes implication is definable; thus our proof
can be adapted to get proofs of (known) facts on the “minimalistic” fuzzy ALC.

(3) Clearly there are concepts satisfiable over ÃLukasiewicz but not our classi-
cal logic; the simplest example is the concept A ≡ ¬A (i.e. (A → ¬A)&(¬A →
A)).

4 On arbitrary continuous t-norms

In the preceding section we focused our attention to ÃLukasiewicz logic; here we
formulate consequences of our observations for a logic given by an arbitrary
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fixed continuous t-norm ∗. Here the reader is assumed to know the (Mostert-
Shields) representation of ∗ as an ordered sum of copies of ÃLukasiewicz, Gödel
and product t-norms. The ordered set of copies may not have a first element;
if it does have a first element and if it is ÃLukasiewicz we say that ∗ begins by
ÃL. Every ∗ not beginning by ÃL has Gödel negation (¬0 = 1,¬x = 0 for x > 0).
The following is a very useful observation (see [6]):

Lemma 4 (1) If ∗ begins by ÃL then, for any propositional formula ϕ,ϕ is ∗-
satisfiable iff it is ÃL-satisfiable.

(2) If ∗ does not begin by ÃL then for each ϕ, ϕ is ∗-satisfiable if it is satisfiable
in the classical Boolean logic.

Theorem 1 Let ∗ begin by ÃL. Then the following are equivalent, for any
concept C:

(1) C is satisfiable by a witnessed ∗-model,

(2) C is satisfiable by a finite ∗-model,

(3) prop(C(a)) ∪ prop(T (C(a))) is ∗-satisfiable

(4) prop(C(a)) ∪ prop(T (C(a))) is ÃL-satisfiable

Theorem 2 If ∗ does not begin by ÃL then the following are equivalent for any
concept C:

(1)–(3) as in the preceding theorem

(4) prop(C(a)) ∪ prop(T (C(a))) is boolean satisfiable.

Theorem 3 For any continuous t-norm ∗ an any concept C, the following are
equivalent:

(1) C is valid in all witnessed ∗-models

(2) C is valid in all finite ∗-models

(3) prop(T (C(a))) ∗-entails prop(C(a)).

All those there theorems are immediate consequences of our lemmas.

Corollary 4 For an arbitrary continuous t-norm ∗, witnessed ∗-satisfiability
and witnessed ∗-validity of a concept is decidable.

This is because propositional ∗-satisfiability and propositional ∗-entailment
are decidable, see the appendix.

Remark. Properties of witnessed models are further studied in the paper [5]
(in preparation).
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Problems. (1) Analyze computational complexity results from existing
papers on (fuzzy) description logic and their impact to our approach.

(2) In particular, analyze the problem of degree of satisfaction of a concept,
i.e. infM{‖C(a)‖ÃLM}

(3) Some proofs of decidability of problems of description logic used the fact
that they can be expressed in classical predicate logic having only two object
variables, which is decidable. Is ÃLukasiewicz predicate logic (Gödel, product
logic, BL) with only two object variables decidable? (Observe that ÃLukasiewicz
with two variables does not have finite model property: consider the formula

(∃x)(P (x) ≡ ¬P (x))&(∀x)(∃y)(P (x) ≡ (P (y)&P (y))).

5 Appendix

First we discuss computational complexity of propositional ∗-satisfiability and
∗-entailment. Then we prove a theorem on witnessing axioms used for a proof
of Lemma 3 above.

The fact that the set of all ∗-satisfiable is NP-complete was first proved for
ÃLukasiewicz ∗ by Mundici [10] (see also [4] for an alternative proof). Thus for
each ∗, we get the same result by Lemma 4 above. The co-NP completeness of
all ∗-tautologies was proved for ÃLukasiewicz in [10]; for Gödel and product in
[4] and for arbitrary ∗ in [7] as well as in [6]. For ∗-entailment the result seems
to be new (but easy from known facts).

Theorem 4 For each continuous t-norm ∗, the set of all pairs (ϕ, ψ) of (propo-
sitional) formulas such that ϕ ∗-entails ψ is co-NP-complete.

Proof: For ÃLukasiewicz inspect in [4] the proof of the fact that ÃL-tautologies
are co-NP: modify the algorithm assigning to each formula ψ a mixed integer
problem such that solutions of the problem give evaluation e such that e(ψ) < 1,
getting a very similar algorithm assigning to each pair ϕ,ψ a MIP-problem
whose solutions give e(ϕ) = 1 and e(ψ) < 1. For Gödel use classical deduction
theorem (valid for G∀) reducing entailment of ψ from ϕ to tautologicity of
ϕ → ψ. For product inspect the proof in [4] analogously to ÃLukasiewicz above.
Having all this inspect the proof of Haniková from [7, 6] and make corresponding
modifications. 2

∗
In the rest the reader is assumed to know basic facts on theories over the

fuzzy predicate logic BL∀ and stronger logics. Recall that T ′ is a conservative
extension of T if T ′ ⊇ T and each formula ϕ in the language of T provable in
T ′ is provable in T.

Lemma 5 Each theory T over ÃLukasiewicz logic ÃL∀ has a conservative exten-
sion T ′ containing witnessing axioms for all closed formulas beginning by a
quantifier.
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Proof: Clearly, it is enough to show that adding just one witnessing axiom is
conservative (and then iterate); moreover, it suffices to discuss only ∃ (due to
definability of ∀ from ∃ in ÃL∀). Thus let c be a new constant and assume

T, (∃x)ϕ(x) → ϕ(c) ` α

where α does not contain c. Then for some n,

T ` [(∃x)ϕ(x) → ϕ(c)]n → α

thus for a new variable y,

T ` (∀y)([(∃x)ϕ(x) → ϕ(y)]n → α)

(just replace c by y in the proof)

T ` (∃y)[(∃x)ϕ(x) → ϕ(y))n] → α; then by [4] 5.1.18 (10),

T ` [(∃y)((∃x)ϕ(x) → ϕ(y)]n → α and, by [4], 5.4. 15 (i),

T ` [(∃x)ϕ(x) → (∃y)ϕ(y)]n → α (here ÃL∀-provability is used!), and

T ` α, since the formula [. . . ] is evidently provable. 2

Our Example 2 above shows that adding a witnessing axiom may be non-
conservative over G∀ (and over Π∀-the same example). Thus an analogon of
Lemma 3 does not hold for G∀,Π∀; one has to work with witnessed models.
(Recall once more that each finite model is witnessed; also if you work with
Gödel logic over a fixed finite subset of truth values (v ⊆ [0, 1], 0 ∈ v, 1 ∈ v)
all models (finite or infinite) are witnessed. Also note in passing that BL∀ (and
hence each stronger logic) has the following conservation property.

Lemma 6 Let T be a theory such that T ` (∃x)ϕ(x), let c be a new constant.
Then T ∪ {ϕ(c)} is a conservative extension of T.

Conclusion

We hope to have shown two things: description logic can profit from advanced
fuzzy logic getting richer expressive possibilities (still decidable) and fuzzy logic
may profit from description logic by getting new problems and inspirations.
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