
Indexing Structure for Discovering Relationships in RDF
Graph Recursively Applying Tree Transformation

Stanislav Bartoň
Faculty of Informatics

Masaryk university
Brno, Czech republic

xbarton@fi.muni.cz

ABSTRACTDisovering the omplex relationships between entities isone way of bene�tting from the Semanti Web. This paperdisusses new approahes to implementing �-operators intoRDF querying engines whih will enable disovering suhrelationships viable. The ornerstone of suh implementa-tion is reating an index whih desribes the original RDFgraph. The index is reated by reursive appliation of atransformation of graph to forest of trees. At eah step, theRDF graph is transformed into forest of trees and then toeah tree its extended signature is reated. The signaturesare aompanied by the additional information about trans-formed problemati nodes breaking the tree struture. Theomponents desribed by the signatures are assumed as asingle node in the following step. The transitions betweenthe signatures represent edges.
1. INTRODUCTIONOne form of retrieving information from the SemantiWeb isto searh for relations among entities. The simple relationssuh are the is-a or is-part-of relations an be found easily.For example using RQL [4℄ one an �nd diret relationshipamong entities. This means that we are able to retrieve allthe desending lasses of one lass, even on a di�erent level.For example the user an ask for all instanes of a lass`artist' as it is shown in Figure 1. The answer to suh querywould be all instanes of both its sublasses in the knowledgebase, all painters and sulptors. But in the Semanti Webthere an be observed more omplex relationships amongentities [9℄ than those simple ones.Suh omplex relationship an be represented by a path be-tween two entities onsisting of other entities and their prop-erties. To disover suh omplex relationships �-operators[1℄ have been developed. In this paper, the omplex rela-tionships are disussed and are referred to as Semanti As-soiations [9℄. The �-operators are preisely the tools for

disovering suh Semanti Assoiations. This lass ontains� path, � onnet and � iso operators.� path - This operator returns all paths between two enti-ties in the graph. An example of suh relation an beseen in Figure 1 between resoures &r1 and &r4. Suhassoiation represents an information that a painteralled Pablo Piasso had painted a painting whih isexhibited in Reina So�a Museum.� onnet - This one returns all pairs of paths that inter-set in one ommon node and whih initial nodes arethe two entities for whih we are searhing the assoi-ation. An example of suh � onnetion between theresoures &r6 and &r9 in the Figure 1 is represented bythe paths from resoure &r6 to &r8 and from resoure&r9 to &r8 where the resoure &r8 is the ommon node.This assoiation represents a fat that two artists hadtheir artifats (in one ase it was a painting and in theother a sulpture) exhibited in the same museum.� iso - This operator implies a similarity of nodes and edgesalong two paths. The similarity of the the paths, onestarting in resoure &r1 and ending in &r4 and theseond one going from &r6 to &r8. The two pathsare � isomorphi sine they both represent an artistreating artifat, that is exhibited in a museum.The possible usage of searhing suh omplex assoiationsan be found in the �eld of national seurity. For examplethe system ould be used on airports to help to identifysuspiious passengers by looking for available onnetionsbetween them.In this paper we mainly fous on the former two operatorswhih are the � path and � onnet. We introdue a designof a indexing struture for the RDF graph that will make thedisovery of the relationships desribed by these � operatorse�etive.Setion 3 disusses the related work to the topi of indexingRDF graphs. Setion 2 ontains a brief introdution intothe RDF and the RDF Shema. In Setion 4 we presentour ontribution to the issue by introduing the transforma-tion of the RDF graph into forest of trees and after-wardsthe appliation of tree signatures to those trees. Setion 5

K
n

o
w

le
d

g
e

B
a

se
S

ch
em

a
s

String

String

String

Enumeration

locationThesaurus

Sculptor

Painter

Cubist Flemish

Painting

Sculpture

creates exhibited

sculpts

paints

Artifact MuseumArtist

lname

fname

technique

location

working_hours

String

DateTime

Integer

ExtResource
title

file_size

last_modified

typeOf (instance)

subClassOf, subPropertyOf (is−a)

"oil on canvas"

"oil on canvas"

Abraham and Isaac

17

"oil on canvas"

"oil on canvas"

"Buonarroti"

"Michelangelo"

"Picasso"

"Pablo"

"Descent"

2000−06−09T12:30:34

"Reina Sofia Museum"

"Louvre Museum"

FRANCE

9−1, 5−8

fname

fname

paints

paints

sculpts

sculpts

paints

paints

technique

technique

technique

technique

last_modified

working_hours

title

title

location

title

title

exhibited

exhibited

file_size

exhibited

lname

&r2

&r3

&r4

&r1

&r5

lname
&r6

&r7
&r8

&r9

&r10

&r11Figure 1: An example of RDF graphdemonstrates the new approah of reursive appliation ofthe graph transformation, the grouping of omponents andan example of the reation of the index and demonstratesthe implementation of the � path and onnet operators.Setion 6 outlines possible improvements to the indexingstruture that is designed in this paper. Finally Setion 7onludes the whole paper.
2. PRELIMINARIESThe RDF graph depited in Figure 1 is visualization of anRDF and RDF Shema notation. These two languages areused to state the meta information about resoures. Thefollowing subsetions briey desribe this tehnology. In thesope of this paper the RDF is used to reate the knowledgebase and the RDF shema to build the shema parts of theRDF graph.
2.1 RDFThe abbreviation RDF stands for Resoure Desription Frame-work and aording to [5℄ is supposed to be a foundation forproessing metadata. It basially provides a data model fordesribing mahine-proessable semantis of data. The RDFstatement is a triple (S, P, O) whose parts stand for Subjet,Property and Objet. Subjet is usually identi�ed by URI.It is basially a resoure. The objet an be either an ex-pliit value or a resoure also. Sine this triple itself an be

