
1

XML IN THE WORLD OF (OBJECT-)RELATIONAL
DATABASE SYSTEMS

Irena Mlynkova and Jaroslav Pokornya

1. INTRODUCTION

XML1 is universally recognized as the standard for interchange and device-
independent representation of information. On the other hand, XML is recently
understood as a new approach to data modelling2, 3 A well-formed XML document or a
set of documents is an XML database and the associated DTD or schema specified in the
language XML Schema4 is its database schema. Implementation of a system enabling us
to store and query XML documents efficiently is developed today in different ways. We
do not discuss here native storage solution, i.e. a DBMS dedicated to manage XML data
collections. A more practical possible solution can be found in storing XML data in
(object-)relational DBMS. Moreover, this approach enables to provide XML with
missing database mechanisms (e.g. indexes, transactions, multi-user access, etc.).

Currently there is a relatively large number of works devoted to storing XML data,
including the special architectures like PDOM, CMS, XML Servers, XML Query
Engines, etc. We refer reader to Bourret2 for their comprehensive overview. Our
contribution is a summarization of recent XML storage techniques based on today’s
(object-)relational database technologies, their comparing and evaluation. We also
present own algorithm for mapping XML Schema structures to object-relational (OR)
schema. A more comprehensive discussion can be found in Mlynkova and Pokorny5.

For transferring the data between XML documents and (O)R structures so-called
mapping methods are of a great importance. A basic classification6 of existing mapping
methods includes the following three classes:

• generic methods, which do not use any schema of stored XML documents,
• schema-driven methods, which are based on existing schema of stored XML

documents, and
• user-defined methods, which are based on user-defined mapping.

Sections 2-4 contain an overview and possible classifications of the respective
methods. Their evaluation and discussion is in Section 5. Section 6 provides conclusions.

a Charles University, Faculty of Mathematics and Physics, Department of Software Engineering, Malostranske
nam. 25, 118 00 Prague 1, Czech Republic, {mlynkova,pokorny}@ksi.ms.mff.cuni.cz

I. MLYNKOVA AND J. POKORNY 2

2. GENERIC MAPPING METHODS

Generic mapping methods do not use (possibly) existing XML schema of stored
XML documents. They are usually based on one of two approaches – creating

• a general (O)R schema into whose relations any XML document regardless its
structure can be stored, or

• a special kind of (O)R schema into whose relations only a certain collection of
XML documents having a similar structure can be stored.

The former methods model an XML document as a tree T according to e.g. the OEM
model or the DOM model, while the latter reflect its special “relational” structure.

2.1 Generic-Tree Mapping

A typical representative of generic mapping is a group of methods called generic-
tree mapping7. An example of an XML document and its T is depicted in Fig. 1.

<person id=1 age=23>
 <name>Irena</name>
 <surname>Mlýnková</surname>
 <address id=2>
 <street>Podlesí 4943</street>
 <city>Zlín</city>
 </address>
</person>
<person id=3 age=30>
 <name>Jim</name>
 <surname>Beam</surname>
</person>
...

person person

1

2

age 3

23 age

30

name

Jim

surname

Beam
address

street city

Podlesí 4943 Zlín

name

surnameIrena

Mlýnková

Fig. 1. An example of a generic-tree

There are several methods for storing T, so-called edge, attribute, universal, and
normalized universal mapping.
Edge Mapping. This method stores all edges of T in the following table:

Edge(source, ord, name, flag, target)
The table contains identifiers of nodes connected by the edge (source and

target), name of the edge (name), a flag that indicates whether the edge is internal or
points to a leaf (flag), and an ordinal number of the edge within sibling edges (ord).
Attribute Mapping. In this mapping an extra table for each edge name (so-called
attribute) is established. The structure of these tables is similar to the previous case:

Edgename(source, ord, flag, target)
Universal Mapping. This method stores edges of T in so-called universal table, which
contains columns for all the attribute names described in previous method. In other
words, a universal table corresponds to the result of an outer join of all tables from
attribute mapping. If a1,...,ak are all the attribute names in the XML document, the
universal table can have the following structure:

Uni(source, orda1, flaga1, targeta1,...,ordak, flagak, targetak)

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 3

Obviously the universal table contains many NULL values.
Normalized Universal Mapping. This method tries to solve the main disadvantage of
universal mapping storing multi-valued attributes in separate, so-called overflow tables.
An overflow table is established for each attribute name, while its structure is the same as
in attribute mapping. The universal table then contains only one row per each attribute
name, others are stored in corresponding overflow tables.

