Dynamic Logic

Part 1: Programs and Their Semantics

Wolfgang Poiger and Igor Sedlar
Institute of Computer Science

Czech Academy of Sciences

Faculty of Arts, Charles University
Fall Semester 2025-26

Course overview — 1

The course introduces some logics for reasoning about the properties of computer
programs (mostly equivalence and correctness). Structure:

Program semantics and Hoare Logic
Propositional Dynamic Logic
Kleene algebra
Instructors:
m Igor Sedlar (Parts 1 and 3) sedlar@cs.cas.cz

m Wolfgang Poiger (Part 2) poiger@cs.cas.cz

Both at the Institute of Computer Science, Czech Academy of Sciences
(Pod Vodarenskou vézi 2, Ladvi).

W. Poiger & I. Sedlar (ICS CAS)

Dynamic Logic, Part 1 FF UK, 2025 1/22

Course overview — 2

The course will be taught in English.

The fail/pass decision will be based on

m solution of 3 problem sets (roughly: late Oct, late Nov, mid-Jan)
m lecture attendance

Course materials etc. at the course webpage:

W. Poiger & I. Sedlar (ICS CAS)

Dynamic Logic, Part 1

FF UK, 2025

2/22

Equivalence of programs: A motivating example
(1) (ii)

def print_primes(y): def print_primes(y):
T =2 T =2
while x < y do while x < y do
if is_prime(z) then if is_prime(z) then
print(x) print(x)
r=x+1 end if
else rzi=z+1
r:=x+1 end while
end if
end while

Figure: Two programs for printing out primes.

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 3/22

A formal language of programs
Variables: propositions IT = {p1, p2, ...}, programs/actions ¥ = {aj, ag,...}.

Definition 1
Boolean formulas (F'm) Program expressions (Pr)
B,C:=pell E F:=aecX
| T true | skip “Do nothing” / “Wait”
| L false | abort “Stop the computation”
| =B not | E; F “Do E, then do F”
| BAC and | if B then E else F’ Conditionals
| BV C or | while B do E While loops
Example 1: (i) formalised
a; (while p do (if q then b; c else c)) J

where a < (z :=2),b + print(z), c + (z:=x+ 1) andp + (z < y), q + is_prime(z)

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 4/22

Relational semantics — 1

Definition 2

A relational model for programs is M = (X, satyy, relys) where
B X #£0)
m satys : II — P(X)
mrely X — P(X x X)

sat)s generalizes to F'm — P(X) in the usual way.

Intuition: X is a set of “states”; sats(p) is the set of states where p “is satisfied” and
relps(a) is the “input-output relation” for a. That s, (z,y) € relys(a) iff a may halt in
state y when executed in z.

Note: relys(a) is not necessarily a (total) function (non-determinism).

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 5/22

Relational semantics — 2

Example 2
A relational model for the motivating example:

finite sequences over N

=
B X =NxNxN*
m sat(p) = {(n,m,s) | n <m}
m sat(q) = {(n,m, s) | nis prime}

m and rel is the minimal relation such that
(n,m,s) 25 (2,m,s) (n,m,s) > (n,m, sn)

(n,m,s) = (n+1,m,s)

Recall: a + (z :=2),b + print(z),c < (z:=xz + 1) andp < (z < y), q + is_prime(z)

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 6/22

Relational semantics — 3
Recall: If R, R;, R C X x X, then

m RioRy={(z,y) | Tz € X : (z,2) € R1 & (z,y) € Ra2}

B R ={J,5,R", where R =1x ={(z,2) |z € X}and R""* = R"o R.
Definition 3
Given M, we define [—]ar : Fm U Pr — P(X x X):

] IIB]]M = 1satM(B) and [[a]]M = reIM(a) forBe€ Fm,a€eX

m [skip]ys = 1x and [abort] s, = ()

n [B; Fl = [Elus o [Flu

m [if B then E else F]y = ([B]ar o [E]a) YU ([-Blas o [Flar)
Programs P and Q) are relationally equivalent iff [P]as = [Q] ar for all M.

(Notation: P = Q).

W. Poiger & I. Sedlar (ICS CAS)

Dynamic Logic, Part 1 FF UK, 2025 7/22

Relational semantics — 4

Example 3
Complex programs in Example 2:

m (n,m,s) LILN (n+1,m,ns)

if p then b else ¢
—>

m (2,3,s) (2,3,52)

while p do b;c
E—

m (2,4,¢) (5,4,234)

(3,2,s)

hile p do b;
(4,2,6> while p do b;c

if p then b else ¢
—>

(4,2, s)

(4,2,¢€)

W. Poiger & I. Sedlar (ICS CAS)

Dynamic Logic, Part 1

FF UK, 2025

8/22

Relational semantics — 5

Simplifying notation:

skip =1 abort =0
if Bthen Eelse F = E 45 F while B do E = E®P)

We define assert B := 1 +p 0. We usually write “B” instead of “assert B”.

