
MODAL LOGIC AND PROPOSITIONAL DYNAMIC LOGIC

WOLFGANG POIGER

Abstract. Lecture notes (under construction) for four lectures of the course

Dynamic Logic at the Faculty of Arts, Charles University in the fall semester

2025/26 (taught together with Igor Sedlár).

• Lecture 1: Modal Logic - Syntax and Kripke Semantics (Oct 22)

• Lecture 2: Modal Logic - Decidability and Completeness (Oct 29)

Further references: For modal logic - [BdRV01]

1. Modal Logic

1.1. Why modal logic? Modal logics are among the most prominent non-classical

logics for a number of reasons, for example:

⇝ Simple yet expressive logical systems

⇝ Typically decidable (unlike e.g., first-order logic)

⇝ Internal/local perspective on relational structures

⇝ Rich interplay with other logical/mathematical frameworks

⇝ Applications in theoretical computer science, philosophy, linguistics, ...

Modal formulas like ♢φ and □φ can model non truth-functional concepts like:

⇝ ♢φ: It is possible that φ —— □φ: It is necessary that φ (Alethic)

⇝ Fφ: Sometime in the future φ—— Gφ: Always in the future φ (Temporal)

⇝ Pφ: It is permitted that φ —— Oφ: It is obligatory that φ (Deontic)

⇝ Kφ: The agent knows that φ (Epistemic)

(!)⇝ ⟨π⟩φ: Executing program π might result in φ

[π]φ: Executing program π always results in φ

1.2. Syntax. The set of formulas is defined inductively from a countable collection

Prop = {p1, p2, p3, . . . } of propositional variables together with logical connectives.

Definition 1.1 (Modal Formulas). The collection Form of modal formulas is induc-

tively defined as follows.

Form ∋ φ ::= p ∈ Prop
∣∣ φ ∧ φ

∣∣ ¬φ ∣∣ ♢φ
As usual, we use abbreviations φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨ ψ,

φ ↔ ψ := (φ → ψ) ∧ (ψ → φ), ⊤ := p ∨ ¬p, ⊥ = ¬⊤. Furthermore, we use the

abbreviation

□φ := ¬♢¬φ,
and we refer to ♢ and □ as the ‘diamond’ and ‘box’ modalities, respectively. Intu-

itively, the basic modal language is simply the language of classical propositional

logic expanded by these two modalities.

Remark 1.2. The definition of modal formulas (Definition 1.1) can be easily gen-

eralised to include more than one modality. Indeed, later on we introduce PDL

which uses the multi-modal language containing a modality ⟨π⟩ for every ‘program’
1
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π. It is also possible (albeit not needed for this course) to include modalities of

higher arities, for example a binary modality △(φ,ψ) takes two formulas as input.

1.3. Relational Semantics. We now know what a modal formula is, but we still

need a reasonable notion of interpretation for these formulas. The notions of Kripke

frames/models are the key notion here.

Definition 1.3 (Kripke frame). A (Kripke) frame is a structure F = (X,R) where

X is a set and R ⊆ X2 is a binary relation on X.

The members of X are often called ‘possible worlds’, we use the more neutral

term ‘states’. The relation R is called the ‘accessibility relation’.

Definition 1.4 (Kripke model). A (Kripke) model is a structure M = (X,R,Val)

where (X,R) is a frame and

Val : Prop → P(X)

is a propositional valuation.

Note that every model M = (X,R,Val) is based on a frame F = (X,R). The set

Val(p) ⊆ X corresponds to the set of states where the propositional variable p is

true. This notion of truth is extended to all modal formulas in the following.

Definition 1.5 (Truth). Let M = (X,R,Val) be a model and let x ∈ X be a state.

We inductively define the relation

M, x ⊩ φ

(φ is true at state x in model M) for all formulas φ via

M, x ⊩ p iff x ∈ Val(p),

M, x ⊩ φ1 ∧ φ2 iff M, x ⊩ φ1 and M, x ⊩ φ2,

M, x ⊩ ¬φ iff M, x ̸⊩ φ,
M, x ⊩ ♢φ iff ∃y : xRy and M, y |= φ.

From this definition we also get the truth-conditions for ⊤,⊥,→,∨ as usual

in propositional logic. More importantly, we get the truth-condition for the box-

modality as

M, x ⊩ □φ iff ∀y : if xRy then M, y |= φ.