There is also a plenty of variations of these methods. First, in all described
approaches the values in leaves can be stored either in separate value tables (each holds
values of a certain type) or in additional columns of existing tables. Other, so-called
hybrid methods can be created using combinations of the described approaches.

2.2 Structure-Centred Mapping

The structure-centred mapping8 considers all nodes of the tree T having the same
structure defined as a tuple ν = (t, l, c, n), where t is the type of the node (e.g.
ELEMENT, ATTRIBUTE, TEXT,...), l is the node label, c is the node content and n =
{ν1,...,νn} is the list of successor nodes. The paper8 considers the problem how to realize
mapping of the lists of successor nodes. It proposes three kinds of storage strategies
focusing on speeding up the access performance.
Foreign Key Strategy. Each tree node ν is simply mapped to a tuple with a unique
identifier and a foreign key reference to the parent node. The method is quite simple and
the stored tree can easily be modified. Nevertheless, its disadvantage is evident – the
retrieval of the data involves many self-join operations.
DF Strategy. In this strategy each node of T is given an index value (a couple of
minimum and maximum DF values), which represents its position in T. The DF values
are determined when traversing T in a depth first (DF) manner. A counter is increased
each time another node is visited. If a node ν is visited the first time its minimum DF
value νmin is set to the current counter value. When all child nodes have been visited, the
maximum DF value νmax is set to the current counter value (see Fig. 2).

Node3 (29,30)

Node1 (27,40)

Node4 (32,33)Node2 (28,31) Node5 (34,39)

Node6 (35,36) Node7 (37,38)

...

Fig. 2. An example of DF indexing

Using DF values relationships of nodes (e.g. sibling order, element-subelement
relationship, etc.) can easily be determined just by comparisons. For example, a node ν is
a descendant of node µ, if νmin > µmin and νmax < µmax. Moreover, as the nodes can be
totally ordered according to DF values, retrieving a part of a document is linear. The
weak point of this strategy is document update – in the worst case it requires to update
DF values of all nodes of the tree.

I. MLYNKOVA AND J. POKORNY 4

SICF Strategy. In this strategy each node of the graph is also given by an identification of
its position – in this case so-called simple continued fraction (SICF)

1
2

1
...
1

1

q
q

qk

+

+
=σ

where qi ∈ Ν (i = 1,...,k) are called partial quotients of σ and the expression <q1,...,qk>
partial quotient sequence. Sequences uniquely determine fractions and vice versa. The
SICF values are determined in the following way: the root node gets a seed value s ∈ Ν, s
> 1 (its SICF value is <s>). If a node ν has SICF value <q1,...,qm> and has n ordered child
nodes ν1,...,νn, then the SICF value for i-th child node is <q1,...,qm, i>.

The advantages and disadvantages of this strategy are similar to the previous one.

2.3 Simple-Path Mapping

This method9 assumes that queries over the stored XML data are path queries of an
XML query language. The main idea is to decompose XML documents into so-called
simple paths and to store them in the database. Each simple path is based on the relation
parent-descendant. Hence, each node in the graph retains its simple path. But as a simple
path contains neither position nor order information, these two are stored in the graph too.
The position information (called region) is a pair of a start and an end value, which are
assigned as follows: Each word occurrence is assigned an integer number corresponding
to its position within the document. Each tag is assigned a real number – its integer part
indicates the position of the preceding word and its decimal part indicates the position of
the tag being concerned in the current sequence of tags. The order information is
composed of occurrence plus and occurrence minus order information, which expresses
the index number of the node within its parent node (see Fig. 3).

All the information about T is stored in following four relations:
Element(docID, pathID, index, reindex, pos)
Attribute(docID, pathID, attvalue, pos)
Text(docID, pathID, textvalue, pos)
Path(pathexp, pathID)
First three relations store information about each node type – document identifiers

(docID), path identifiers (pathID), plus and minus occurrence order (index and
reindex), regions (pos), attribute and text values (attvalue and textvalue). The
relation Path stores simple paths (pathexp) and path identifiers (pathID).

