Dynamic Logic

Part 1: Programs and Their Semantics

Wolfgang Poiger and Igor Sedlár

Institute of Computer Science Czech Academy of Sciences

Faculty of Arts, Charles University Fall Semester 2025-26

Course overview – 1

The course introduces some logics for reasoning about the properties of computer programs (mostly equivalence and correctness). Structure:

- Program semantics and Hoare Logic
- Propositional Dynamic Logic
- 3 Kleene algebra

Instructors:

- Igor Sedlár (Parts 1 and 3) sedlar@cs.cas.cz
- Wolfgang Poiger (Part 2) poiger@cs.cas.cz

Both at the Institute of Computer Science, Czech Academy of Sciences (Pod Vodárenskou věží 2, Ládví).

Course overview – 2

The course will be taught in English.

The fail/pass decision will be based on

- solution of 3 problem sets (roughly: late Oct, late Nov, mid-Jan)
- lecture attendance

Course materials etc. at the course webpage:

Equivalence of programs: A motivating example

(i) (ii)

```
def
             print_primes(y):
 x := 2
 while x \leq y do
    if is\_prime(x) then
      print(x)
      x := x + 1
    else
      x := x + 1
    end if
 end while
```

```
def
             print_primes(y):
  x := 2
  while x \leq y do
    if is\_prime(x) then
      print(x)
    end if
    x := x + 1
  end while
```

Figure: Two programs for printing out primes.

A formal language of programs

Variables: propositions $\Pi = \{p_1, p_2, \ldots\}$, programs/actions $\Sigma = \{a_1, a_2, \ldots\}$.

Definition 1

Boolean formulas (Fm)		Program expressions (Pr	2
$B,C::=\mathtt{p}\in\Pi$		$E,F::=\mathbf{a}\in\Sigma$	
T	true	$\mid \mathbf{skip} \mid$	"Do nothing" / "Wait"
	false	abort	"Stop the computation"
$ \neg B $	not	$\mid E; F$	"Do E , then do F "
$\mid B \wedge C$	and	if B then E else F	Conditionals
$B \lor C$	or	while B do E	While loops

Example 1: (i) formalised

a; (while p do (if q then b; c else c))

where $\mathbf{a} \leftarrow (x := 2)$, $\mathbf{b} \leftarrow \mathtt{print}(x)$, $\mathbf{c} \leftarrow (x := x + 1)$ and $\mathbf{p} \leftarrow (x \le y)$, $\mathbf{q} \leftarrow \mathtt{is_prime}(x)$

Definition 2

A <u>relational model</u> for programs is $M = \langle X, \mathsf{sat}_M, \mathsf{rel}_M \rangle$ where

- $X \neq \emptyset$
- \blacksquare sat $_M:\Pi o \mathcal{P}(X)$
- \blacksquare rel $_M: \Sigma \to \mathcal{P}(X \times X)$

 sat_M generalizes to $Fm \to \mathcal{P}(X)$ in the usual way.

Intuition: X is a set of "states"; $\operatorname{sat}_M(\mathtt{p})$ is the set of states where \mathtt{p} "is satisfied" and $\operatorname{rel}_M(\mathtt{a})$ is the "input-output relation" for a. That is, $\langle x,y\rangle\in\operatorname{rel}_M(\mathtt{a})$ iff a may halt in state y when executed in x.

Note: $rel_M(a)$ is not necessarily a (total) function (non-determinism).

Example 2

A relational model for the motivating example:

finite sequences over $\mathbb N$

$$X = \mathbb{N} \times \mathbb{N} \times \mathbb{N}^*$$

- \blacksquare sat(p) = { $\langle n, m, s \rangle \mid n \leq m$ }
- \blacksquare sat(q) = { $\langle n, m, s \rangle \mid n \text{ is prime}$ }
- and rel is the minimal relation such that

$$\langle n, m, s \rangle \xrightarrow{\mathbf{a}} \langle 2, m, s \rangle \qquad \langle n, m, s \rangle \xrightarrow{\mathbf{b}} \langle n, m, s n \rangle$$

$$\langle n, m, s \rangle \xrightarrow{\mathbf{c}} \langle n + 1, m, s \rangle$$

 $\textit{Recall: } \mathbf{a} \leftarrow (x := 2), \mathbf{b} \leftarrow \texttt{print}(x), \mathbf{c} \leftarrow (x := x + 1) \textit{ and } \mathbf{p} \leftarrow (x \leq y), \mathbf{q} \leftarrow \texttt{is_prime}(x)$

Recall: If $R, R_1, R_2 \subseteq X \times X$, then

- $\blacksquare R_1 \circ R_2 = \{ \langle x, y \rangle \mid \exists z \in X : \langle x, z \rangle \in R_1 \& \langle z, y \rangle \in R_2 \}$
- $lacksquare R^* = igcup_{n \geq 0} R^n$, where $R^0 = 1_X = \{\langle x, x \rangle \mid x \in X\}$ and $R^{n+1} = R^n \circ R$.

