
Bang: A Computational
Multi-Agent System

Creating hybrid AI models should be easy
(or at least easier)

Roman Neruda
roman@cs.cas.cz

http://bang.sf.net

Institute of Computer Science, ASCR
Prague, Czech Republic

Bang: A Computational Multi-Agent System – p.1



bang

Bang: A Computational Multi-Agent System – p.2



What?

Hybrid computational models
� Soft computing (L.Zadeh): creative fusion of

ANNs, EAs, FLCs, ...
� Benefits over individual methods
� No one underlying theory
� Importance of heuristics, experiments
� Practical skills required
� ... and we don’t have to focus on the SC only

(statistics, numerical analysis, ...)
Bang: A Computational Multi-Agent System – p.3



How?

Multi-agent systems (MAS)
� Agents encapsule computational algorithms
� Distributed execution
� Interchangeability
� Autonomous behavior
� Emergence

Bang: A Computational Multi-Agent System – p.4



Where?

Bang:
� tool for creating

multi-agent
computational
systems

� creation, dis-
tributed run,
performance
analysis

Bang: A Computational Multi-Agent System – p.5



Why?

� combinations rather than individual methods
� complexity estimation and real-time analysis
� distributed execution (clusters of workstations)
� as autonomous/automated as possible
� for researchers and users

Bang: A Computational Multi-Agent System – p.6



Who?

Bang: A Computational Multi-Agent System – p.7



Talk outlines

� Agents and MAS
� Agents that socialize
� Agents that are clever
� Agents that evolve

Bang: A Computational Multi-Agent System – p.8



PART I

� Agents and MAS
� agent definition
� computational agents
� Bang as a ’middleware’

� Agents that socialize
� Agents that are clever
� Agents that evolve

Bang: A Computational Multi-Agent System – p.9



Autonomous agent

� a system situated within,
� and a part of an environment,
� senses that environment,
� and acts on it, over time,
� in pursuit of its own agenda,
� and so as to efect what it senses in the future.

[S. Franklin: Is it an agent or just a software?]

Bang: A Computational Multi-Agent System – p.10



Intelligent agent

� pro-activeness: able to exhibit goal-directed
behavior by taking the initiative in order to
satisfy their design objectives;

� reactivity: able to perceive their environment,
and respond in a timely fashion to changes that
occur in it in order to satisfy their design
objectives;

� social ability: capable of interacting with other
agents (and possibly humans) in order to
satisfy their design objectives.

Bang: A Computational Multi-Agent System – p.11



Agents in Bang

� computational agents: neural nets (MLP, RBF),
GA suite, Kohonen maps, vector quantization,
decission tree

� computational helpers: linear system solver,
gradient descent optimization

� task-related: data source, task manager, file
system wrapper

� system: launcher, yellow pages, ontology
services, debugger, profiler

� other: MASman, console, GUI
Bang: A Computational Multi-Agent System – p.12



Bang as a middleware

� support for agents life-cycle: creation,
migration, persistence,

� communication: message encoding, delivery
� resource allocation: memory, processor, disk
� complexity analysis: parallelization profiling
� airport on each computer, TCP/IP
� agent granularity: monolithic system / 1 or

more threads per agent / processes
� user interface

Bang: A Computational Multi-Agent System – p.13



Bang as a software

� written in C++, gcc 3.x,
� POSIX, curses, X, Tcl/Tk, prolog, PAPI
� runs on Linux, SGI, Solaris, CygWin
� base code : 0.6MB of C++
� agents: .3MB of augmented C++
� custom data types (XML-izable)
� in house memory management (Objective

C-like)

Bang: A Computational Multi-Agent System – p.14



PART II

� Agents and MAS
� Agents that socialize

� agent communication language
� messages, gates and interfaces
� multiagent schemes
� ontologies

� Agents that are clever
� Agents that evolve

Bang: A Computational Multi-Agent System – p.15



Agent Comm. Language

� superior to e.g. RPC/RMI/CORBA (actions or
propositions with semantics rather than just
object, declarative rather than method
invocation)

� message layer: sender, recipient, subject,
conversation id

� communication layer: qeury, inform, request
� content layer: encoded neural network, what

time is it?