The main advantage of this method is apparent – storing simple paths of elements
and attributes simplifies and speeds up processing path queries.

2.4 Monet Mapping

The tree model of XML data in the Monet mapping10 is slightly different than in the
previous methods (see Fig. 4). The main idea of this method is based on a complete
binary fragmentation of T to binary associations, which describe different parts of the tree
(edges, attributes, the topology of the document).

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 5

<book style="textbook">
 <title>Designing XML applications</title>
 <author>
 <family>Nick</family>
 <given>Marcus</given>
 <family>Bob</family>
 <given>Pant</given>
 </author>
</book>

/book
(0.1,7.3)
0,-1

/book/title
(0.2,3.1)
0,-1

/book/@style
textbook
(0.1,0.1)

/book/author
(3.2,7.2)
0,-1

/book/title
Designing XML
applications
(1,3)

/book/author
 /family
(3.3,4.1)
0,-2

/book/author
 /family
Nick
(4,4)

/book/author
 /given
(4.2,5.1)
0,-2

/book/author
 /given
Marcus
(5,5)

/book/author
 /family
(5.2,6.1)
1,-1

/book/author
 /family
Bob
(6,6)

/book/author
 /given
(6.2,7.1)
1,-1

/book/author
 /given
Pant
(7,7)

Fig. 3. An example of a simple-path tree

The associations, which bear semantically related information, are stored in relations
together. Such information is related to definition of a path(o) as a sequence of (vertex
and edge) labels along the path from the root node to o (where →e and →a denotes edge
to an element and attribute, respectively), e.g.:

path(o3) = bib →e article →e author
path(“Ben Bit”) = bib →e article →e author →e cdata →a string
Each path then describes the position of an element in T relative to the root node. At

the same time, path(o) is used to denote the type of binary association (. , o). All
associations of the same type are stored in the same binary relation.

The advantage of this method is, that it avoids large and expensive scans over
irrelevant data, the disadvantage is the high degree of fragmentation, which can increase
efforts to reconstruct the original document or its parts.

<bib>
 <article key="BB88">
 <author>Ben Bit</author>
 <title>How to Hack</title>
 </article>
 <article key="BK99">
 <author>Ed Itor</author>
 <author>Ken Key</author>
 <title>Hacking and RSI</title>
 </article>
</bib>

bib o1

article o2

author o3

cdata o4

title o5

cdata o6

article o7

author o8

cdata o9

title o12

cdata o13

author o10

cdata o11

"Ben Bit"

string

"How to
Hack"

string

"Ed Itor"

string

"Ken Key"

string

"Hacking
and RSI"

string

"BK99""BB88"
keykey

Fig. 4. An example of a Monet tree

I. MLYNKOVA AND J. POKORNY 6

2.5 Table-Based Mapping

A typical representative of the approach that enables to store only a certain collection
of XML documents having similar structure is called table-based mapping2. It is based on
the assumption, that the stored XML documents have a regular structure reflecting
database, tables, rows, and columns. The mapping between elements and relations is
exactly defined by the structure of the XML document. Apparently, this method is
suitable especially for transferring the data between two relational DMBSs.

3. SCHEMA-DRIVEN MAPPING METHODS

Schema-driven mapping methods are based on existing schema S1 of stored XML
documents, written in DTD or XML Schema, which is mapped to (O)R database schema
S2. The data from XML documents valid against S1 are then stored into relations of S2.
The purpose of these methods is to create optimal schema S2, which consists of
reasonable amount of relations and whose structure corresponds to the structure of S1 as
much as possible. All of these methods try to improve the basic mapping idea “to create
one relation for each element composed of its attributes and to map element-subelement
relationships using keys and foreign keys”.

3.1 Common Characteristics

Schema-driven mapping methods have several common basic principles6 resulting
from information stored in the XML. The most important ones are:

• Subelements with maxOccurs = 1 are (instead of to separate tables) mapped
to tables of parent elements (so-called inlining).

• Elements with maxOccurs > 1 are mapped to separate tables. Element-
subelement relationships are mapped using keys and foreign keys.

• Alternative subelements are mapped to separate tables (analogous to the
previous case) or to one universal table (with many nullable fields).