That is, the modalities ♢,□ can be seen as ‘scanning’ the related states xRy of the

state x, where the ♢ scans ‘existentially’ and □ scans ‘universally’.

Example 1.6. Let us consider the Kripke frame F = (X,R) with X = {x1, . . . , x6}
and R being indicated in Figure 1. Let us consider the model M which arises from

adding the following propositional valuation (we will only consider formulas with

two propositional variables p, q, so it is irrelevant how the valuation is defined on

the remainder of Prop)

Val(p) = {x1, x2, x4} Val(q) = {x1, x3, x4, x5}.

Then, for example, we can check the following:

• M, x1 ⊩ q ∧ ♢¬q
• M, x2 ⊩ □⊥
• M, x3 ⊩ ♢♢q
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Figure 1. Exmple of a Kripke frame

• M, x4 ⊩ p→ ♢p
• M, x5 ⊩ □¬p
• M, x6 ⊩ ♢□¬p

While the notion of truth is satisfied relative to a model, the notion of validity

happens on the level of frames (by quantifying over all possible models based over

this frame, similarly to tautologies in propositional logic).

Definition 1.7 (Validity). Let F = (X,R) be a Kripke frame and x ∈ F. The

formula φ is valid at x, written

F, x ⊩ φ

if and only if M, x ⊩ φ for every model M based on F. We write

F ⊩ φ

if F, x ⊩ φ for all x ∈ F and say the formula φ is valid on F.

Example 1.8. For every frame F = (X,R), it holds that

F ⊩ ♢(φ ∨ ψ) ↔ (♢φ ∨ ♢ψ).

To see this, let M be an arbitrary model on F and let x ∈ X. We have

M, x ⊩ ♢(φ ∨ ψ) ⇔ ∃xRy : M, y ⊩ φ ∨ ψ
⇔ ∃xRy : M, y ⊩ φ or ∃xRy : M, y ⊩ ψ

⇔ M, x |= ♢φ ∨ ♢ψ

as desired.

Example 1.9. For every Kripke frame F = (X,R) we have

F, x ⊩ p→ ♢p if and only if xRx,

in particular F ⊩ p→ ♢p if and only if R is reflexive.

To see this, first assume xRx and let M be an arbitrary model based on F. If

M, x |= p, then we get M, x |= ♢p because xRx. Conversely, assume ¬xRx and

define a model M with Val(p) = {x}. Then we have M, x ⊩ p but M, x ̸⊩ ♢p.
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1.4. Bisimulation. Given two models (X, ,R,Val) and (X ′, R′,Val′), how can we

express the fact that two states x ∈ X and x′ ∈ X ′ have the same ‘behaviour’?

The key property (besides satisfying the same atomic propositions) is that every

‘step’ along the accessibility relation in one model can be ‘simulated’ in the other

one.

Definition 1.10 (Bisimulation). Let M = (X,R,Val) and M′ = (X ′, R′,Val′) be

models. A (non-empty) binary relation B ⊆ X×X ′ is a bisimulation between these

models if the following hold

(1) If xBx′, then x ∈ Val(p) ⇔ x′ ∈ Val′(p).

(2) If xBx′ and xRy, then there is y′ with x′R′y′ and yBy′.

(3) If xBx′ and x′R′y′, then there is y with xRy and yBy′.

We call x and x′ bisimilar if there exists any bisimulation with xBx′.

One reason why this notion is important is the following logical invariance result.

Proposition 1.11. Let M = (X,R,Val) and M′ = (X ′, R′,Val′) be models and

let x ∈ X and x′ ∈ X ′ be bisimilar. Then x and x′ are logically equivalent in the

sense that

M, x ⊩ φ if and only if M′, x′ ⊩ φ

for every modal formula φ.

Proof. Exercise (Hint: Use induction on the structure of φ, where (2) and (3) in

the definition of bisimulation will be needed for the case of ♢φ). □

The converse of this proposition (i.e., logical equivalence implies bisimilarity)

does not necessarily hold. It does, however, hold on image-finite models, which

are models based on frames (X,R) for which the sets R[x] := {y | xRy} is finite

for every x ∈ X. This result, commonly referred to as Hennessy-Milner Theorem,

states (if read contrapositively) that modal logic is expressive enough to distinguish

any two non-bisimilar states in image-finite models by a modal formula.