onsidered as a resoure it an appear in an RDF statementas well. This means that the data model an be envisionedas a labeled hypergraph (eah node an be an entire graph)where an edge between two nodes represents the propertybetween a subjet and an objet.
2.2 RDF SchemaBeause the modeling primitives of RDF are so basi, thereis no way to de�ne the lass-sublass relation. Thereforean externally spei�ed semantis to some resoures was pro-vided. Suh enrihed RDF is alled RDF Shema [3℄. Thosespei� resoures are for example rdfs:lass and rdfs:sublass.In suh enrihed environment we are able to de�ne a simplemodel of lasses and their relations. This an be used to de-�ne simple ontologies in the web spae. The RDF Shemastatements are expressed using XML together with its spe-i� namespae. Even RDF statements an be expressedusing XML with its spei� namespae.
3. RELATED WORKTo make the best of the � operators, they should be im-plemented into an RDF querying system. One of suh im-plementation is presented in [6℄. The e�ort desribed theredemonstrates an implementation of � path operator abovethe RDF Suite [4℄. The implementation ornerstones are

(6, 7)

(7, 5) (8, 6)(5, 3)(4, 2)

(2, 4)

(3, 1)

(1, 8)

B

D FE G I

C

A

Sig T = (A, 1, 8), (B, 2, 4), (D, 3, 1), (E, 4, 2), (F, 5, 3), (C, 6, 7), (G, 7, 5), (I, 8, 6)Figure 2: An example of a tree signature for a treeT.two indies, Path index and Shema index. The former oneis a two-dimensional array of paths - it arries the infor-mation about all paths between Class i and Class j in theshema part of the RDF graph. The latter one is used tosearh for a path between lasses in di�erent shemas. ThePath index is very memory intensive when the data growsto large amounts. Therefore, this paper disusses a di�erentapproah to index the data for the purpose of disoveringSemanti Assoiations.It has been showed that the problem of searhing relation-ship in Semanti Web is equivalent to searhing paths ofertain properties in direted graphs. Therefore, known on-lusions and results got from the graph theory an be used toimplement the � operators. A work desribed in [7℄ ontainsa solid base for suh work. Unfortunately, there is not anypublished work disussing the use of suh graph algorithmsto implement the � operators.
4. INDEXING RDF GRAPHSThe idea of indexing RDF graph demonstrated in this paperis based on a transformation of the graph into tree or forestof trees in whih the searhing for relationship between par-tiular nodes will be muh easier than in general diretedgraph. Considering �-path and �-onnet operators, the ob-jetive is to �nd ertain paths that represent the assoiationsamong partiular nodes. Therefore a onvenient indexingstruture to eah tree is deployed to make suh searhing aseÆient as possible. Thus the signature [10℄ to eah tree isto be reated. This approah solves the problem of gettingthe relationship between eah pair of nodes in a tree by anatomi operation. Suh relationship between two nodes in atree is represented by their mutual position in suh tree (i.e.anestor, desendant, preeding or following node). The treesignatures are further desribed in the following subsetion.
4.1 Tree signaturesThe idea of the tree signature is to maintain a small butsuÆient representation of the tree strutures. The preorderand postorder ranks1 are used as suggested in [8℄ to linearizethe tree struture.The basi tree signature is a list of pairs. Eah pair ontainsa tree node name along with the orresponding postorder1How the preorder and postorder ranks are obtained pleaserefer to [10℄.

��������
��������
��������
��������
��������

��������
��������
��������
��������
������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

() vANC () vFOL

() vPRE

DES () v

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

pre

ti

po
st

n

nFigure 3: Properties of the preorder and postorderranks.rank. The list is ordered aording to the preorder rankof nodes. An example of a simple tree T desribed by itssignature Sig T an be found in Figure 2. In the example,the preorder rank of eah node is inluded for illustration.Given a node v with partiular preorder and postorder ranks,their properties an be summarized in a two-dimensional di-agram, as illustrated in Figure 3, where anestors ANC(v),desendants DES(v), preeding PRE(v) and following FOL(v)nodes of v in the partiular tree are learly separated in theirproper regions. Due to these properties the mutual positionof two nodes within one signature is lear immediately afterreading a reord of either of them in the partiular signature.Aording to the signature struture the basi tree signaturean be further extended. To eah entry a pair of preordernumbers is added. Those numbers represent pointers to the�rst following, and the �rst anestor nodes of a given node.If no terminal node exists, the value of the �rst anestor iszero and the value of the �rst following node is n+1, wheren is the number of nodes in a tree. Suh an enrihed signa-ture is alled extended signature. Later on when we refer tosignature we will mean the extended one.
4.2 Transforming the graph into forest of treesThe struture of the RDF Shema and the knowledge basean be envisioned as a direted graph with ars providedwith labels, example is shown in Figure 1. The inonve-niene of this struture lies in the problem of searhing pathbetween nodes. Suh searhing algorithms work with greattime omputational omplexity.Beause the struture depited above is not really a generaldireted graph, we an get the bene�t of the shema partof the struture sine it arries useful information about theknowledge base. The shema part has the same funtionas a shema in the relational database. Then if we ouldredue the problem of searhing in the whole graph to theproblem of searhing in the shema, whih is onsiderablysmaller, we ould use the same algorithms with better timeomplexity results. But sine the graph an ontain severalshema de�nitions and the resoures an be derived frommore than one shema, the desired paths an only be foundusing the real data beause they would not be inluded inthe shema de�nition.