Definition 3

Given M, we define $[\![-]\!]_M: Fm \cup Pr \to \mathcal{P}(X \times X)$:

- $lacksquare [\![B]\!]_M=1_{\mathsf{sat}_M(B)}$ and $[\![\mathtt{a}]\!]_M=\mathsf{rel}_M(\mathtt{a})$ for $B\in Fm$, $\mathtt{a}\in \Sigma$
- \blacksquare $\llbracket \mathbf{skip} \rrbracket_M = 1_X \text{ and } \llbracket \mathbf{abort} \rrbracket_M = \emptyset$
- $\blacksquare \ [\![E;F]\!]_M = [\![E]\!]_M \circ [\![F]\!]_M$
- $\blacksquare \ \llbracket \textbf{if} \ B \ \textbf{then} \ E \ \textbf{else} \ F \rrbracket_M = (\llbracket B \rrbracket_M \circ \llbracket E \rrbracket_M) \cup (\llbracket \neg B \rrbracket_M \circ \llbracket F \rrbracket_M)$
- [while B do $E]_M = ([\![B]\!]_M \circ [\![E]\!]_M)^* \circ [\![\neg B]\!]_M$

Programs P and Q are <u>relationally equivalent</u> iff $[\![P]\!]_M = [\![Q]\!]_M$ for all M.

(Notation: $P \equiv Q$).

Example 3

Complex programs in Example 2:

Simplifying notation:

$$\mathbf{skip} = 1 \qquad \qquad \mathbf{abort} = 0$$

$$\mathbf{if} \ B \ \mathbf{then} \ E \ \mathbf{else} \ F = E +_B F \qquad \qquad \mathbf{while} \ B \ \mathbf{do} \ E = E^{(B)}$$

We define assert $B := 1 +_B 0$. We usually write "B" instead of "assert B".

We define $\mathcal{H}: Pr \to Fm$ (the <u>halt predicate</u>):

$$\mathcal{H}(\mathtt{a}) := \bot \quad \mathcal{H}(\mathbf{skip}) := \top \quad \mathcal{H}(\mathbf{abort}) := \bot \quad \mathcal{H}(E;F) := \mathcal{H}(E) \land \mathcal{H}(F)$$

$$\mathcal{H}(E +_B F) := (B \wedge \mathcal{H}(E)) \vee (\neg B \wedge \mathcal{H}(F)) \qquad \mathcal{H}(E^{(B)}) := \neg B.$$

Hence:
$$\mathcal{H}(\mathbf{assert}\ B) = (B \wedge \top) \vee (\neg B \wedge \bot) \equiv B$$
.

Proposition 1

GKAT axioms are relationally valid:

Example 4

Hence, $((E; F) +_C F)^{(B)} \equiv ((E +_C 1); F)^{(B)}$.

A <u>state</u> is a complete and consistent set of literals (containing exactly one of p and \bar{p} for each $p \in \Pi$). We write $S \models r$ if $r \in S$. ($S \models B$ as expected.)

Definition 4

A trace (over Π and Σ) is a sequence of the form

$$S_1 \mathbf{a}_1 S_2 \dots \mathbf{a}_{n-1} S_n$$

where $n \geq 1$, each S_i is a state (over Π) and each $a_j \in \Sigma$. Tr is the set of all traces.

Note: If Π is finite, then each state is a word over the set of literals and each trace is a word in the regular language (States $\cdot \Sigma$)* \cdot States.

Example 4

(on ok) switch $(\overline{on} ok)$ switch (on ok) break $(on \overline{ok})$

Definition 5

A <u>trace model</u> for programs is tra : $\Sigma \to Tr$ where

$$tra(a) \subseteq \{SaT \mid S, T \text{ states}\}$$

The <u>canonical trace model</u> is can: $a \mapsto \{SaT \mid S, T \text{ states}\}.$

Fusion product: partial function $\diamond: Tr \times Tr \to Tr$

$$xS \diamond Ty = \begin{cases} xSy & S = T \\ \text{undefined} & S \neq T \end{cases}$$

Lifted to sets of traces: $K\diamond L=\{w\diamond u\mid w\in K \ \&\ u\in L\}.$ We define $K^0:=$ States, $K^{n+1}=K^n\diamond K$, and $K^*=\bigcup_{n\geq 0}K^n.$

Definition 6

Given tra, we define $\llbracket - \rrbracket_{\mathsf{tra}} : Fm \cup Pr \to 2^{Tr}$ as follows:

- $\blacksquare \hspace{0.1cm} \llbracket B \rrbracket_{\mathsf{tra}} = \{ S \mid S \vDash B \} \hspace{0.1cm} \textit{and} \hspace{0.1cm} \llbracket \mathtt{a} \rrbracket_{\mathsf{tra}} = \mathsf{tra}(\mathtt{a})$
- $\qquad \hspace{-1.5cm} \llbracket \mathbf{skip} \rrbracket_{\mathsf{tra}} = \mathsf{States} \quad \llbracket \mathbf{abort} \rrbracket_{\mathsf{tra}} = \emptyset$
- $\blacksquare \hspace{0.1cm} \llbracket E;F \rrbracket_{\mathsf{tra}} = \llbracket E \rrbracket_{\mathsf{tra}} \diamond \llbracket F \rrbracket_{\mathsf{tra}}$
- $\blacksquare \ \llbracket \mathbf{if} \ B \ \mathbf{then} \ E \ \mathbf{else} \ F \rrbracket_{\mathsf{tra}} = (\llbracket B \rrbracket_{\mathsf{tra}} \diamond \llbracket E \rrbracket_{\mathsf{tra}}) \cup (\llbracket \neg B \rrbracket_{\mathsf{tra}} \diamond \llbracket F \rrbracket_{\mathsf{tra}})$

We denote $[-]_{can}$ simply as [-].

Example 5

An example trace model for $\Sigma = \{a, b\}$ and $\Pi = \{p, q\}$:

- $[p] = \{pq, p\bar{q}\}, [q] = \{pq, \bar{p}q\}$

- $\blacksquare \text{ } \llbracket \text{if p then a else b} \rrbracket = \{ pqa\bar{p}q, p\bar{q}a\bar{p}\bar{q}, \bar{p}qb\bar{p}\bar{q}, \bar{p}\bar{q}b\bar{p}q \}$

Theorem 1

$$E \equiv F \text{ iff } [\![E]\!] = [\![F]\!].$$

Proof (sketch). 1. For each $M=\langle X, \mathsf{sat}_M, \mathsf{rel}_M \rangle$, let $\hat{M}: Tr \to 2^{X \times X}$ such that

$$\hat{M}(S) = \bigcap_{\mathbf{p} \in S} [\![\mathbf{p}]\!]_M \qquad \hat{M}(w \mathbf{a} u) = \hat{M}(w) \circ \mathsf{rel}_M(\mathbf{a}) \circ \hat{M}(u) \,.$$

We denote $\hat{M}(K) = \bigcup_{w \in K} \hat{M}(w)$ and prove $[\![E]\!]_M = \hat{M}([\![E]\!])$ by induction on E.

2. Let cay : $2^{Tr} \rightarrow 2^{Tr \times Tr}$ where

$$\operatorname{cay}(L) = \{ \langle w, w \diamond u \rangle \mid w \in Tr \& u \in L \}$$

The function cay is injective. We prove by induction on E that $[\![E]\!]_M = \operatorname{cay}([\![E]\!])$ for $M = \langle Tr, \operatorname{sat}_M, \operatorname{rel}_M \rangle$ where $\operatorname{sat}_M(\operatorname{p}) = \{w \mid \langle w, w \rangle \in \operatorname{cay}([\![\operatorname{p}]\!])\}$ and $\operatorname{rel}_M(\operatorname{a}) = \operatorname{cay}([\![\operatorname{a}]\!])$.

Completeness - 1

Recall the **GKAT** axioms:

BA.
$$B=C$$
 valid in BA
U1. $E+_BE=E$
U2. $E+_BF=F+_{(\neg B)}E$
U3. $(E+_BF)+_CG=E+_{(B\wedge C)}(F+_CG)$
U4. $E+_BF=B;E+_BF$
U5. $(E+_BF);G=(E;G)+_B(F;G)$
W1. $E^{(B)}=E;E^{(B)}+_B1$
W2. $(E+_C1)^{(B)}=(C;E)^{(B)}$
S1. $E;(F;G)=(E;F);G$
S2. $0;E=0$
S3. $E;0=0$
S4. $1;E=E$
S5. $E;1=E$
W3. $G=E;G+_BF$ if $H(E)=\bot$

Definition 7

A program equation E=F is <u>provable</u> iff it is derivable from the GKAT axioms (using equational logic). Notation: $\vdash E=F$.

Completeness – 2

Let GKAT+UA be the set of GKAT axioms extended with the Uniqueness Axiom of Smolka et al. 2020. We express by $\vdash_{\mathsf{UA}} E = F$ that E = F is provable in GKAT+UA.

Theorem 2

$$\vdash_{\mathsf{UA}} E = F \textit{ iff } [\![E]\!] = [\![F]\!].$$

Proof is beyond the scope of these lectures; see Smolka et al. 2020.

Open problem

Give a sound and complete axiomatization of relational equivalence using only standard equational and quasi-equational axioms.

Hoare completeness - 1

Partial correctness:

If B holds and E is executed, then C will hold upon termination of E (notation: $\{B\}E\{C\}$).