Theorem 1.12. Let M = (X,R,Val) and M′ = (X ′, R′,Val′) be image-finite mod-

els and let z ∈ X and z′ ∈ X ′ be logically equivalent. Then z and z′ are bisimilar.

Proof. The idea is to show that logical equivalence

x↭ x′ :⇔ (M, x ⊩ φ iff M′, x′ ⊩ φ for all formulas φ)

defines itself a bisimulation. For example, we show that property (2) of Defini-

tion 1.10 holds. Let x ↭ x′ and xRy, and towards contradiction assume that

there is no y′ with x′R′y′ and y↭ y′. That is, if R′[x′] = {y′1, . . . , y′n} then for

every i = 1, . . . , n we can find a formula φn such that M, y ⊩ φi but M′, y′i ̸⊩ φi.

Now we define

φ = ♢(φ1 ∧ · · · ∧ φn)

and observe that M, x ⊩ φ (because xRy) but M′, x′ ̸⊩ φ (since no x′R′y′i satisfies

φ1 ∧ · · · ∧ φn). This contradicts the initial assumption that x and x′ are logically

equivalent. □

Remark 1.13. The relationship between modal logic and bisimulation is even

stronger, as shown by the so-called van Benthem Characterisation Theorem (see,

e.g., [BdRV01, Section 2.6]). This theorem is based on the standard translation of

modal logic into first-order logic and identifies the modal formulas precisely with

the first-order formulas which are bisimulation-invariant.
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1.5. Finite model property via filtration. Our next goal is to prove the fol-

lowing.

Theorem 1.14 (Finite model property). If a formula φ is true in some model, then

it is also true in some finite model (of size at most 2n, where n is the number of

subformulas of φ).

In particular, this yields decidability results, since this means that truth (and

validity) can be checked algorithmically.

In the following, we use sets of formulas Γ ⊆ Form which are closed under

subformulas, meaning that

• φ ∨ ψ ∈ Γ ⇒ φ,ψ ∈ Γ,

• ¬φ ∈ Γ ⇒ φ ∈ Γ,

• ♢φ ∈ Γ ⇒ φ ∈ Γ.

For such a set, we now define filtrations, which are defined on certain quotients.

Definition 1.15. (Filtration) Let M = (X,R,Val) be a model and let Γ ⊆ Form be

closed under subformulas. We define the relation↭Γ on X via

x↭Γ y if and only if ∀φ ∈ Γ: M, x ⊩ φ⇔ M, y ⊩ φ

and note that this defines an equivalence relation on X, and we denote the corre-

sponding quotient by Xf
Γ . A filtration of M through Γ is a model

Mf
Γ = (Xf

Γ , R
f ,Valf )

such that

(1) xRy ⇒ |x|Rf |y|,
(2) If |x|Rf |y|, then for all ♢φ ∈ Γ: M, y ⊩ φ⇒ M, x ⊩ ♢φ,
(3) Valf (p) = {|x| | M, x ⊩ p} for propositional variables p ∈ Γ.

In order to prove Theorem 1.14 we will now prove that (i) for formulas φ ∈ Γ,

truth in M and truth in Mf
Γ coincide, (ii) filtrations through finite Γ are finite and

(iii) such filtrations actually exist.

For (i), we essentially check that the way we defined filtrations is ‘appropriate’.

Theorem 1.16. Let Mf
Γ be a filtration of M through Γ. Then

Mf
Γ, |x| ⊩ φ if and only if M, x ⊩ φ

for all formulas φ ∈ Γ.

Proof. By induction on the structure of φ. The case of propositional variables p

is covered by Definition 1.15(3) and the cases of Boolean connectives ¬,∧ hold

because Γ is closed under subformulas. The ‘interesting’ case ♢φ uses conditions

Definition 1.15(1) and (2). □

Next we show (ii) filtrations through finite sets are finite.

Lemma 1.17. Let Γ be a finite set of formulas closed under subformulas. Then

any filtration Mf
Γ is finite and contains at most 2n states where n is the size of Γ.

Proof. We define a map f : Xf
Γ → P(Γ) by f(|x|) = {φ ∈ Γ | M, x ⊩ φ}. Note that

this is well-defined due to the definition of↭Γ. Furthermore, it is injective since

|x| ≠ |y| implies that there is a formula φ ∈ Γ such that φ ∈ f(|x|) but φ /∈ f(|y|)
or vice versa. □
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Lastly, we show that (iii) filtrations actually exist.