• If it is necessary to preserve the order of sibling elements, the information is
mapped to a special column.

• Elements with mixed content are usually not supported.
• A reconstruction of an element requires joining several tables.

3.2 Possible Classifications

The considered methods have several common features according to which they can
be classified quite differently.
Source XML Schema. An obvious classification is based on the type of S1. Most of these
methods are based on DTD. The reason for this is, that although the DTD is quite simple,
it is still sufficient for most applications. On the other hand, although the XML Schema is
much more complex and thus difficult for learning, it contains useful features that DTD
lacks and gives users more powerful tool for describing the allowed structure of XML
documents. At present, there are also several methods (e.g. XMLSchemaStore mapping
or LegoDB mapping), which try to exploit these features.

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 7

Target Database Schema. The methods differ also according to the S2. In this paper two
possibilities are concerned – relational or object-relational approach. Most of the methods
are based on the former one, since the relational databases and their features managed to
gain more focus than others (including OR ones). Despite of this fact there are several
methods, which try to take the advantage of OR features, such as NF2-relations (e.g.
Hybrid object-relational mapping) or user defined data types and references (e.g.
XMLSchemaStore mapping).
Flexibility. Another classification6, 11 includes two classes – fixed and flexible methods.
Fixed methods (e.g. Basic, Shared, and Hybrid algorithms, etc.) are those, which do not
use any other information than S1 itself and whose mapping algorithm is straightforward.
On the other hand, flexible methods (e.g. LegoDB mapping or Hybrid object-relational
mapping) use the additional information (e.g. query statistics, element statistics, etc.) and
focus on creating an optimal schema for a certain application.

3.3 Algorithms Basic, Shared, Hybrid, and Derived Algorithms

The best-known representative of fixed schema-driven mapping methods is a group
of three algorithms for mapping a DTD to relational schema called Basic, Shared, and
Hybrid12. The main idea is based on a definition of a directed graph, so-called DTD
graph, which represents the processed DTD. Nodes of the graph are elements (which
appear exactly once), attributes, and operators (which appear as many times as in the
DTD). Edges of the graph represent element-attribute, element-subelement or element-
operator and operator-subelement relationships. Each DTD is also first pre-processed and
simplified to contain only ? and * operators and flat expressions (see Fig. 5).

<!ELEMENT author(name?,surname)>
<!ELEMENT name(#PCDATA)>
<!ELEMENT surname(#PCDATA)>
<!ELEMENT book(author*,title)>
<!ATTLIST book published CDATA>
<!ELEMENT title(#PCDATA)>
<!ELEMENT article(author)>
<!ATTLIST article paper CDATA>

author

?

name

surname

book

title* published
article

paper

Fig. 5. An example of a DTD graph

These algorithms try to gradually improve the idea “to create one relation for each
element”. They differ according to the amount of redundancy they may cause.
Basic Algorithm. The Basic algorithm combines two approaches:

• to inline as many descendants of an element as possible and
• to create a relation for each element in the DTD graph.

In the former case only two kinds of element-subelement relationships are solved
using keys and foreign keys – subelements with multiple occurrence (indicated by the use
of * operator) and recursion (indicated by cycles in the graph). The main disadvantages
of this algorithm are obvious – a huge amount of unnecessary relations and a great deal of
redundancy since an element node can be represented in several relations.

I. MLYNKOVA AND J. POKORNY 8

Shared Algorithm. The Shared algorithm tries to avoid the drawbacks of Basic. The idea
is to identify elements that are represented in multiple relations and to share them by
creating separate relations for them. The mapping rules are:

• Nodes with an in-degree of one are inlined to parent relations.
• Nodes with an in-degree of zero are stored in separate relations.
• Repeated elements are stored in separate relations.
• Of all mutually recursive elements having an in-degree one, one of them is

stored in a separate relation.
• The problem of inlined elements, which can become roots of an instance XML

document, is solved using a flag for each element that indicates this state.