BAFigure 4: Direted graphs that are not trees.
4.2.1 Knowledge base transformationA tree an be de�ned as a direted graph in whih is truethat (1) eah node has zero or one inoming edge and (2) itdoes not ontain a yle. Direted graphs marked as A andB depited in Figure 4 break those rules respetively. Thetransformation of the direted graph into forest of trees liesin the removal of suh problemati ases.If we onsider the problem marked as (A) in Figure 4, part(1) in Figure 5 shows a transformation to ahieve strutureonforming to the rule marked as (1). The blak node in thephase 1 in Figure 5, means that the node will be `divided'into two nodes in the following phase. The next phase hastwo alternatives, phase 2a demonstrates the division of anode with a dupliation of all desendants to all dividednodes. Phase 2b shows the division without dupliation.The right way to handle suh situation is to use the lat-ter method sine it prevents the unontrollable growth ofthe struture. This assures that the struture will grow inlinear spae instead of possible exponential growth. The de-sending nodes should be ut o� into stand alone omponentto avoid `short uts' within one omponent. This beomesimportant in the moment of �nding paths between nodes.Thus the whole graph is traversed and all the nodes thathave more than one inoming edge are divided into exatamount of nodes that is the number of that node's inomingedges. This transformation an lead to breaking the graph2into several omponents. These omponents are either treesor direted graphs ontaining a yle. To identify whihomponents are trees a rule that a graph is a tree only ifit has exatly n+1 edges, where n represents the number ofnodes in a partiular omponent. The non-tree omponentsare then transformed as follows.The transformation of the direted graph ontaining a yleis depited in the part marked as (2) in the Figure 5. The2We onsider that at the beginning the graph onsists fromonly one omponent.

2a1 2b 1 2

(1) (2)Figure 5: Transformation of a graph to onform withrules (1) and (2) respetively.

spanning tree of suh omponent is found and the nodes,whih edges are not ontained in the spanning tree are di-vided. The transformation works in the way that it dividesthe partiular node into two, that the �rst one ontains allthe edges that have the original node as the terminal one,and the extra node has all the edges that had the originalas a initial one.Obviously, after transforming all the non-tree omponents,we get a forest of trees representing the original graph. Ofourse we have to store the information about the dividednodes to assure that no information ontained in the originalgraph will be lost in the new struture. Suh informationis stored in two inverted �les where the �rst one is used toget all the multiple nodes3 in the partiular signature, andthe seond table stores to eah multiple node all signatures itappears in. Those two inverted �les onnet the omponentsbak into the original graph.The time omputation omplexity of the transformation ofa general direted graph into forest of trees is estimated toO(4 � ard(E)) in the worst ase. The algorithm traversesthe graph to identify the nodes with more then one inputedge and divides suh node, this an be done at most thetotal number of edges in the graph. Thus the omplexitydepends rather on the number of edges than the number ofnodes.
4.3 Motivation for the recursionOne we have obtained the desired forest of trees we reatea signature for eah omponent (tree) of the transformedgraph whih together with the additional information aboutmultiple nodes will represent the index to the original RDFgraph. The time omputational omplexity of suh opera-tion is equal to O(n) sine the algorithm used traverses eahnode in eah omponent one. The additional informationonneting signatures together is built along and deploysonly atomi operations. Suh information about the multi-ple nodes is represented by two inverted �les. One has ineah row a name of a multiple node together with a partiu-lar signature or signatures it appears in. And the other onehas a row for eah signature with a list of multiple nodesontained in it.Above suh index algorithms implementing the � path and �onnet operators have been designed. The outline of thosealgorithms is demonstrated in the following setions. Themore detailed insight into those algorithms an be found in[2℄.
4.3.1 Algorithm for discovering pathsThis algorithm returns an answer whether there exists apath between two nodes. The algorithm traverses the forestof trees only in one diretion, so to tell whether the pathbetween two nodes exist we have to swith the start andend node and deploy the algorithm again if the searh hasnot been suessful for the �rst time. As a by-produt italso reates a list of multiple nodes that lie on the pathbetween the two nodes. The exat path is not omputed3A node whih was represented as a one in the originalgraph, but is represented by several nodes in the new stru-ture.

at this point. Another funtion to whih this list is passedtakes are of the exat path omputation. To make the mostfrom the tree struture of this index, the path is omputedfrom the bottom to the top, the �rst anestor pointer fromthe signature is used to traverse the path.Therefore the algorithm traverses the index struture in onlyone diretion, from bottom to top, it has to be deployedtwie unless the path has not been found in the �rst de-ployment. Thus to hek whether there is not a path be-tween two nodes we have to exeute the algorithm twiewith both nodes used as a starting point respetively. Thisimplies that the time omputational omplexity of �ndinga path between two nodes mainly depends on existene ofsuh path and in the worst ase is O(n). The problem ofdual exeution ould be solved if we ould tell the mutualposition of the two nodes in the indexing struture. Then weould deploy the algorithm exatly one with the orretlyhosen starting node.
4.3.2 Algorithm for discovering connectionsAs for the � onnet operator, the nature of the designedindex struture implies that the onnetion, the intersetingnode, an only be a multiple node. Therefore the problemof �nding two paths that interset is redued to �nding amultiple node, to whih exists a path from either node. Sothis searhes the index struture in a diretion that the edgeshave. Its starting nodes are the two nodes to whih it islooking for onnetion.Throughout the algorithm a set of multiple nodes, nodeswhih lie below the partiular starting node and are possibleintersetion, a set of heked nodes, nodes through whih thealgorithm already swithed to di�erent signatures and gotall usable multiples in it, and a set of to do multiple nodes,nodes that have to be still heked, are built to eah startingnode. In eah yle iteration those sets are updated for eahstarting node separately, eah starting node gets one turn tohek one multiple node. At the end of eah iteration, thealgorithm heks whether there is a non-empty intersetionof possible interseting nodes and if suh intersetion exists,it heks whether there exist paths from this node to bothstarting nodes.The above outlined algorithm for �nding path intersetionalso very intensively depends on the existene of suh in-tersetion. So far we an not stop the algorithm withoutsearhing the entire index that is reahable from the twostarting points. It obviously also su�ers from the impos-sibility of telling the mutual position of two nodes in theindexing struture. Therefore the time omputational om-plexity is unaeptably high when looking for a onnetionthat apparently does not exist in a very large graph.
4.3.3 SummarizationAs is disussed at eah of above algorithms, they both su�erfrom the ignorane of mutual position of the signatures inthe index. Therefore in a yli graph, the algorithms haveto searh throughout the whole graph, in the means of theindexing struture, to hek almost all signatures, to �ndall paths between two nodes. Though the indexing stru-ture ontains onsiderably less signatures than the originalgraph ontained nodes. After all, the ignorane of the mu-

