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Course overview — 1

The course introduces some logics for reasoning about the properties of computer
programs (mostly equivalence and correctness). Structure:

Program semantics and Hoare Logic
Propositional Dynamic Logic
Kleene algebra
Instructors:
m Igor Sedlar (Parts 1 and 3) sedlar@cs.cas.cz

m Wolfgang Poiger (Part 2) poiger@cs.cas.cz

Both at the Institute of Computer Science, Czech Academy of Sciences
(Pod Vodarenskou vézi 2, Ladvi).
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Course overview — 2

The course will be taught in English.

The fail/pass decision will be based on

m solution of 3 problem sets (roughly: late Oct, late Nov, mid-Jan)
m lecture attendance

Course materials etc. at the course webpage:
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Equivalence of programs: A motivating example
(1) (ii)

def print_primes(y): def print_primes(y):
T =2 T =2
while x < y do while x < y do
if is_prime(z) then if is_prime(z) then
print(x) print(x)
r=x+1 end if
else rzi=z+1
r:=x+1 end while
end if
end while

Figure: Two programs for printing out primes.
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A formal language of programs
Variables: propositions IT = {p1, p2, ...}, programs/actions ¥ = {aj, ag,...}.

Definition 1
Boolean formulas (F'm) Program expressions (Pr)
B,C:=pell E F:=aecX
| T true | skip “Do nothing” / “Wait”
| L false | abort “Stop the computation”
| =B not | E; F “Do E, then do F”
| BAC and | if B then E else F’ Conditionals
| BV C or | while B do E While loops
Example 1: (i) formalised
a; (while p do (if q then b; c else c)) J

where a < (z :=2),b + print(z), c + (z:=x+ 1) andp + (z < y), q + is_prime(z)
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Relational semantics — 1

Definition 2

A relational model for programs is M = (X, satyy, relys) where
B X #£0)
m satys : II — P(X)
mrely X — P(X x X)

sat)s generalizes to F'm — P(X) in the usual way.

Intuition: X is a set of “states”; sats(p) is the set of states where p “is satisfied” and
relps(a) is the “input-output relation” for a. That s, (z,y) € relys(a) iff a may halt in
state y when executed in z.

Note: relys(a) is not necessarily a (total) function (non-determinism).
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Relational semantics — 2

Example 2
A relational model for the motivating example:

finite sequences over N

=
B X =NxNxN*
m sat(p) = {(n,m,s) | n <m}
m sat(q) = {(n,m, s) | nis prime}

m and rel is the minimal relation such that
(n,m,s) 25 (2,m,s)  (n,m,s) > (n,m, sn)

(n,m,s) = (n+1,m,s)

Recall: a + (z :=2),b + print(z),c < (z:=xz + 1) andp < (z < y), q + is_prime(z)
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Relational semantics — 3
Recall: If R, R;, R C X x X, then

m RioRy={(z,y) | Tz € X : (z,2) € R1 & (z,y) € Ra2}

B R ={J,5,R", where R =1x ={(z,2) |z € X}and R""* = R"o R.
Definition 3
Given M, we define [—]ar : Fm U Pr — P(X x X):

] IIB]]M = 1satM(B) and [[a]]M = reIM(a) forBe€ Fm,a€eX

m [skip]ys = 1x and [abort] s, = ()

n [B; Fl = [Elus o [Flu

m [if B then E else F]y = ([B]ar o [E]a) YU ([-Blas o [Flar)
Programs P and Q) are relationally equivalent iff [ P]as = [Q] ar for all M.

(Notation: P = Q).
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Relational semantics — 4

Example 3
Complex programs in Example 2:

m (n,m,s) LILN (n+1,m,ns)

if p then b else ¢
—>

m (2,3,s) (2,3,52)

while p do b;c
E—

m (2,4,¢) (5,4,234)

(3,2,s)

hile p do b;
(4,2,6> while p do b;c

if p then b else ¢
—>

(4,2, s)

(4,2,¢€)
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Relational semantics — 5

Simplifying notation:

skip =1 abort =0
if Bthen Eelse F = E 45 F while B do E = E®P)

We define assert B := 1 +p 0. We usually write “B” instead of “assert B”.