We define H : Pr — F'm (the halt predicate):

H(a):=L1L H(skip):=T H(abort): =1 H(E;F):=H(E)ANH(F)
H(E +5 F) := (BAH(E))V (-BAH(F)) H(EDP):.=-B.

Hence: H(assert B) = (BAT)V (-BA 1l)=B.

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 9/22

Relational semantics — 6

Proposition 1

GKAT axioms are relationally valid:

BA. B = C valid in BA S1. E;(F;G) = (E; F); G
U2. E+pF=F+¢p E Sg' éo ; 0
U3. (E+BF)+cG=E+sre) (F+cG) S4' 1-7E ; E
U4. E+pF=B;E+B F S5. E’l;E
US5. (E+8 F);G = (B;G) +8 (F;G) . -
(B) — p. p(B) = F;
Wi E® =B, E® 451 — % FH(E) = L
W2, (BE+o1)® = (C;E)® o
v
Example 4

Hence, ((E; F) +¢ F)B) = ((E +¢ 1); F)(B),

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 10/22

Trace semantics — 1

A state is a complete and consistent set of literals (containing exactly one of p and p
foreachp € II). We write S Erifr € S. (S F B as expected.)

Definition 4
A trace (over 11 and Y.) is a sequence of the form

Slalsg N an,ls’n

where n > 1, each S; is a state (over 11) and each a; € X. T'r is the set of all traces.

v

Note: If IT is finite, then each state is a word over the set of literals and each trace is a word in the regular
language (States - X)* - States.

Example 4
(on ok) switch (om ok) switch (on ok) break (on ok) J

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1

FF UK, 2025 11/22

Trace semantics — 2

Definition 5
A trace model for programs is tra : ¥ — T'r where

tra(a) C {SaT | S, T states}

The canonical trace model is can : a +— {SaT | S, T states}.

Fusion product: partial function o : T'r x T'r — T'r

xSy S=T

xSoTy =
Y {undefined S#T

Lifted to sets of traces: K o L ={wou|w € K & wu € L}. We define
K := States, K"*! = K" o K,and K* = Unzo K"

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025

12/22

Trace semantics — 3

Definition 6
Given tra, we define [—]a : Fm U Pr — 277 as follows:
B [B]wa={S| S E B} and [a]i. = tra(a)
m [skip]i. = States [abort]y. = 0
B [E; Flua = [E]tra © [F]tra
m [if B then E else Flya = ([Blus ¢ [E]ira) U ([~ Bera ¢ [Flera)
m [while B do E]ia = ([Blira © [E]tra)” © [~ B]tra
We denote [—]can Simply as [—].

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025

13/22

Trace semantics — 4

Example 5
An example trace model for & = {a,b} and IT = {p, q}:
m [p] = {pa,pa}, [a] = {pa.pa}
m [a] = {pqapq, p3apq, pgapq, paapq}, [b] = {pqbpd, pabpq, Pqbpa, Pabpq}
= [a;b] = {pqapqbpqg, bgapqbpqg, pgapgbpq; - - -}
m [if p then a else b] = {pqapq, pgapq, pqbpJ, Pabpq}
m [while p do a] = {pgapq, p3apq, g, pg}, [while p do b] = {pq, 53}

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025

14/22

Trace semantics — 5

Theorem 1
E =Fiff[E] = [F].

Proof (sketch). 1. For each M = (X, satyy, rely), let M : Tr — 2X*X sych that

M(S) = m [Pl

M (wau) = M(w) o relys(a) o M(u).
peS

We denote M (K) =

2. Letcay : 277 — 27777 where

cay(L) = {{w,wou) |weTr & ue L}

The function cay is injective. We prove by induction on E that [E] s = cay ([E]) for

M = (T'r,satp, relps) where satp (p) = {w | (w, w) € cay ([p])} and
relys(a) = cay ([a]).

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025

Uwex M (w) and prove [E]y = M([E]) by induction on E.

15/22

Completeness — 1

Recall the GKAT axioms:

BA. B = C validin BA
S1. E;(F;G)=(E;F);G

Ul. E+sE=E
U2 E+4pF=F+pE 52. 0;&=0
Us. (E+ F)+BG:E+(ﬁB) (F +¢ G) 53 E0=0
us. BE—}-CF_BEEiAC)F : 5. LE=E

' so T e S5. El1=E
U5. (E+BF);G=(E;G)+B(F;G)

(B) _ g p(B) o
WL BT =EE" +p1 W3, —GG_EEC(;BT?FHH(E)EJ_
W2. (E+c1)®) = (C;)P - :
Definition 7

A program equation E = I is provable iff it is derivable from the GKAT axioms (using
equational logic). Notation: - E = F.