tual position of two nodes in the indexing struture an beseen learly at the path algorithm, it an not deide whihnode should be the starting one.Another drawbak presented by the above algorithms ausedby the ignorane of the mutual position is that the outputof the algorithms is some path or a onnetion, not all pathsand onnetion as it would be desired.Hene, it is logial to improve this indexing struture byanother level that would ease the problem of telling the mu-tual position of nodes in the graph and that would also makepossible to instantly query for all paths of desired proper-ties. The notion of the seond level is the use of the sameidea of transforming the graph into forest of trees and thatis exatly the aim of the approah disussed in the followingsetion.
5. RECURSIVE APPLICATION OF GRAPH

TO TREE TRANSFORMATIONThe tree signatures together with its inverted �les fully rep-resent the original RDF graph. In the �rst sight, this in-formation an be used to reate a undireted graph, whereindividual signatures represent verties and divided multiplenodes represent edges between the partiular verties. Sinewe would like to apply the graph to forest of trees again, theundireted graph is not desired. But under loser investiga-tion, diretions to the edges in the newly built graph an beadded. This an be done by taking into aount the fashionin whih the multiple node has been divided and a diretionof edges pointing to and from it. Basially, the node thathas been divided represents a set of new nodes, those an bedivided into two groups, one that ontains nodes that haveout-oming edges and the other group ontaining those thathave only inoming edge. Then an edge is reated for eahsignature ontaining a node from the latter group and thesignature from the former group with this diretion. Thisidea represents the diretion of a path in the RDF graphand is represented in Figure 6.
S

1
S

2
S

3
N: , ,

S
1

S
2

S
3e1 e2

N

e3

e1

N’ S
2

S
3

S
1

N’’

e2

e3

N

Figure 6: Giving the edges between signatures itsdiretions.From the graph theory we an represent direted graph byits inidene matrix. Sine eah matrix also represents somerelation a transitive losure of suh relation an be built toget immediate information about onnetivity of eah pairof verties. Suh transitive losure is t(M) = P1n=1Mn.Where M is our inidene matrix. Aording to GT thenumber of powers omputed is at most the size of the ma-trix. Aording to graph theory, eah step in the omputa-tion represents paths of length l between two verties wherel is the urrent power. Then eah number in the t(M) is

Step # ofnodesinorig-inalgraph # ofnodesaftertrans-for-ma-tion # ofom-po-nents Avg# ofnodesinom-po-nent Minnodesinom-po-nent Maxnodesinom-po-nent1 169,271 273,140 17,453 15 2 25782 15,214 77,526 11048 7 2 9243 10,109 62,756 9,194 6 2 8224 8,834 59,360 8,574 6 2 7895 8,402 58,312 8,324 7 2 7826 8,283 58,033 8,256 7 2 779Table 1: Summarization of individual steps of graphto forest of trees transformations.equal to the amount of paths between the two verties. Ifwe aompany this number by a set of the partiular pathsas they were built during the omputation of the transi-tive losure, we ould immediately tell whether there is apath between any two nodes and further more, we ould tellthrough whih verties it goes.Suh an approah ould be used diretly on the originalgraph, but the problem is the memory intensiveness of suha solution. The size of the matrix would limit this solutionto relatively small numbers of nodes in the original graph.The mentioned small numbers represent thousands of nodesbut the real data an omprise of hundreds of thousands ofnodes.As for the matrix, if the transformed graph omprises oflarger amount of nodes than is our limit for reating ini-dene matrix the whole proedure an be applied again. Thematrix does not have to be built sine we are transformingthe graph into trees in whih we an tell the mutual positionof eah pair of nodes.
5.1 Overhead in the resultThe data that is being used to investigate possibilities of thedesigned struture is a part of the Open Diretory Projet4that is in RDF format and represent a graph omprising ofabout 170,000 nodes.If we apply the graph to forest of trees transformation tothis RDF graph we get a new graph omprising of 273,000nodes and 17,000 omponents. Then the average amountof nodes in a omponent is 15 nodes. The maximum andminimum number of nodes in a omponent is 2500 and 2,respetively. This unbalane rises from a fat that we tookonly a part of the whole Open Diretory by extrating the�rst 100,000,000 lines of the RDF dump of the Open Dire-tory Projet. This onludes that the graph on the inputontains more then one omponent. The indexing strutureomprising of the signatures of the individual omponentsand the inverted �les is then reated. As the newly re-ated graph omprises of 17,000 nodes against the 170,000of nodes of the original graph, it is still too muh to reatethe inidene matrix and to ompute its transitive losure.Therefore we apply the same transformation again. Table1 summarizes the information about the parameters of thetransformed graphs.The results depited in Table 1 demonstrate that the reur-4Can be found at http://www.dmoz.org.