Apparently the main advantage of the Shared algorithm is the reduced amount of
relations and redundancy. Its main disadvantage is the number of join operations
necessary for restoring an element, which can be worse than in Basic.
Hybrid Algorithm. The Hybrid algorithm tries to combine the join reduction properties of
Basic with the sharing features of Shared. The algorithm is similar to Shared except for
additional inlining of elements with an in-degree greater than one, that are neither
recursive nor reached through a * node.
CPI Algorithm. CPI (Constraints-Preserving Inlining) method13 can be based e.g. on the
mentioned Hybrid algorithm. Its main purpose is to capture not only the structure of the
DTD but the semantic constraints as well. The considered constraints are e.g. domain
constraints, cardinality constraints (i.e. +, *, ? operators), referential integrity (i.e. ID,
IDREF, IDREFS types), etc. These constraints are represented using corresponding SQL
constraints e.g. NOT NULL, UNIQUE, PRIMARY/FOREIGN KEY, CHECK, etc.

3.4 Object-Relational Mapping

Object-relational mapping14 uses the word “object-relational” in a bit confusing way,
since it does not denote the type of S2 but the two steps of the algorithm. S1 is expressed
either in DTD or XML Schema; S2 is relational in all cases. The two steps are:

1. S1 is mapped to an object schema expressed in an object-oriented language.
2. The object schema is mapped to S2.

Obviously, if the object schema is not essential, it can be eliminated.
The object schema models S1 as a tree of objects. In this step element types with

PCDATA-only content and attribute types are considered as simple types. Element types
with element or mixed content, or element types with attributes are considered as
complex types. The mapping rules can be summed as follows:

• simple types → scalar data types,
• complex types → classes with each element type in the content model mapped

to a property of the class – the data type of each property is either the scalar data
type or a pointer/reference to the corresponding object,

• attributes → properties,
• subelements in a sequence or a choice → properties (whereas in the latter case

the corresponding columns in the relational schema will be nullable),
• repeated subelements → multi-valued properties of (un)known size,

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 9

• mixed content → a multi-valued property for storing PCDATA-values plus
additional order columns for each property sharing the same order space.

An example of a DTD and associated schemes is in Fig. 6.

DTD:
<!ELEMENT A(B,C)>
<!ELEMENT B(#PCDATA)>

<!ELEMENT C(D,E)>
<!ELEMENT D(#PCDATA)>
<!ELEMENT E(#PCDATA)>
<!ATTLIST E F CDATA>

object schema:
class A {
 String b;

C c; }

class C {
 String d;
 String e;
 String f; }

relational schema:
A(b,cfk)

C(pk,d,e,f)

Fig. 6. An example of object-relational mapping for DTD

For XML Schema the transformation is similar, the differences are related to

additional features XML Schema has. The step doing object-to-relational transformation
does not distinguish from usual approaches used in today’s software engineering.

3.5 Constraints Preserving Mapping

Constraints preserving mapping15 preserves not only the structure of S1 but also the
variety of semantic constraints XML Schema enables to express.

XML Schema structures are formally represented by the regular tree grammar called
FD-XML15. An extension of ER model, so-called EER model, is proposed and the FD-
XML is converted into EER schema. Then, the EER schema is simplified and optimized,
preserving both the structure and the semantic constraints and finally, the simplified EER
schema is converted to relational schema. The EER model uses (min, max) cardinalities,
arrowheads modelling parent-child relationships, and accessories in order to preserve the
data constraints (see Fig. 7).

E1
<schema>
 <element name="E1" type="T1"/>
 <complexType name="T1">
 <sequence>
 <element name="E2" type="string"/>
 <element name="E3" type="int"/>
 <element name="E4" type="decimal minOccurs="0"/>
 </sequence>
 <attribute name="A1" type="string"/>
 </complexType>
</schema>

has T1
1,1 1,1

A1

E2 E3

has has

1,1

1,1 1,1

E4

has

0,1

1,1 1,11,1

Fig. 7. An example of mapping an XML schema to an EER diagram

The rules for simplification of the EER schema include converting an entity to its
parent entity’s attribute and removing a subentity from its parent entity if possible. The

I. MLYNKOVA AND J. POKORNY 10

rules for transforming the simplified EER schema to relational schema are similar to
well-known algorithms for design of relational databases.

3.6 XMLSchemaStore Mapping

XMLSchemaStore mapping5 maps S1 expressed in XML Schema to OR schema
expressed in SQL:1999b standard16. It tries to preserve the structure as well as semantic
constraints of the S1 in the S2 and to exploit OR features of the SQL:1999 standard.