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 16/22

Completeness — 2

Let GKAT+UA be the set of GKAT axioms extended with the Uniqueness Axiom of
Smolka et al. 2020. We express by -ya F2 = F' that E = F' is provable in GKAT+UA.

Theorem 2
Fua E = Fiff[E] = [F]. J

Proof is beyond the scope of these lectures; see Smolka et al. 2020. O

Open problem

Give a sound and complete axiomatization of relational equivalence using only
standard equational and quasi-equational axioms.

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 17/22

Hoare completeness — 1

Partial correctness:

If B holds and F is executed, then C' will hold upon termination of £/

(notation: { B} E{C'}).
Hoare logic:

{B}E{C} {C}F{D}
{B}skip{B} {B}abort{l} {B}E; F{D}

{BAC}E{D} {-BAC}F{D}
{C}if B then E else F{D}

{BAC}E{C}
{C}while B do E{-B A C}
B'F B {BYE{C} CEC"

{B'}E{C"}

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 18/22

Hoare completeness — 2

{B}E{C'Y} is satisfied in M (notation M |= {B}E{CY})iff s € satjs(B) and
(s,t) € relps(E) imply that t € satps(C). The following are equivalent:

M = {B}E{C}

[B: E;Clm = [B; E]m

[B; E; Clar = [L] -

Theorem 3
- B; E;C = B; Eiff[B; E; C] = [B; E]. J

Proof (sketch). 1. Soundness: Induction on length of derivation. 2. Completeness: Structural
induction on E. O

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 19/22

Exercises — 1

1.1 Formalise part (ii) of the motivating example.

1.2 Formalise the following two programs. Are they equivalent?

def GCD1 (a, b):
while a # b do
if (a > b) then
a:=a—>b
else
b:=b—a
end if
end while
print a

W. Poiger & I. Sedlar (ICS CAS)

Dynamic Logic, Part 1

def GCD2(a, b):
if a # b then
if (a > b) then
a:=a—>b
else
b:=b—a
end if
end if
while a # b do
if (a > b) then
a:=a—>
else
b:=b—a
end if
end while
print a
FF UK, 2025

20/22

Exercises — 2

1.3 Give examples of pairs of programs you think are equivalent. Formalise them in the
language of programs.

1.4 Prove Proposition 1.

1.5 Can you show that programs in Exercise 1.2 are equivalent by deriving the corresponding
equation from the GKAT axioms?

1.6 In the trace model of Example 1.5, what is the interpretation of the programs
if p then a else a;b and while p do b;a?

1.7 Verify that the GKAT axioms are valid in the canonical trace model for IT = {p, q} and
Y ={a,b}.

1.8 Show that the function cay defined in the proof of Theorem 1 is injective.

1.9 Finish the proof of Theorem 3.

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 21/22

Notes

m The “logic of programs” introduced in this handout is a version of
Guarded Kleene Algebra With Tests; see (Smolka et al., 2020).

m It is a “propositional variant” of while programs; see (Hoare, 1969) and Ch. 3 of (Apt et al.,
2009).

m Our proof of Theorem 1 derives from Kappé’s lecture notes (Kappé, 2022); the argument
goes back to (Pratt, 1980).

m (A first-order version of) Hoare logic was introduced by Hoare (1969); the relation of its
propositional version to a formalism related to ours is studied by Kozen (2000).

m Theorems 3 and 2 are established in (Smolka et al., 2020).

m The standard completeness problem is discussed in (Kappé et al., 2023).

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 22/22

References

« Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rudiger Olderog. Verification of Sequential and Concurrent Programs.
Texts in Computer Science. Springer, 3rd edition, 2009.

« Charles Anthony R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12:576-580, 1969.
« Tobias Kappé. Kleene algebra. Course notes, University of Amsterdam, 2022.
« Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Logic, 1(1):60-76, July 2000.

+ Tobias Kappé, Todd Schmid, and Alexandra Silva. A Complete Inference System for Skip-free Guarded Kleene
Algebra with Tests. In T. Wies, editor, Programming Languages and Systems. ESOP 2023., pages 309-336.
Springer Nature Switzerland, 2023.

+ Vaughan Pratt. Dynamic algebras and the nature of induction. In Proc. Twelfth Annual ACM Symposium on Theory
of Computing (STOC 1980), pages 22—-28. ACM, 1980.

+ Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene
algebra with tests: Verification of uninterpreted programs in nearly linear time. In Proc. 47th ACM SIGPLAN Symp.
Principles of Programming Languages (POPL20), pages 61:1-28, New Orleans, January 2020. ACM.

W. Poiger & I. Sedlar (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 22/22

	Course overview
	Programs