sive appliation of the graph to tree transformation onsider-ably diminishes the amount of the nodes in the transformedgraph. It also shows that this progress onverges to somelimit, in this ase the limit is around 8 thousand. The ob-servation also is that the di�erene between the third andfourth appliation of the transformation is so negligible thatmakes it questionable if the transformation is worth the ef-fort sine the overhead of the added nodes is onsiderablygreat.The overhead of newly added nodes due to the transforma-tion in the �rst step is about 60%. In the following steps, theoverhead is about �ve to seven times the amount of trans-formed nodes, but on average it is a 38% of the number ofnodes in the original graph. But we should onsider that inthe eah following step the resulting set of signatures mustnot ontain the unique names of dived nodes, it an diretlypoint to a partiular signature on the lower level to whihthe partiular divided node refers.
5.2 Putting signatures into groupsThe preeding setion onluded that the reursive applia-tion of the graph to forest of trees transformation reduesthe amount of nodes in eah step. In the �rst few steps thenumber of redued nodes is signi�ant. In large sale data itstill ould not be enough to make possible to built the ini-dene matrix due to the limitation of a slow onvergene toa ertain limit. Therefore we have to deploy other approahto diminish the number of nodes in the transformed graph.Still it has to be done in a way to preserve the properties ofthe designed indexing struture.To get over the limit of the reursive appliation of the graphto forest of trees transformation we have to �nd anotherway to derease the number of nodes in the transformedgraph. The transformation used is putting signatures intogroups.The partiular group is also aompanied by the ini-dene matrix to maintain the information about the reaha-bility of the partiular signatures in that group. Speaking inthe terms of graph theory we alloate subgraphs of a ertainsize whih are then represented as a single node in the trans-formed graph. Hene we have to store the inidene matrixor its transitive losure the size of the subgraph must beonsiderable.
5.2.1 Multiple edges between groupsIn the respet of alloating subgraphs in the graph therearises a problem of multiple edges between them. Thismeans that there would exist at least two di�erent edgesof the same diretion between two groups. This fat rep-resents that there are at least two di�erent paths betweentwo groups represented by one sequene of omponents. A�eld in the matrix stores unique sequene of omponentsrepresenting the path, but if we had more then one edgebetween two groups the sequenes stored at that �eld wouldnot be distint. This would lead into problems with pathomputation on the lower level.So if we avoided suh multiple edges between groups thepath stored in the matrix would diretly orrespond to asequene of nodes on the lower level.But the problem is that the limitation of single edges be-

2 4

3

1

6

5

13

14

15

9

11

12

10

8

7

Figure 7: Phase 0: Original graph.tween groups an lead into a hard omputational problemof �nding suh subgraphs that would satisfy suh ondition.
5.3 Searching the Rho associations using the

indexing structureLet now investigate the usage of the designed indexing stru-ture on an example of searhing assoiations between nodes.Figure 7 represents a graph where we would like to searhthe assoiations. Firstly, the transformations applied to theoriginal graph will be presented. Then the usage of the in-dex that is reated along the transformations of the graphwill be demonstrated.
5.3.1 Phase 1Firstly we apply the graph to forest of trees transformation.The result of suh transformation is depited in Figure 8.The groups in frames represent tree omponents. The blaknodes indiate the nodes that had been divided. The listson the right represent the inverted �les that store the infor-mation about multiple nodes in the tree omponents. Onthe left side of the �gure, the smaller graph represents thenew graph onsidering eah omponent as a single node andthe edges of the graph represent the transitions among thetree omponents.

A: 3, 6
B: 6, 8
C: 3, 9, 12
D: 9, 12
E: 8, 14
F: 14
G: 12, 14

3: A, C
6: A, B
8: B, E
9: C, D

14: E, F, G

12: C, D, G

A

C

D

B

E

FG

1110

9’’ 9’

12’’ 12’’’

3’’’

1

42

3’ 3’’

6’

5

76’’

8’ 8’’

8’’’

13

14’’
14’

12’
15

14’’’
G

C E

A B

D

F

Figure 8: Phase 1: The graph to forest of treestransformation.

I

V IV

III

II

II: D, G
III: G
IV: D, C
V: D, C

I: C, G

D: II, IV, V

G: I, II, III

C: I, IV, V

I II III IV V

III

IV

II

I

V

1

12

2

I II III IV VH

III

IV

II

I

V 1

1

1

1

1

1

I II III IV V

III

IV

II

I

V 1

1

H+H

1

1

1

1

2

1

1

1

1

1

1

2

2

1 1

1

3

H+H +H 2 32

C’’’

E

B

G’’

C’

D’’’

G’D’’

A

G’’’

C’’

D’

F

IVV

II

I III

Figure 9: Phase 2: The graph to forest of treestransformation applied on the result of Phase 1.
5.3.2 Phase 2To demonstrate the reursive appliation of the graph to for-est of trees approah the result of the Phase 1 represented asa graph is taken and the same graph to forest of trees trans-formation is applied again. The result is depited in Figure9. The matries in the bottom of the �gure represent theomputation of a transitive losure of the �rst inidene ma-trix H. Computing the third power of the inidene matrixis enough to get the whole transitive losure sine in thefollowing powers the numbers are inreasing due to the y-le between node IV and V but does not ompute any newpath.Again, the boxes in Figure 9 de�ne newly transformed treeomponents and the inverted �les on the right side trans-fer the information about the onnetedness of the dividednodes from the lower level of the indexing struture.
5.3.3 Composition of the resulting indexing structureThe resulting omposition of the designed indexing stru-ture after Phase 2 is depited in the Figure 10. The bottomlevel number 0 represents the nodes of the original graph.The level marked as level 1 orresponds to the graph afterthe �rst transformation to forest of trees. The highest levelof the struture ontains the transitive losure of the ma-trix H. The matrix H is gained observing transitions amongomponents of the graph after the last transformation orgrouping. In our simple example the matrix H representsthe graph where the nodes are the omponents got in thePhase 2 and the edges are the transitions between thoseomponents. The transition are made through the multiplenodes reated during the transformation of the graph into aforest of trees.
5.3.4 � path operatorAs it was already mentioned in Setion 1, the � path op-erator returns a set of all paths between a pair of nodes.Figure 11 demonstrates the proedure of searhing paths inthe indexing struture proposed in this paper. The searhesare exeuted above the indexing struture built for the orig-inal graph depited in Figure 7. The pair of nodes to whihthe � path is searhed are "1" and "10". Sine all nodesarry also the information into whih omponents of the