The mapping rules are as follows:

• built-in and user-defined simple type → corresponding database simple type
(eventually) together with corresponding integrity constraint(s),

• complex type and model group → OR user-defined type (UDT), whereas:
o XML attributes → UDT attributes with corresponding simple types,
o simple element content → UDT attribute with corresponding simple type,
o element-subelement relationship → UDT attribute, whose type is (according

to the allowed occurrence and the type of the subelement) either the UDT of
the subelement or the REF/ARRAY of REF to the UDT,

• deriving of complex types → UDT inheritance,
• element (according to its type and allowed occurrence) → own typed tablec or a

typed column of the table which corresponds to its parent element.

S2 can be then described as a set of typed tables connected using references.
The mapping algorithm is based on traversing a directed graph called DOM graph

(see Fig. 8), whose edges determine the “order” in which the UDTs and typed tables
should be created to follow reference properties.

schema

element

type
name

simpleType

restriction

name

base
length

value

complexType

sequence

element

ref

type
name

attribute

<schema>
 <complexType name="T1">
 <sequence>
 <element ref="E1"/>
 </sequence>
 <attribute name="A1" type="T2"/>
 </complexType>
 <element name="E1" type="string">
 <simpleType name="T2">
 <restriction base="string">
 <length value="5"/>
 </restriction>
 </simpleType>
</schema>

name

Fig. 8. An example of a DOM graph – the solid lines correspond to original edges of the DOM tree; dash-and-
dot lines are the additional ones

The DOM graph results from the structure of a DOM tree of the given XML Schema

file in the following way:

b Latterly the SQL:2003 standard is at disposal. Its new type MULTISET can be used for unordered XML data.
c A table that is defined based on a UDT, i.e. rows of a typed table are instances of the corresponding UDT.

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 11

• The original edges of the DOM tree are directed to express the “direction” of
element-subelement or element-attribute relationship.

• New edges expressing the “direction” of the usage of globally defined items
(e.g. elements, complex types, etc.) are added.

The mapping is done while traversing the graph starting in schema node. First, all
descendants of a current node are processed, e.g. the UDTs and typed tables are created.
Second, the current node can be processed, since all necessary OR items already exist.

3.7 LegoDB Mapping

A representative of flexible schema-driven mapping methods is an algorithm
proposed in LegoDB system11. First the method defines fixed mapping of XML Schema
structures (for processing simplicity rewritten into syntactically simpler, but semantically
equivalent p-schemas) to relations. The flexibility is based on the idea to explore a space
of possible XML-to-relational mappings and to select the best one according to given
statistics including information about a sample set of XML documents and queries.

In order to select the best mapping the system in turns applies the following two
steps to the source p-schema, until a good result is achieved:

1. Any possible XML-to-XML transformation is applied to the p-schema.
2. XML-to-relational transformations are applied to the new p-schema and against

the resulting relational schema the given queries are estimated.

As the space of possible p-schemas can be large (possibly infinite), the paper11 also
proposes a greedy evaluation strategy that explores only the most interesting subset.

The XML-to-XML transformations used in the algorithm are: inlining/outlining,
union factorization/distribution, repetition merge/split, wildcards rewriting, and from
union to options. The XML-to-relational transformations are similar to those described in
the previously mentioned methods.

3.8 Hybrid Object-Relational Mapping

Another example of flexible schema-driven mapping methods is a hybrid object-
relational mapping17. It tries to improve the straightforward mapping of all elements and
attributes in a DTD to relations, which can lead to large database schemes, by storing
structured parts of the DTD in relations and semistructured parts in so-called XML data
types, which support path queries and fulltext operations for XML fragments.

The main concern of this approach is to decide which parts of the DTD are structured
and which semistructured. The suggested algorithm is as follows:

1. A graph (similar to above-described DTD graph) is built.
2. A measure of significance ω is determined for each element/attribute.
3. The resulting database design is derived from the graph.

The measure ω can be expressed as

QDS ωωωω
4
1

4
1

2
1

++=

I. MLYNKOVA AND J. POKORNY 12

where the used variables (weights) ωS, ωD, and ωQ are derived from the DTD structure,
the existing XML data, and the queries, respectively.

