MODAL LOGIC AND PROPOSITIONAL DYNAMIC LOGIC

WOLFGANG POIGER

ABSTRACT. Lecture notes (under construction) for four lectures of the course
Dynamic Logic at the Faculty of Arts, Charles University in the fall semester
2025/26 (taught together with Igor Sedlér).

e Lecture 1: Modal Logic - Syntax and Kripke Semantics (Oct 22)

e Lecture 2: Modal Logic - Decidability and Completeness (Oct 29)
Further references: For modal logic - [BARVOI]|

1. MobAL LogGIc

1.1. Why modal logic? Modal logics are among the most prominent non-classical
logics for a number of reasons, for example:

~ Simple yet expressive logical systems

~» Typically decidable (unlike e.g., first-order logic)

~ Internal/local perspective on relational structures

~» Rich interplay with other logical/mathematical frameworks

~~ Applications in theoretical computer science, philosophy, linguistics, ...

Modal formulas like O and Oy can model non truth-functional concepts like:

~ Q: It is possible that ¢ —— O: It is necessary that ¢ (Alethic)
~ Fy: Sometime in the future ¢ —— Gp: Always in the future p (Temporal)
~ Py: It is permitted that ¢ —— Ow: It is obligatory that ¢ (Deontic)
~ Ko: The agent knows that ¢ (Epistemic)

(N~ (m)p: Ezecuting program m might result in ¢
[r]p: Executing program m always results in o

1.2. Syntax. The set of formulas is defined inductively from a countable collection
Prop = {p1, p2, p3, - .. } of propositional variables together with logical connectives.

Definition 1.1 (Modal Formulas). The collection Form of modal formulas is induc-
tively defined as follows.

FormB@:::pGPrOp‘@Aw‘ﬁSO‘<><P

As usual, we use abbreviations ¢ V ¢ := (- A 7)), ¢ = ¢ = - V 1),
oo tvi=(@@-=o>P)ANW = @), T:=pV-p, L=-=T. Furthermore, we use the
abbreviation

DQO = _‘0_‘507
and we refer to ¢ and [ as the ‘diamond’ and ‘box’ modalities, respectively. Intu-
itively, the basic modal language is simply the language of classical propositional
logic expanded by these two modalities.

Remark 1.2. The definition of modal formulas (Definition can be easily gen-

eralised to include more than one modality. Indeed, later on we introduce PDL

which uses the multi-modal language containing a modality () for every ‘program’
1
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m. It is also possible (albeit not needed for this course) to include modalities of
higher arities, for example a binary modality A(p, 1)) takes two formulas as input.

1.3. Relational Semantics. We now know what a modal formula is, but we still
need a reasonable notion of interpretation for these formulas. The notions of Kripke
frames/models are the key notion here.

Definition 1.3 (Kripke frame). A (Kripke) frame is a structure § = (X, R) where
X is a set and R C X? is a binary relation on X.

The members of X are often called ‘possible worlds’, we use the more neutral
term ‘states’. The relation R is called the ‘accessibility relation’.

Definition 1.4 (Kripke model). A (Kripke) model is a structure M = (X, R, Val)
where (X, R) is a frame and
Val: Prop — P(X)
is a propositional valuation.
Note that every model 9t = (X, R, Val) is based on a frame § = (X, R). The set

Val(p) C X corresponds to the set of states where the propositional variable p is
true. This notion of ¢ruth is extended to all modal formulas in the following.

Definition 1.5 (Truth). Let 9 = (X, R, Val) be a model and let € X be a state.
We inductively define the relation

M,z - @
(g is true at state  in model M) for all formulas ¢ via
M, xlkp iff x € Val(p),
M, x I o1 A pa iff M, x IF 1 and M,z I+ @a,
M, x I~ iff M, x I o,
M, x Ik Qe iff Jy: xRy and M,y = ¢.

From this definition we also get the truth-conditions for T, l,—,V as usual
in propositional logic. More importantly, we get the truth-condition for the box-
modality as

M,z I- Op iff Vy: if xRy then M,y = .

That is, the modalities ¢, ] can be seen as ‘scanning’ the related states xRy of the
state x, where the { scans ‘existentially’ and [J scans ‘universally’.

Example 1.6. Let us consider the Kripke frame § = (X, R) with X = {x1,...,26}
and R being indicated in Figure|[ll Let us consider the model 2t which arises from
adding the following propositional valuation (we will only consider formulas with
two propositional variables p, q, so it is irrelevant how the valuation is defined on
the remainder of Prop)

Val(p) = {1, 22,24} Val(q) = {z1, 23,74, 5}
Then, for example, we can check the following:
e Mz lFgA g

e M, xolFTL
o M, x3 Ik OOq
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FiGURE 1. Exmple of a Kripke frame

e M aylbp—Op
o M, x5 IF—p
o M x¢ - O0—p

While the notion of truth is satisfied relative to a model, the notion of wvalidity
happens on the level of frames (by quantifying over all possible models based over
this frame, similarly to tautologies in propositional logic).