C’’ D’ C’ D’’’C’’’ G’’

6’3’’

B

6’’ 8’ 8’’

C

3’’’ 9’’ 12’’ 9’ 12’’’

D E

8’’’14’

F

14’’ 12’ 14’’’

GA

I II IV V

D’’

III

3’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G’ F G’’’

Level 0

Level 1

Level 2

Level 3t(H)

Figure 10: Visualization of the indexing struture.transformed graphs they belong, the names of the top levelomponents to whih the nodes "1" and "10" belong are re-trieved. In this ase those omponents are "A" and "C" inthe seond level. On the third level it is "I" for the node"1" and "I", "IV" and "V" for the node "10". Generally,when looking for the omponents to whih the examinednodes belong, the visualization of the indexing of the index-ing struture an be used. It starts at the lowest level andgoes against the diretion of the edges to get to the root ofthe graph. Therefore, in ase of the node "10", the node "C"is visited on the seond level and nodes "I", "IV" and "V"are visited on the third level of the indexing struture. Thisidea is in the opposition to the notion of the usage of theindexing struture, sine it is used in the top down fashion.
− I, II, IV, V
− I, V, IV, V
− I, V

II: D, G

III: G

IV: D, C

V: D, C

I: C, G Path 1:

Multiple node sequence: C

(I V) {} = {C}

(II IV) {C} = {D}

(I II) {} = {G}

Path 2:

Multiple node sequence: G, D

Path 2: A, B, E, G, D, C

Sig I = (A, 1, 5, 0), (C’’’, 2, 1, 1), (B, 3, 4, 1), (E, 4, 3, 3), (G’’, 5, 2, 4)

Sig II = (G’, 1, 2, 0), (D’’, 2, 1, 1)

Sig III = (F, 1, 2, 0), (G’’’, 2, 1, 1)

Sig IV = (D’, 1, 2, 0), (C’’, 2, 1, 1)

Sig V = (C’, 1, 2, 0), (D’’’, 2, 1, 1)

Path 1: A, C

I II Vt(H)

1 2 3

2 1

11

1 2

2 1

1

I

II

IV

V

III

III IV

− I, II, IV
− I, V, IV

Path 1

Path 2

Step 3

Step 2Step 1

Figure 11: Searhing paths using the indexing stru-ture.The �elds (I, I), (I, IV), (I, V) where the paths from "1"to "10" should be stored and the �elds (IV, I) and (V, I)for paths going from "10" to "1" are retrieved from the topmatrix t(H). This part of the proedure is depited in Figure11 as a Step 1. In our example, the �elds (IV, I) and (V,I) are empty, that indiates that there does not exists any

A: 3, 6
B: 6, 8
C: 3, 9, 12
D: 9, 12
E: 8, 14
F: 14
G: 12, 14

(A C) {} = {3}

Path 1:

Multiple node sequence: 3

(D C) {12} = {9}
(G D) {14} = {12}
(E G) {8} = {14}
(B E) {6} = {8}
(A B) {} = {6}

Path 2:

Multiple node sequence: 6, 8, 14, 12, 9

Path 1’: 1, 2, 3, 9, 10
Path 1’’:1, 4, 3, 9, 10

1, 4, 6, 8, 14, 15, 12, 11, 9, 10Path 2:

Step 4

Sig E = ("8’’’", 1, 2), ("14’", 2, 1)

Sig A = ("1", 1, 6, 0), ("2", 2, 2, 1), ("3’", 3, 1, 2), ("4", 4, 5, 1), ("3’’", 5, 3, 4), ("6’", 6, 4, 4)
Sig B = ("5", 1, 5, 0), ("6’’", 2, 2, 1), ("8’", 3, 1, 2), ("7", 4, 4, 1), ("8’’", 5, 2, 4)
Sig C =("3’’’", 1, 4, 0), ("9’’", 2, 3, 1), ("10", 3, 2, 2), ("12’", 4, 1, 3)
Sig D = ("12’’’", 1, 3, 0), ("11", 2, 2, 1), ("9’", 3, 1, 2)

Sig F = ("13", 1, 2, 0), ("14’’", 2, 1, 1)
Sig G = ("14’’’", 1, 3, 0), ("15", 2, 2, 1), ("12’", 3, 1, 2)

Step 5Figure 12: Searhing paths using the indexing stru-ture part 2.path either from "IV" to "I" or "V", "I" in our originalgraph and therefore there does not exist any path betweennodes "10" and "1". The �eld (I, I) is a speial ase that isexamined diretly on the lower level beause it falls into asope of one signature where the mutual position of any twonodes is lear. The other results bring the �elds (I, IV) and(I, V). Those �elds ontain the number 2 and 3 respetivelyand sets of �ve paths from "I" to "IV" and "V". Threeof those paths an be immediately omitted in the followingsteps sine they ontain some other path as a pre�x. Thatindiates a yle on some of the lower levels. In Figure 11,the resulting paths are marked as Path 1 and Path 2.In the seond step of the proedure, we desend in the in-dexing struture one level lower and retrieve a multiple nodesequene for eah path gained in the �rst step. This methodis presented in Figure 11 as a Step 2. The sequene is gainedfrom the inverted �le that stores to eah omponent the setof multiple nodes it ontains. The multiple nodes are theonly nodes taken into aount at this moment sine onlythose an represent a way of getting from one omponent toanother. The sequene then represent an order of transfersbetween the partiular omponents. Basially, the path wastranslated from the terms of one level to the terms of thelower level.After the sequene of multiple nodes for eah path is gained,the atual tree signatures are onsulted to ompute the ex-at path from the initial node to the terminal one. In thisexample at the seond level, the initial node is "A" and theterminal node is "C". At this point the omputation takesinto aount the information got in Step 1 that "A" and "C"lie in the same omponent. Their mutual position in om-ponent "I" is read from its tree signature. Sine the gainedpath is preisely one of the already aquired paths it is nottaken into aount further on. The signatures desribingthe individual omponents depited in Figure 9 are shown