According to a given limit of ω (which influences the level of detail of S2) the
algorithm determines non-leaf nodes ν, each of which fulfils the following conditions:

1. All descendants of ν are below the given limit.
2. There exists no predecessor of ν that fulfils the condition 1.

All subgraphs consisting of these nodes and their descendants are replaced by an
XML attribute. The resulting graph is finally mapped using a fixed mapping method to
OR schema. The mapping (see Fig. 9) focuses on the use of structured or nested attributes
in NF2-relations, assuming the existence of SETd and TUPLE constructors.

<!ELEMENT chapter(ctitle, section+)>
<!ATTLIST chapter id ID REQUIRED>
<!ELEMENT ctitle(#PCDATA)>

<!ELEMENT section(stitle, paragraph+)>
<!ATTLIST section id ID REQUIRED>
<!ELEMENT stitle(#PCDATA)>

chapter=<id,ctitle,{section}>

section=<id,stitle,{paragraph}>

chapter = <id,ctitle,{<id,stitle,{paragraph}>}>
Fig. 9. An example of hybrid object-relational mapping

4. USER-DEFINED MAPPING METHODS

User-defined mapping methods are most often used in commercial systems. This
approach requires that the user first defines S2 and then expresses required mapping using
a system-dependent mechanism, e.g. a special query language, a declarative interface,
etc. At present, most of existing systems support some kind of user-defined mapping.

Obviously, this approach is the most flexible one. On the other hand, it requires large
development effort and moreover mastering of two distinct technologies (XML and
relational DBMS)11. The description of these methods exceeds the scope of this paper.

5. DISCUSSION OF MAPPING METHODS

Usually XML documents are classified into two groups according to their content,
structure, and supposed use – data-centric and document-centric2. The structure of data-
centric documents is typically known and is specified in DTD or XML Schema. In
document-centric documents the structure is typically specified using “mixed-content
models” with arbitrary inter-leaving of text with XML mark-up. The distinction between
these two groups is not generally obvious (documents which belong to both groups are
called hybrid documents). A usability of mapping methods depends on these categories.

Notice, there is probably no reasonable argument for comparing generic and schema-
driven methods together. Table 1 summarizes all discussed features of generic methods.
Generally speaking, these methods are most suitable in cases when no XML schema
exists. All mentioned methods are primarily determined for data-centric XML

d Compare with ARRAY in SQL:1999 or MULTISET in SQL:2003.

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 13

documents, but probably with extensions related to the above-mentioned document-
centric items they could be used for document-centric documents as well.

Table 1. Summary of generic mapping features

Considered features
Mapping CDATA sections,

comments,...
Mixed content
elements

Different data
types

Preserving the
element order

Generic-tree Not supported Not supported Supported Sibling order
Structure-centred Not supported Supported Not supported Total ordering
Simple-path Not supported Supported Not supported Sibling order
Monet Not supported Supported Not supported Sibling order

All mentioned features of schema-driven methods are summarized in Table 2. The
idea of flexible mapping methods is relatively new. There is no reason for asking whether
flexible methods are better than the fixed ones – apparently they are since the resulting
schema suits the given statistics at least as well as corresponding fixed method. Indeed
these methods can be obviously used only if it is possible to obtain necessary statistic
information. The interesting point is how to determine the “best” schema. Just two but
nevertheless quite different representatives were mentioned, whereas both are somehow
based on a sample set of XML documents and typical queries. Obviously, the most
flexible mapping is provided by user-defined mapping methods. Last but not least there is
the matter of the S2 schema. Without any doubts an OR schema solves the problems of
multi-valued properties in more natural way than it does a relational schema in the 1NF.

Table 2. Summary of schema-driven mapping features

Considered features
Mapping Source

schema
Target
schema

Mixed content
elements

Preserving
sibling order Flexibility

Basic, Shared,
Hybrid, CPI DTD Relational Not considered Can be

extended Fixed

Object-
relational

DTD/XML
Schema Relational Supported using

additional fields Supported Fixed

Constraints
preserving

XML
Schema Relational Not considered Not

considered Fixed

XMLSchema-
Store

XML
Schema

Object-
relational Not supported Supported Fixed

LegoDB XML
Schema Relational Not considered Not

considered Flexible

Hybrid object-
relational DTD Object-

relational
Supported using
XML-aware type

Can be
extended Flexible

To sum up, schema-driven mapping methods try to exploit the information in the
given XML schema as much as possible. Although they can preserve some document-
centric features (e.g. document order or mixed content elements), they are usually used
for data-centric XML documents.