Definition 1.7 (Validity). Let § = (X, R) be a Kripke frame and z € §. The
formula ¢ is valid at =, written

Szl
if and only if M, x IF ¢ for every model M based on §. We write
SlEe
if §,z Ik ¢ for all x € § and say the formula ¢ is valid on §.
Example 1.8. For every frame § = (X, R), it holds that
FIEOle V) ¢ (e V O).
To see this, let 9t be an arbitrary model on § and let z € X. We have
Mzl O(p V) e JxRy: Mylkp Vv

& JxRy: My Ik @ or JzRy: My -

e Mz EOpVOoy
as desired.
Example 1.9. For every Kripke frame § = (X, R) we have

$,z Ik p— Op if and only if xRz,

in particular § IF p — Op if and only if R is reflexive.

To see this, first assume z Rz and let 9t be an arbitrary model based on §. If
M, x = p, then we get M,z | Op because xRx. Conversely, assume —zRx and
define a model 9 with Val(p) = {z}. Then we have M,z I+ p but M, z I Op.
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1.4. Bisimulation. Given two models (X,, R, Val) and (X', R’,Val), how can we
express the fact that two states x € X and ' € X’ have the same ‘behaviour’?
The key property (besides satisfying the same atomic propositions) is that every
‘step’ along the accessibility relation in one model can be ‘simulated’ in the other
one.

Definition 1.10 (Bisimulation). Let M = (X, R, Val) and 9 = (X', R/, Val’) be
models. A (non-empty) binary relation B C X x X' is a bisimulation between these
models if the following hold

(1) If Ba’, then x € Val(p) < 2’ € Val'(p).

(2) If Bz’ and xRy, then there is ¢y’ with ' R'y’ and yBy'.

(3) If Bz’ and 2’ R'y’, then there is y with xRy and yBy'.
We call z and ' bisimilar if there exists any bisimulation with xBz'.

One reason why this notion is important is the following logical invariance result.

Proposition 1.11. Let M = (X, R,Val) and M = (X', R',Val') be models and
let v € X and 2’ € X' be bisimilar. Then x and ©’ are logically equivalent in the
sense that

M,z Ik @ if and only if M, 2’ I+
for every modal formula ¢.

Proof. Exercise (Hint: Use induction on the structure of ¢, where (2) and (3) in
the definition of bisimulation will be needed for the case of Q). O

The converse of this proposition (i.e., logical equivalence implies bisimilarity)
does not necessarily hold. It does, however, hold on image-finite models, which
are models based on frames (X, R) for which the sets R[z] := {y | «Ry} is finite
for every x € X. This result, commonly referred to as Hennessy-Milner Theorem,
states (if read contrapositively) that modal logic is expressive enough to distinguish
any two non-bisimilar states in image-finite models by a modal formula.

Theorem 1.12. Let M = (X, R,Val) and MM’ = (X', R',Val) be image-finite mod-
els and let z € X and 2’ € X' be logically equivalent. Then z and 2z’ are bisimilar.

Proof. The idea is to show that logical equivalence
T e 2 e (M- @ iff M 2’ Ik for all formulas )

defines itself a bisimulation. For example, we show that property (2) of Defini-
tion holds. Let x «~ z’ and xRy, and towards contradiction assume that
there is no ¢’ with 2’R'y’ and y «~ y’. That is, if R'[2'] = {v},..., )} then for
every ¢ = 1,...,n we can find a formula ¢,, such that 9,y IF ; but M, y! ¥ ;.
Now we define
0 =0(p1 A App)

and observe that M, z IF ¢ (because zRy) but MM, 2’ I ¢ (since no z’ R'y; satisfies
©1 A+ Ay). This contradicts the initial assumption that x and 2’ are logically
equivalent. O

Remark 1.13. The relationship between modal logic and bisimulation is even
stronger, as shown by the so-called van Benthem Characterisation Theorem (see,
e.g., [BARVOI] Section 2.6]). This theorem is based on the standard translation of
modal logic into first-order logic and identifies the modal formulas precisely with
the first-order formulas which are bisimulation-invariant.
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1.5. Finite model property via filtration. Our next goal is to prove the fol-
lowing.

Theorem 1.14 (Finite model property). If a formula ¢ is true in some model, then
it s also true in some finite model (of size at most 2™, where n is the number of
subformulas of ).

In particular, this yields decidability results, since this means that truth (and
validity) can be checked algorithmically.
In the following, we use sets of formulas I' C Form which are closed under
subformulas, meaning that
e pVyYel=pyvel,
o pcl'=pel,
e Spel'=pel.
For such a set, we now define filtrations, which are defined on certain quotients.

Definition 1.15. (Filtration) Let 9t = (X, R, Val) be a model and let I' C Form be
closed under subformulas. We define the relation «~p on X via
xemwpyifandonly if Vo e T M x ko & My Ik @
and note that this defines an equivalence relation on X, and we denote the corre-
sponding quotient by Xf:. A filtration of M through T' is a model
m) = (X}, R/, Val')

such that

(1) =Ry = |z|R/y],

(2) If |z|R7 |y|, then for all 0o € T: M,y - o = M, x |- Op,

(3) Val/(p) = {|z| | M,z I p} for propositional variables p € T.