Lemma 1.18. Let Γ be closed under subformulas and let M be a model. The

relation on Xf
Γ defined by

|x|Rf
Γ|y| if and only if ∃x′ ∈ |x|, y′ ∈ |y| : x′Ry′

defines a filtration of M through Γ.

Proof. We need to show that (1) and (2) of Definition 1.15 hold. Note that (1) is

immediate by definition. For (2), assume |x|Rf
Γ|y| and ♢φ ∈ Γ such that M, y ⊩ φ.

We know that there are x′ ∈ |x| and y′ ∈ |y| with x′Ry′. Since y′ ↭Γ y and

M, y ⊩ φ, we have M, y′ ⊩ φ. Thus M, x′ ⊩ ♢φ since x′Ry′. Since x′ ↭Γ x, this

finally yields M, x ⊩ ♢φ as desired. □

Thus, we obtain the finite model property of Theorem 1.14 by using for Γ the

collection of all subformulas of φ.

1.6. Normal modal logics. We now present a syntactic calculus for modal logic

which is sound (i.e., all axioms and rules are valid) and complete (i.e., it is able to

derive all valid formulas).

Definition 1.19 (Normal modal logic). A normal modal logic is a set of formulas

Λ ⊆ Form which contains all instances of the following axioms

• Propositional tautologies (or an axiomatic base thereof)

• (K): □(p→ q) → (□p→ □q)
and is closed under the following rules:

• Modus ponens: From φ→ ψ and φ infer ψ

• Uniform substitution: From ϕ(p1, . . . , pk) infer ϕ(ψ1, . . . , ψk)

• Necessitation (Nec): From φ infer □φ

The smallest normal modal logic is called K.

If F is a class of Kripke frames, then the set

ΛF = {φ | ∀F ∈ F : F ⊩ φ}

is a normal modal logic. In what follows, we will show that K coincides with ΛF if

F is the class of all frames.

1.7. Completeness via canonical model. The so-called canonical model is based

on the set of all maximally consistent sets defined as follows.

Definition 1.20 ((Maximally) consistent sets). A set of formulas t ⊆ Form is consis-

tent (w.r.t. the logic K) if there are no φ1, . . . , φk ∈ t with φ1 ∧ · · · ∧φk → ⊥ ∈ K.

It is called maximally consistent if it is consistent and every t ⊊ t′ is not consistent.

Lemma 1.21 (Lindenbaum’s Lemma). Every consistent theory is contained in some

maximally consistent theory.

The core idea of the canonical model construction is to turn these maximally

consistent sets themselves into the states of a model.

Definition 1.22 (Canonical model). The canonical model is Mc = (Xc, Rc,Valc)

where

• Xc is the set of all maximally consistent sets,
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• tRct′ if and only if ψ ∈ t′ ⇒ ♢ψ ∈ t,

• Valc(p) = {t ∈ Xc | p ∈ t}.

The most important property of this model is often subsumed by the slogan

truth is membership, as expressed by the following.

Lemma 1.23 (Truth Lemma). For every formula φ and maximally consistent theory

t it holds that

Mc, t ⊩ φ if and only if φ ∈ t.

Proof. By induction on the structure of the formula, where only the case ♢φ is not

immediate. The direction ‘⇒’ follows immediately from the definition of Rc. For

the other direction ‘⇐’, assuming that ♢φ ∈ t we want to construct a maximally

consistent set t′ such that φ ∈ t′ and tRct′. The set {φ}∪{ψ | □ψ ∈ t} is consistent,

thus it is contained in a maximally consistent set t′. By design, we have φ ∈ t′ and

□ψ ∈ t⇒ ψ ∈ t′, which implies tRct′ as desired. □

With this, we can now prove the following completeness result.

Theorem 1.24 (Completeness). A formula φ is in K if and only if it is valid on

all frames.

Proof. Soundness ‘⇒’ is an exercise. For the completeness part ‘⇐’, proceed by

contrapositive and assume that φ is not in K. Then {¬φ} is consistent, thus con-

tained in some maximally consistent theory t. By the above lemma, since φ /∈ t we

have Mc, t ̸⊩ φ in the canonical model. Therefore, φ is not valid on all frames. □
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