I. MLYNKOVA AND J. POKORNY 14

6. CONCLUSIONS

This paper was trying to offer a general and clear summary of existing strategies for
connecting XML and database technologies, especially those related to relational and OR
systems. Several possible classifications were mentioned and discussed and the best-
known representatives of the classes were briefly described. Finally the general common
features, advantages, and disadvantages of the described methods were discussed.

There are several areas, which will probably be in the main focus of future works.
The first will apparently concern semantic constraints (especially those expressed using
XML Schema) that should be preserved in the target (O)R schemes. Several of the
mentioned methods partly focused on this area, but the current features of DBMSs and
relational languages still limit these approaches in many ways.

The second interesting point is connected with flexible mapping methods, which try
to optimize the fixed schema according to its future use. As there are no rules, which
define a “good” XML schema (such as, e.g., normal forms for relations), the fixed
mapping of a “bad” one can result in a “bad” relational schema. Thus an important task
may be to determine a definition of a “good” XML schema and ways how to establish it.

ACKNOWLEDGMENTS

This research was supported by GACR grants 201/02/1553 and by the National
programme of research (Information society project 1ET100300419).

REFERENCES
1. Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation (February 4, 2004);

www.w3.org/TR/REC-xml/.
2. XML and Databases (2003); www.rpbourret.com.
3. J. Pokorny, XML: a challenge for databases?, in Contemporary Trends in Systems Development, edited by

Maung K. Sein (Kluwer Academic Publishers, Boston, 2001), pp. 147 – 164.
4. XML Schema Part 0: Primer W3C Recommendation (May 2, 2001); www.w3.org/TR/xmlschema-0/.
5. I. Mlynkova and J. Pokorny, XML in the World of (Object-) Relational Database Systems, Technical Report

No. 2003-8, Dep. of Software Engineering, Charles University, 2003, 28 p.
6. S. Amer-Yahia and M. Fernandez, Overview of Existing XML Storage Techniques, AT&T Labs, 2001.
7. D. Florescu and D. Kossmann, Storing and querying XML data using an RDBMS, IEEE Data Engineering

Bulletin, Vol. 22(3), pp. 27 – 34 (1999).
8. A. Kuckelberg and R. Krieger, Efficient structure oriented storage of XML documents using ORDBMS,

Springer-Verlag Heidelberg, Vol. 2590, pp. 131 – 143 (2003).
9. T. Shimura, M. Yoshikawa, and S. Uemura, Storage and retrieval of XML documents using object-relational

databases, Proc. of DESA Conf., pp. 206 – 217 (1999).
10. A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas, Efficient relational storage and retrieval of XML

documents, Proc. of WebDB Conf., pp. 47 – 52 (2000).
11. P. Bohannon, J. Freire, P. Roy, and J. Siméon, From XML schema to relations: a cost-based approach to

XML storage, Proc. of ICDE Conf., p. 64 (2002).
12. J. Shanmugasundaram, K. Tufte et al., Relational databases for querying XML documents: limitations and

opportunities, Proc. of VLDB Conf., pp. 302 – 314 (1999).
13. D. Lee and W. W. Chu, CPI: constraints-preserving inlining algorithm for mapping XML DTD to relational

schema, Journal of Data & Knowledge Engineering, Vol. 39(1), pp. 3 – 25 (2001).
14. R. Bourret, C. Bornhövd, and A. P. Buchmann: A generic load/extract utility for data transfer between XML

documents and relational databases, Proc. of WECWIS Conf., p. 134 (2000).
15. H. Sun, S. Zhang, J. Zhou, and J. Wang: Constraints-preserving mapping algorithm from XML-schema to

relational schema, Springer-Verlag Heidelberg, Vol. 2480, pp. 193 – 207 (2002).
16. J. Melton, Advanced SQL: 1999 - Understanding Object-Relational and Other Advanced Features (2003,

Morgan Kaufmann Publishers).

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 15

17. M. Klettke and H. Meyer, XML and object-relational database systems – enhancing structural mappings
based on statistics, Informal Proc. of WebDB Workshop, pp. 151 – 170 (2000).