Bang: A Computational Multi-Agent System – p.16



ACL in Bang

� message and communication layer based on
FIPA ACL (based on KQML)

� XML instead of LISP
� content layer inspired by DMG PMML and

Caltec XSIL
� support for building, parsing, catching the

messages
� synchronous/asynchronous message sending

Bang: A Computational Multi-Agent System – p.17



Gates and interfaces

In order to connect agents into MAS, define:
� gate: channel for outgoing messages
� interface: channel for incomming messages
� their types: named set of messages with clear

semantics (data source communication,
computation control, GUI,. . . )

Then, MAS scheme is set of agents with defined
connections (and some gates/interfaces to the outer
world).

Bang: A Computational Multi-Agent System – p.18



Example: GA as MAS

Selection

Optional blocks

Required blocks

Chromosom independent

Chromosom dependent
Fitness Operators

Genetics

Tuner

Shaper

Bang: A Computational Multi-Agent System – p.19



Example: RBF as MAS

GA

VQGA

RBF

Training set

GRAD

Least Squares Solver
VQ + GRAD + LS

Bang: A Computational Multi-Agent System – p.20



Ontologies

[T.Gruber: An ontology is a specification of a
conceptualization.]

� agreement to use a vocabulary (i.e., ask queries
and make assertions)

� agents commit to ontologies, can share
knowledge

� hiearachy of agents, gates/interface types,
tasks, agent properties

� description logics formalism (basis for
DAML+OIL)

Bang: A Computational Multi-Agent System – p.21



Ontologies example

atomic_concept(’igData’);

atomic_concept(’requestData’); % init/open/close/rewind/get info/next/random

message_type(’igData’, ’requestData’);

atomic_concept(’DataSource’);

interface(’DataSource’, ’igData’);

atomic_concept(’DataSourceConsumer’);

gate(’DataSourceConsumer’,’igData’);

atomic_concept(’IterativeComputation’);

IterativeComputation is Computation;

interface(’IterativeComputation’,’igIterativeCompControl’);

gate(’IterativeComputation’,’igIterativeToMonitor’);

hide(’IterativeComputation’,’igToMonitor’);

atomic_concept(’aRbfNetwork’);

aRbfNetwork is NeuralNetwork and IterativeComputation

and classInBang and SimpleTaskManager and Father;

gate(’aRbfNetwork’,’igSolveRepresentatives’); % ALloyd VQ

hide(’aRbfNetwork’,’igCommonCompControl’);

gate(’aRbfNetwork’ ,’igSolveLinEqSystem’); % LinearSystemSolver
Bang: A Computational Multi-Agent System – p.22



PART III

� Agents and MAS
� Agents that socialize
� Agents that are clever

� decission support for an agent
� accept/reject computations
� cooperation, pro-activness
� BDI architecture

� Agents that evolve
Bang: A Computational Multi-Agent System – p.23



Intelligent agents

� additional brain (not necessary)
� eavesdropping all agent conversation
� internal model of agent state, ...
� can provide advices to agent
� decission support in cooperation, task

acceptance
� generation of agent behavior, plans, ...
� adaptive

Bang: A Computational Multi-Agent System – p.24



Network of concepts

Bang: A Computational Multi-Agent System – p.25



State of agent

Bang: A Computational Multi-Agent System – p.26



Cooperation support

Bang: A Computational Multi-Agent System – p.27



BDI

accept/reject/find missing info/search for new info

Bang: A Computational Multi-Agent System – p.28



Example

Percy(356158647): Set to be cautious

Manager1(356158889): Set to be very persistent

Manager2(356158946): Set to be very cautious

Manager1(356158972): Assigning task 0 to MLP

Percy(356158976): Asking BDI what to do...

Percy(356159038): Computation accepted

Manager1(356159043): Training started, task 0

Manager2(356159043): Assigning task 0 to MLP

Percy(356159046): Asking BDI what to do...

Percy(356159104): Sorry, busy

Manager2(356159106): OOPS, we were rejected. We have to try again: 0

Manager2(356159110): Assigning task 0 to MLP

Percy(356159112): Asking BDI what to do...