in Step 3 of Figure 11. The signatures are listed at an abbre-viated way, the last number representing the pointer to the�rst following node is left out5, sine it is not used at thispoint. Using the �rst anestor pointer stored at eah node inthe signature, the sequene of multiple nodes is transformedinto a path inluding also the nodes that are not multipletogether with the initial and the terminal node.The searh ontinues in Step 4 where the method desendto a lower a level of the indexing struture again. The in-verted �le of a omponents gained in the Phase 1 depitedin Figure 8 is used to ompute the order of transitions be-tween omponents along the path using the preomputedsequene of omponents from the Step 3. This proedure isdemonstrated in Figure 12.After the multiple node sequene on this level is gained atthe Step 4, the tree signatures are used to ompute the exatpath between the input nodes. Sine this is the lowest levelof the indexing struture, the three sequenes of nodes om-puted in Step 5 marked as Path 1, 1' and 2 are the atualpaths and are the result of the � path operator applied to apair of nodes "1" and "10" in the original graph.Path 1 and1' are derived from one multiple node sequene got from thehigher level. This was aused by the fat that node "3" isin our example ontained twie in the the omponent "A"and from the node "1" exists a path to both ourenes ofthe node "3".The Steps 4 and 5 represent the same operations above theindexing struture as the Steps 2 and 3. The only di�ereneis that eah pair of steps is arried out on a di�erent level ofthe index. This onludes that the general method of pathomputation would onsist of initial Step 1 and then Step2 and 3 repeated while the lowest level of the index is notreahed where the input of the following pair of steps is theoutput of the preeding pair of steps. If also the groupingof omponents that is disussed in Setion 5.2 is involvedin the index, the Step 1 is also repeated at the levels thatrepresent the grouping.
5.3.5 � connect operatorThe objetive of �nding all interseting paths going fromtwo given nodes in the original graph maps to an objetiveof �nding a multiple nodes in the indexing struture thathave those two paths as a ommon terminus. Those mul-tiple nodes are the onneting nodes as are de�ned by the� onnet operator. Essentially, the onneting node has tobe a node in the original graph that has input degree greaterthan one, sine it has to be a terminus of two distint paths.But suh node has to be, of ourse, divided during the trans-formation sine it breaks the desired tree struture. So theonneting node an only be some of the divided nodes whihare referred to as multiple ones. Hene, the objetive now isto �nd a path to a ommon multiple node from both giveninitial nodes. The top level matrix t(H) is onsulted againto �nd suh paths. The �elds that lie on the row indiatedby eah initial node and whih have positive numbers in the5The format of eah entry in the signature is:(name of the node, preorder rank, postorder rank, pre-order rank of �rst anestor). The entries are sorted bytheir preorder ranks.

Path 1: I, V

Path 2: I, II, IV, V
Path 3: I, V, IV

Path 4: I, II, IV

Path 5: I, II

− I, II, IV, V
− I, V, IV, V
− I, V

II: D, G

III: G

IV: D, C

V: D, C

I: C, G

Path 6: III, II, IV, V

Path 7: III, II, IV

Path 8: III, II

Path 1: A, C [, D]

Path 5: A, G [, D]
Path 3: A, C, D

I II Vt(H)

1 2 3

2 1

11

1 2

2 1

1

I

II

IV

V

III

III IV

Step 1

Row I

− I, II, IV
− I, V, IV

− I, II

Row III

− III, II, IV

− III, II

− III, II, IV, V

Path 7: F, G, D

Path 8: F, G [, D]

Path 6: F, G, D, C

Step 2Figure 13: Evaluating � onnet operator.same olumn are retrieved beause those preisely indiatea path from either node to a ommon plae in the graph.To demonstrate the whole proedure, the � onnet operatoris applied to a pair of nodes "1" and "13". Firstly, the infor-mation to whih omponents the nodes "1" and "13" belongis retrieved. It is omponent "A" and "F" at the �rst leveland "I" and "III" at the seond level of the index. Seondly,the possible paths to a onneting nodes are retrieved usingthe top matrix t(H). This step is depited in Figure 13. Inthat �gure, the pairs of olored �elds represent a possible an-swer to the query. On the right of the matrix in this �gure,the paths those �elds represent are listed. Again, the pathsontaining yles an be immediately omitted. The de�ni-tion of � onnetion operator says that the two paths anhave exatly one node in ommon. This fat states anotherrule that makes possible to omit some paths in the followingomputation even before verifying their onnetedness. Theproedure does not have to test those pairs of paths thathave more than one node in ommon. In the lower part ofthe Figure 13, the arrows indiate whih pairs of paths willbe taken into aount in the following omputation.In the seond step, the proedure desends to a lower levelanalogously to Step 2 of the preeding setion. The onlydi�erene between those two steps is that the proedure annot tell the terminus of eah path in advane so it has totake into aount all reahable multiple nodes in the targetomponent. If the path on the lower level would ontainyle after adding some multiple node to it, the path an beomitted. The transformed paths are depited in Figure 13in Step 2. The possible extension of the path is indiated asa node in square brakets at the end of the partiular path.The proedure then desends even lower in the index whereit atually �nds the multiple node sequenes that identifyatual pairs of paths to the partiular onneting node. Inthe example, the three onnetions found at Step 1 were