Hoare logic:

$$\frac{\{B\}E\{C\}\ \{C\}F\{D\}}{\{B\}\text{skip}\{B\}} \quad \frac{\{B\}B\text{skip}\{L\}\}}{\{B\}E\}E\{D\}} \quad \frac{\{B\}E\{C\}\ \{C\}F\{D\}}{\{B\}E\}E\{D\}} \quad \frac{\{B\land C\}E\{C\}}{\{C\}\text{while } B \text{ do } E\{\neg B\land C\}} \\ \frac{B'\models B\ \{B\}E\{C\}\ C\models C'}{\{B'\}E\{C'\}}$$

Hoare completeness - 2

 $\{B\}E\{C\}$ is satisfied in M (notation $M\models\{B\}E\{C\}$) iff $s\in\operatorname{sat}_M(B)$ and $\langle s,t\rangle\in\operatorname{rel}_M(E)$ imply that $t\in\operatorname{sat}_M(C)$. The following are equivalent:

- $M \models \{B\}E\{C\}$
- $[B; E; C]_M = [B; E]_M$
- $[B; E; \bar{C}]_M = [\![\bot]\!]_M.$

Theorem 3

$$\vdash B; E; C = B; E \text{ iff } \llbracket B; E; C \rrbracket = \llbracket B; E \rrbracket.$$

Proof (sketch). 1. Soundness: Induction on length of derivation. 2. Completeness: Structural induction on E.

Exercises - 1

- 1.1 Formalise part (ii) of the motivating example.
- 1.2 Formalise the following two programs. Are they equivalent?

```
\begin{array}{ll} \operatorname{def} & \operatorname{GCD}_1(a,b) \text{:} \\ & \operatorname{while} \ a \neq b \ \operatorname{do} \\ & \operatorname{if} \ (a > b) \ \operatorname{then} \\ & a := a - b \\ & \operatorname{else} \\ & b := b - a \\ & \operatorname{end} \ \operatorname{if} \\ & \operatorname{end} \ \operatorname{while} \\ & \operatorname{print} \ a \end{array}
```

```
GCD_2(a, b):
def
  if a \neq b then
     if (a > b) then
        a := a - b
     else
        b := b - a
     end if
  end if
  while a \neq b do
     if (a > b) then
        a := a - b
     else
        b := b = a
     end if
  end while
  print a
```

Exercises – 2

- **1.3** Give examples of pairs of programs you think are equivalent. Formalise them in the language of programs.
- 1.4 Prove Proposition 1.
- **1.5** Can you show that programs in Exercise 1.2 are equivalent by deriving the corresponding equation from the GKAT axioms?
- **1.6** In the trace model of Example 1.5, what is the interpretation of the programs if p then a else a; b and while p do b; a?
- **1.7** Verify that the GKAT axioms are valid in the canonical trace model for $\Pi=\{p,q\}$ and $\Sigma=\{a,b\}.$
- **1.8** Show that the function cay defined in the proof of Theorem 1 is injective.
- **1.9** Finish the proof of Theorem 3.

Notes

- The "logic of programs" introduced in this handout is a version of Guarded Kleene Algebra With Tests; see (Smolka et al., 2020).
- It is a "propositional variant" of while programs; see (Hoare, 1969) and Ch. 3 of (Apt et al., 2009).
- Our proof of Theorem 1 derives from Kappé's lecture notes (Kappé, 2022); the argument goes back to (Pratt, 1980).
- (A first-order version of) Hoare logic was introduced by Hoare (1969); the relation of its propositional version to a formalism related to ours is studied by Kozen (2000).
- Theorems 3 and 2 are established in (Smolka et al., 2020).
- The standard completeness problem is discussed in (Kappé et al., 2023).

References

- Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Sequential and Concurrent Programs.
 Texts in Computer Science. Springer, 3rd edition, 2009.
- Charles Anthony R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12:576–580, 1969.
- Tobias Kappé. Kleene algebra. Course notes, University of Amsterdam, 2022.
- Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Logic, 1(1):60–76, July 2000.
- Tobias Kappé, Todd Schmid, and Alexandra Silva. A Complete Inference System for Skip-free Guarded Kleene Algebra with Tests. In T. Wies, editor, *Programming Languages and Systems*. ESOP 2023., pages 309–336.
 Springer Nature Switzerland, 2023.
- Vaughan Pratt. Dynamic algebras and the nature of induction. In Proc. Twelfth Annual ACM Symposium on Theory of Computing (STOC 1980), pages 22–28. ACM, 1980.
- Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene algebra with tests: Verification of uninterpreted programs in nearly linear time. In Proc. 47th ACM SIGPLAN Symp. Principles of Programming Languages (POPL'20), pages 61:1–28, New Orleans, January 2020. ACM.