Percy(356159170): Sorry, busy

Manager2(356159171): OOPS, we were rejected. We have to try again: 0

Manager2(356159183): Assigning task 0 to RBF

Manager2(356159193): Training started, task 0

Manager2(356159576): Task was finished:
Bang: A Computational Multi-Agent System – p.29



Brain helps

Bang: A Computational Multi-Agent System – p.30



PART IV

� Agents and MAS
� Agents that socialize
� Agents that are clever
� Agents that evolve

� evolutionary algorithm for MAS schemes
� reasoning about MAS
� hybrid search algorithm
� sci-fi

Bang: A Computational Multi-Agent System – p.31



Evolution of schemes

� MAS Scheme – a directed acyclic graph
� EA similar to Koza’s genetic programming:

� randomly create the initial population pop

� do {

• foreach g∈pop

· create the scheme, run and evaluate

its fitness

• using selection and genetic operators

generate new population

} until fitness<desired

Bang: A Computational Multi-Agent System – p.32



Experiments with evolution I

� Evolving arithmetical functions
� 2x + 1
� 0
� x3 − 2y − 3
� . . .

� Success depends on
� Function complexity
� Initial population
� Operator set and their parameters

(x2
+ y2 vs. x2

+ y2
+ 1)

Bang: A Computational Multi-Agent System – p.33



Experiments with evolution II

x3 − 2x2 − 3

Bang: A Computational Multi-Agent System – p.34



Evolving the "real" MAS

� automatically solve a given problem (data)
� consisting of agents like NNs, GAs, FLCs,

filters, data sources, visualizers, . . .
� requires a lot of computational power
� ontologies:

� hierarchies of agent types
� their roles
� their interfaces

� combining EA with logical reasoning

Bang: A Computational Multi-Agent System – p.35



Logical reasoning about MAS

Why use logical reasoning?

� Sanity check: Sort out non-functioning
systems during EA without having to actual
construct and test them.

� Fault Analysis: Isolate non-working parts of a
system, or parts that do not satisfy the
constraints.

� System Construction: From an incomplete
description, generate a MAS that satisfies the
constraints

Bang: A Computational Multi-Agent System – p.36



Declaring Agents

An agent is defined by. . .
� the agent’s properties
� constraints on these properties

Agent: DecisionTreeAgent

Properties: ComputationalAgent, Trainable,

hasGate(Input), hasGate(Output)

Constraints: connectedTo(Input, I), DataSource(I),

connectedTo(output, O), DataSink(O)

Bang: A Computational Multi-Agent System – p.37



Declaring MAS

� A MAS consists of agents and global
constraints that define required properties of
the MAS as a whole.

� Type of MAS: MAS must contain a
computational agent and a GUI agent
connected to it.

� Validity of configuration: For all connections
between agents, the input and the output gate
must match.

� Trust: All agents must trust the agents they
connect to.

Bang: A Computational Multi-Agent System – p.38



Evolution is cool

� Given just the task description – usually in the
form of a data set,

� and using tools we already have available:
ontology services, reasoner, EAs, MASman,
bunch of computational agents,

� we can "automatically" search for solutions –
hybrid models of the task,

� expressed as MAS schemes,
� and evaluate their performance, etc.

Bang: A Computational Multi-Agent System – p.39



Conclusions

� No one universal solution to all problems.
� Theory provides worst/best case scenarios, but

it’s the gray zone between we live in.
� Custom, possibly hybrid solutions:

� talk to other agents,
� gather experience, reason,
� evolve solutions.

� Bang might help with this.

Bang: A Computational Multi-Agent System – p.40



TODO:

� going WWW: html/http GUI, ...
� connection to Racer, KR-Hyper, ...
� FIPA-ACL interface, Agentcities, ...

Bang: A Computational Multi-Agent System – p.41



Credits

bang.sf.net
� Prague: P. Krusina, P. Kudova, P. Rydvan,

R. Vaculin, P. Soxac
� Koblenz: G. Beuster, A. Sinner
� Nimes: D. Pearson
� Chico: R. Renner, J. T. Stimatze

Bang: A Computational Multi-Agent System – p.42


	bang
	What?
	How?
	Where?
	Why?
	Who?
	Talk outlines
	PART I
	Autonomous agent
	Intelligent agent
	Agents in Bang
	Bang as a middleware
	Bang as a software
	PART II
	Agent Comm. Language
	ACL in Bang
	Gates and interfaces
	Example: GA as MAS
	Example: RBF as MAS
	Ontologies
	Ontologies example
	PART III
	Intelligent agents
	Network of concepts
	State of agent
	Cooperation support
	BDI
	Example
	Brain helps
	PART IV
	Evolution of schemes
	Experiments with evolution I
	Experiments with evolution II
	Evolving the "real" MAS
	Logical reasoning about MAS
	Declaring Agents
	Declaring MAS
	Evolution is cool
	Conclusions
	TODO:
	Credits