In order to prove Theorem we will now prove that (i) for formulas ¢ € T,
truth in 2% and truth in 9)?1]: coincide, (ii) filtrations through finite T" are finite and
(iii) such filtrations actually exist.

For (i), we essentially check that the way we defined filtrations is ‘appropriate’.

Theorem 1.16. Let ,‘Jﬁ{f be a filtration of MM through I'. Then
ML, x| I+ ¢ if and only if M,z I+ ¢
for all formulas ¢ € T'.

Proof. By induction on the structure of ¢. The case of propositional variables p
is covered by Definition 3) and the cases of Boolean connectives —, A hold
because I' is closed under subformulas. The ‘interesting’ case Q¢ uses conditions
Definition [L.15(1) and (2). O

Next we show (ii) filtrations through finite sets are finite.

Lemma 1.17. Let T be a finite set of formulas closed under subformulas. Then
any filtration zm{ is finite and contains at most 2™ states where n is the size of T'.

Proof. We define a map f: X/ — P(I') by f(|z]) = {¢ € T | M,z IF ¢}. Note that
this is well-defined due to the definition of «~p. Furthermore, it is injective since
|z # |y| implies that there is a formula ¢ € I" such that ¢ € f(|z|) but ¢ ¢ f(|y|)
or vice versa. (I
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Lastly, we show that (iii) filtrations actually ezist.

Lemma 1.18. Let I' be closed under subformulas and let M be a model. The
relation on Xf: defined by

\z|RL|y| if and only if 3z € ||,y € |y|: =’ Ry’
defines a filtration of M through T.

Proof. We need to show that (1) and (2) of Definition hold. Note that (1) is
immediate by definition. For (2), assume |x\RIJ:|y\ and Q¢ € I' such that M, y IF .
We know that there are 2/ € |z| and 3 € |y| with 2’Ry’. Since y' «~wr y and
M,y I, we have M, 3’ IF . Thus M, 2’ I Q¢ since 2’ Ry’. Since ' «~1 z, this
finally yields 91, x IF O as desired. O

Thus, we obtain the finite model property of Theorem by using for I" the
collection of all subformulas of .

1.6. Normal modal logics. We now present a syntactic calculus for modal logic
which is sound (i.e., all axioms and rules are valid) and complete (i.e., it is able to
derive all valid formulas).

Definition 1.19 (Normal modal logic). A normal modal logic is a set of formulas
A C Form which contains all instances of the following azioms

e Propositional tautologies (or an axiomatic base thereof)
e (K): O(p — ¢q) = (Op — Og)
and is closed under the following rules:

e Modus ponens: From ¢ — 1) and ¢ infer ¢
e Uniform substitution: From ¢(p1,...,px) infer ¢(¢1, ..., ¢¥x)
e Necessitation (Nec): From ¢ infer Oy

The smallest normal modal logic is called K.

If F is a class of Kripke frames, then the set
Ar={p|VF € F: FIF ¢}

is a normal modal logic. In what follows, we will show that K coincides with Af if
F is the class of all frames.

1.7. Completeness via canonical model. The so-called canonical model is based
on the set of all mazimally consistent sets defined as follows.

Definition 1.20 ((Maximally) consistent sets). A set of formulas ¢ C Form is consis-
tent (w.r.t. the logic K) if there are no p1,...,pr € t with o3 A+ A — L € K.
It is called mazimally consistent if it is consistent and every ¢ C ¢’ is not consistent.

Lemma 1.21 (Lindenbaum’s Lemma). Every consistent theory is contained in some
maximally consistent theory.

The core idea of the canonical model construction is to turn these maximally
consistent sets themselves into the states of a model.

Definition 1.22 (Canonical model). The canonical model is M = (X, R¢, Val)
where

e X¢ is the set of all maximally consistent sets,
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e tRt' if and only if yp € t/ = Qv € ¢,
e Val’(p) ={t € X°|pet}

The most important property of this model is often subsumed by the slogan
truth is membership, as expressed by the following.

Lemma 1.23 (Truth Lemma). For every formula ¢ and mazimally consistent theory
t it holds that
ME, t I ¢ if and only if p € t.

Proof. By induction on the structure of the formula, where only the case Q¢ is not
immediate. The direction ‘=’ follows immediately from the definition of R°. For
the other direction ‘<=’; assuming that Qp € t we want to construct a maximally
consistent set ¢’ such that ¢ € ¢t/ and tR°t’. The set {¢}U{¢ | O € t} is consistent,
thus it is contained in a maximally consistent set . By design, we have ¢ € t’ and
(O € t = 1 € ¢/, which implies tR°t’ as desired. O

With this, we can now prove the following completeness result.

Theorem 1.24 (Completeness). A formula ¢ is in K if and only if it is valid on
all frames.

Proof. Soundness ‘=’ is an exercise. For the completeness part ‘<=’, proceed by
contrapositive and assume that ¢ is not in K. Then {—¢} is consistent, thus con-
tained in some maximally consistent theory ¢. By the above lemma, since ¢ ¢ ¢ we
have M€t I ¢ in the canonical model. Therefore, ¢ is not valid on all frames. [
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