We define H : Pr — F'm (the halt predicate):

H(a):=L1L H(skip):=T H(abort): =1 H(E;F):=H(E)ANH(F)
H(E +5 F) := (BAH(E))V (-BAH(F)) H(EDP):.=-B.

Hence: H(assert B) = (BAT)V (-BA 1l)=B.
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Relational semantics — 6

Proposition 1

GKAT axioms are relationally valid:

BA. B = C valid in BA S1. E;(F;G) = (E; F); G
U2. E+pF=F+¢p E Sg' éo ; 0
U3. (E+BF)+cG=E+sre) (F+cG) S4' 1-7E ; E
U4. E+pF=B;E+B F S5. E’l;E
US5. (E+8 F);G = (B;G) +8 (F;G) . -
(B) — p. p(B) = F;
Wi E® =B, E® 451 — % FH(E) = L
W2,  (BE+o1)® = (C;E)® o
v
Example 4

Hence, ((E; F) +¢ F)B) = ((E +¢ 1); F)(B),
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Trace semantics — 1

A state is a complete and consistent set of literals (containing exactly one of p and p
foreachp € II). We write S Erifr € S. (S F B as expected.)

Definition 4
A trace (over 11 and Y.) is a sequence of the form

Slalsg N an,ls’n

where n > 1, each S; is a state (over 11) and each a; € X. T'r is the set of all traces.

v

Note: If IT is finite, then each state is a word over the set of literals and each trace is a word in the regular
language (States - X)* - States.

Example 4
(on ok) switch (om ok) switch (on ok) break (on ok) J
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Trace semantics — 2

Definition 5
A trace model for programs is tra : ¥ — T'r where

tra(a) C {SaT | S, T states}

The canonical trace model is can : a +— {SaT | S, T states}.

Fusion product: partial function o : T'r x T'r — T'r

xSy S=T

xSoTy =
Y {undefined S#T

Lifted to sets of traces: K o L ={wou|w € K & wu € L}. We define
K := States, K"*! = K" o K,and K* = Unzo K"
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Trace semantics — 3

Definition 6
Given tra, we define [—]a : Fm U Pr — 277 as follows:
B [B]wa={S| S E B} and [a]i. = tra(a)
m [skip]i. = States [abort]y. = 0
B [E; Flua = [E]tra © [F]tra
m [if B then E else Flya = ([Blus ¢ [E]ira) U ([~ Bera ¢ [Flera)
m [while B do E]ia = ([Blira © [E]tra)” © [~ B]tra
We denote [—]can Simply as [—].
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Trace semantics — 4

Example 5
An example trace model for & = {a,b} and IT = {p, q}:
m [p] = {pa,pa}, [a] = {pa.pa}
m [a] = {pqapq, p3apq, pgapq, paapq}, [b] = {pqbpd, pabpq, Pqbpa, Pabpq}
= [a;b] = {pqapqbpqg, bgapqbpqg, pgapgbpq; - - -}
m [if p then a else b] = {pqapq, pgapq, pqbpJ, Pabpq}
m [while p do a] = {pgapq, p3apq, g, pg}, [while p do b] = {pq, 53}
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Trace semantics — 5

Theorem 1
E =Fiff[E] = [F].

Proof (sketch). 1. For each M = (X, satyy, rely), let M : Tr — 2X*X sych that

M(S) = m [Pl

M (wau) = M(w) o relys(a) o M(u).
peS

We denote M (K) =

2. Letcay : 277 — 27777 where

cay(L) = {{w,wou) |weTr & ue L}

The function cay is injective. We prove by induction on E that [E] s = cay ([E]) for

M = (T'r,satp, relps) where satp (p) = {w | (w, w) € cay ([p])} and
relys(a) = cay ([a]).
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Completeness — 1

Recall the GKAT axioms:

BA. B = C validin BA
S1. E;(F;G)=(E;F);G

Ul. E+sE=E
U2 E+4pF=F+pE 52. 0;&=0
Us. (E+ F)+BG:E+(ﬁB) (F +¢ G) 53 E0=0
us. BE—}-CF_BEEiAC)F : 5. LE=E

' so T e S5. El1=E
U5. (E+BF);G=(E;G)+B(F;G)

(B) _ g p(B) o
WL BT =EE" +p1 W3, —GG_EEC(;BT?FHH(E)EJ_
W2. (E+c1)®) = (C; )P - :
Definition 7

A program equation E = I is provable iff it is derivable from the GKAT axioms (using
equational logic). Notation: - E = F.
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Completeness — 2

Let GKAT+UA be the set of GKAT axioms extended with the Uniqueness Axiom of
Smolka et al. 2020. We express by -ya F2 = F' that E = F' is provable in GKAT+UA.

Theorem 2
Fua E = Fiff[E] = [F]. J

Proof is beyond the scope of these lectures; see Smolka et al. 2020. O

Open problem

Give a sound and complete axiomatization of relational equivalence using only
standard equational and quasi-equational axioms.
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Hoare completeness — 1

Partial correctness:

If B holds and F is executed, then C' will hold upon termination of £/

(notation: { B} E{C'}).
Hoare logic:

{B}E{C} {C}F{D}
{B}skip{B} {B}abort{l} {B}E; F{D}

{BAC}E{D} {-BAC}F{D}
{C}if B then E else F{D}

{BAC}E{C}
{C}while B do E{-B A C}
B'F B {BYE{C} CEC"

{B'}E{C"}
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Hoare completeness — 2

{B}E{C'Y} is satisfied in M (notation M |= {B}E{CY})iff s € satjs(B) and
(s,t) € relps(E) imply that t € satps(C). The following are equivalent:

M = {B}E{C}

[B: E;Clm = [B; E]m

[B; E; Clar = [L] -

Theorem 3
- B; E;C = B; Eiff[B; E; C] = [B; E]. J

Proof (sketch). 1. Soundness: Induction on length of derivation. 2. Completeness: Structural
induction on E. O
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Exercises — 1

1.1 Formalise part (ii) of the motivating example.

1.2 Formalise the following two programs. Are they equivalent?

def GCD1 (a, b):
while a # b do
if (a > b) then
a:=a—>b
else
b:=b—a
end if
end while
print a
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def GCD2(a, b):
if a # b then
if (a > b) then
a:=a—>b
else
b:=b—a
end if
end if
while a # b do
if (a > b) then
a:=a—>
else
b:=b—a
end if
end while
print a
FF UK, 2025

20/22



Exercises — 2

1.3 Give examples of pairs of programs you think are equivalent. Formalise them in the
language of programs.

1.4 Prove Proposition 1.

1.5 Can you show that programs in Exercise 1.2 are equivalent by deriving the corresponding
equation from the GKAT axioms?

1.6 In the trace model of Example 1.5, what is the interpretation of the programs
if p then a else a;b and while p do b;a?

1.7 Verify that the GKAT axioms are valid in the canonical trace model for IT = {p, q} and
Y ={a,b}.

1.8 Show that the function cay defined in the proof of Theorem 1 is injective.

1.9 Finish the proof of Theorem 3.
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Notes

m The “logic of programs” introduced in this handout is a version of
Guarded Kleene Algebra With Tests; see (Smolka et al., 2020).

m It is a “propositional variant” of while programs; see (Hoare, 1969) and Ch. 3 of (Apt et al.,
2009).

m Our proof of Theorem 1 derives from Kappé’s lecture notes (Kappé, 2022); the argument
goes back to (Pratt, 1980).

m (A first-order version of) Hoare logic was introduced by Hoare (1969); the relation of its
propositional version to a formalism related to ours is studied by Kozen (2000).

m Theorems 3 and 2 are established in (Smolka et al., 2020).

m The standard completeness problem is discussed in (Kappé et al., 2023).
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