A: 3, 6
B: 6, 8
C: 3, 9, 12
D: 9, 12
E: 8, 14
F: 14
G: 12, 14

Path 1: 1, 3, 9

Path 5: 1, 6, 8, 14
Path 3: 1, 3, 12

Path 6: 13, 14, 12, 9

Path 1’: 1, 2, 3, 9

Path 5: 1, 4, 6, 8, 14

Path 1’: 1, 4, 3, 9

Path 3: 1, 3, 9, 10, 12 Path 7: 13, 14, 15, 12

Path 8: 13, 14

Path 6: 13, 14, 15, 12, 11, 9

Step 3

Step 4

Path 7: 13, 14, 12
Path 8: 13, 14

Figure 14: Evaluating � onnet operator part 2.all veri�ed to be atual result of the � onnetion operator.Moreover, the �rst option tested turned out to be a represen-tation of two onnetions at the lowest level. The reasons ofthe Path 1 re�nement are the same as were presented in thepreeding subsetion. The result is presented in the Figure14. It represents Step 4 and Step 5 of the proedure pre-sented in the previous setion. Finally, the answer to thequery represented by the � onnetion applied to nodes "1"and "13" are four onnetions represented by seven pathsand three onneting nodes.
6. FUTURE WORKThe �rst objet for the future work is to explore the resultsof the proposed proedures of implementing the � operatorsusing the indexing struture. Then we would like to makeoptimizations to the proess of reating the index. As itwas mentioned at the examples of using the index, therean be several paths thrown away by observing the ylesthey ontain. The ore of the optimization is that the matrixshould not ontain suh redundant paths at the �rst plae.So instead using the usual matrix operations '+' and '*'during the omputation of its transitive losure, a speialrede�ned operations should be used to eliminate this kindof redundany.The future work will ontain also an examination of opti-mization of the graph to tree transformation sine it is themajor produer of the overhead in the index. Tehniquesto redue the amount of nodes added to the index by thetransformation will be studied.Finally, experiments measuring the time needed to the eval-uation of the � operators using the index will be arried outand ompared to the graph algorithms omputing the sametask. Some of suh graph algorithms are proposed in [7℄.
7. CONCLUDING REMARKSThe reursion proved to be promising approah to inorpo-rate the additional information of mutual position of nodesin the graph into the indexing struture. The inonvenieneof this approah is the slow onvergene to reasonable amountof nodes in the top level. Though this diÆulty was solvedby the grouping of omponents.

In omparison to the index struture designed in [6℄ theapproah proposed in this paper solves the problem of theinonvenient size of the matrix representing the path indexof the RDF graph. The matries in our solution are used atthe top levels and the size of them is all in the ontrol of theuser.The time omplexity of reation of the index disussed inthis paper does not depend on the amount of the nodes of theRDF graph to whih the index is reated but rather on theamount of the edges. That determines the amount of nodesthat have to be divided to onform with the tree strutureand the height of the tree, sine it also indiretly proposesthe amount of individual omponents in the transformedgraph. So in the worst ase the input is a omplete graphand all the nodes have to be divided. Then the amount ofomponents is equal to the amount of nodes in the originalgraph so the approah of grouping of the omponents mustbe used sine the transformed graph is of the same size asthe original one. Then the time omplexity depends on themaximal size of the matries that are built for eah group.The maximal size is set before the reation of the index.The aim of this projet is to reate a salable indexing stru-ture for RDF graphs aompanied with algorithms providingthe � operators funtionality with aeptable time and spaeomputational omplexity. In the present time the designedindexing struture provides solid base for suh work.
8. REFERENCES[1℄ Kemafor Anyanwu and Amit Sheth. The rho operator:disovering and ranking assoiations on the semantiweb. SIGMOD Re., 31(4):42{47, 2002.[2℄ Stanislav Barto�n. Designing indexing struture fordisovering relationships in RDF graphs. InProeedings of the Dateso 2004 Annual InternationalWorkshop on DAtabases, TExts, Spei�ations andObjets, pages 1{11, 2004.[3℄ D. Brikley and R. V. Guha. Resoure desriptionframework shema spei�ation. 2000.[4℄ G. Karvounarakis, S. Alexaki, V. Christophides,D. Plexousakis, and M. Sholl. RQL: A delarativequery language for RDF. In The 11th Intl. WorldWide Web Conferene (WWW2002), 2002.[5℄ O. Lassila and R. R. Swik. Resoure desriptionframework: Model and syntax spei�ation. 1999.[6℄ Agarwal Minal, Gomadam Karthik, Krishnan Rupa,and Yeluri Durga. Rho: Semanti operator forextrating meaningful relationships from semantiontent.[7℄ Robert Endre Tarjan. Fast algorithms for solving pathproblems. J. ACM, 28(3):594{614, 1981.[8℄ T.Grust. Aelerating xpath loation steps. In The11th Intl. World Wide Web Conferene (WWW2002),pages 109{120, 2002.[9℄ Sanjeev Thaker, Amit Sheth, and Shuhi Patel.Complex relationships for the semanti web. InD. Fensel, J. Hendler, H. Liebermann, and

W. Wahlster, editors, Spinning the Semanti Web.MIT Press, 2002.[10℄ Pavel Zezula, Giuseppe Amato, Frana Debole, andFausto Rabitti. Tree signatures for XML querying andnavigation. Leture Notes in Computer Siene,2824:149{163, 2003.

