
Dynamic Logic

Part 1: Programs and Their Semantics

Wolfgang Poiger and Igor Sedlár

Institute of Computer Science
Czech Academy of Sciences

Faculty of Arts, Charles University
Fall Semester 2025-26



Course overview – 1

The course introduces some logics for reasoning about the properties of computer
programs (mostly equivalence and correctness). Structure:

1 Program semantics and Hoare Logic

2 Propositional Dynamic Logic

3 Kleene algebra

Instructors:
Igor Sedlár (Parts 1 and 3) sedlar@cs.cas.cz
Wolfgang Poiger (Part 2) poiger@cs.cas.cz

Both at the Institute of Computer Science, Czech Academy of Sciences
(Pod Vodárenskou věžı́ 2, Ládvı́).

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 1 / 22



Course overview – 2

The course will be taught in English.

The fail/pass decision will be based on
solution of 3 problem sets (roughly: late Oct, late Nov, mid-Jan)
lecture attendance

Course materials etc. at the course webpage:

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 2 / 22



Equivalence of programs: A motivating example
(i)

def print primes(y):

x := 2
while x ≤ y do

if is prime(x) then
print(x)
x := x+ 1

else
x := x+ 1

end if
end while

(ii)

def print primes(y):

x := 2
while x ≤ y do

if is prime(x) then
print(x)

end if
x := x+ 1

end while

Figure: Two programs for printing out primes.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 3 / 22



A formal language of programs
Variables: propositions Π = {p1, p2, . . .}, programs/actions Σ = {a1, a2, . . .}.

Definition 1
Boolean formulas (Fm)

B,C ::= p ∈ Π
| ⊤ true
| ⊥ false
| ¬B not
| B ∧ C and
| B ∨ C or

Program expressions (Pr)

E,F ::= a ∈ Σ
| skip “Do nothing” / “Wait”
| abort “Stop the computation”
| E;F “Do E, then do F ”
| if B then E else F Conditionals
| while B do E While loops

Example 1: (i) formalised
a; (while p do (if q then b; c else c))

where a← (x := 2), b← print(x), c← (x := x+ 1) and p← (x ≤ y), q← is prime(x)

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 4 / 22



Relational semantics – 1

Definition 2
A relational model for programs is M = ⟨X, satM , relM ⟩ where

X ̸= ∅
satM : Π → P(X)

relM : Σ → P(X ×X)

satM generalizes to Fm → P(X) in the usual way.

Intuition: X is a set of “states”; satM (p) is the set of states where p “is satisfied” and
relM (a) is the “input-output relation” for a. That is, ⟨x, y⟩ ∈ relM (a) iff a may halt in
state y when executed in x.

Note: relM (a) is not necessarily a (total) function (non-determinism).

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 5 / 22



Relational semantics – 2
Example 2
A relational model for the motivating example:

X = N× N×
finite sequences over N︷︸︸︷

N∗

sat(p) = {⟨n,m, s⟩ | n ≤ m}

sat(q) = {⟨n,m, s⟩ | n is prime}

and rel is the minimal relation such that

⟨n,m, s⟩ a−→ ⟨2,m, s⟩ ⟨n,m, s⟩ b−→ ⟨n,m, sn⟩

⟨n,m, s⟩ c−→ ⟨n+ 1,m, s⟩

Recall: a← (x := 2), b← print(x), c← (x := x+ 1) and p← (x ≤ y), q← is prime(x)

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 6 / 22



Relational semantics – 3
Recall: If R,R1, R2 ⊆ X ×X , then

R1 ◦R2 = {⟨x, y⟩ | ∃z ∈ X : ⟨x, z⟩ ∈ R1 & ⟨z, y⟩ ∈ R2}
R∗ =

⋃
n≥0 R

n, where R0 = 1X = {⟨x, x⟩ | x ∈ X} and Rn+1 = Rn ◦R.

Definition 3
Given M , we define J−KM : Fm ∪ Pr → P(X ×X):

JBKM = 1satM (B) and JaKM = relM (a) for B ∈ Fm, a ∈ Σ

JskipKM = 1X and JabortKM = ∅

JE;F KM = JEKM ◦ JF KM

Jif B then E else F KM = (JBKM ◦ JEKM ) ∪ (J¬BKM ◦ JF KM )

Jwhile B do EKM = (JBKM ◦ JEKM )∗ ◦ J¬BKM
Programs P and Q are relationally equivalent iff JP KM = JQKM for all M .

(Notation: P ≡ Q).

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 7 / 22



Relational semantics – 4

Example 3
Complex programs in Example 2:

⟨n,m, s⟩ b ; c−−−→ ⟨n+ 1,m, ns⟩

⟨2, 3, s⟩ if p then b else c−−−−−−−−−−→ ⟨2, 3, s2⟩ ⟨3, 2, s⟩ if p then b else c−−−−−−−−−−→ ⟨4, 2, s⟩

⟨2, 4, ϵ⟩ while p do b;c−−−−−−−−→ ⟨5, 4, 2 3 4⟩ ⟨4, 2, ϵ⟩ while p do b;c−−−−−−−−→ ⟨4, 2, ϵ⟩

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 8 / 22



Relational semantics – 5

Simplifying notation:
skip = 1 abort = 0

if B then E else F = E +B F while B do E = E(B)

We define assert B := 1 +B 0. We usually write “B” instead of “assert B”.

We define H : Pr → Fm (the halt predicate):

H(a) := ⊥ H(skip) := ⊤ H(abort) := ⊥ H(E;F ) := H(E) ∧H(F )

H(E +B F ) := (B ∧H(E)) ∨ (¬B ∧H(F )) H(E(B)) := ¬B.

Hence: H(assert B) = (B ∧ ⊤) ∨ (¬B ∧ ⊥) ≡ B.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 9 / 22



Relational semantics – 6
Proposition 1
GKAT axioms are relationally valid:

BA. B ≡ C valid in BA

U1. E +B E ≡ E

U2. E +B F ≡ F +(¬B) E

U3. (E +B F ) +C G ≡ E +(B∧C) (F +C G)

U4. E +B F ≡ B;E +B F

U5. (E +B F );G ≡ (E;G) +B (F ;G)

W1. E(B) ≡ E;E(B) +B 1

W2. (E +C 1)(B) ≡ (C;E)(B)

S1. E; (F ;G) ≡ (E;F );G

S2. 0;E ≡ 0

S3. E; 0 ≡ 0

S4. 1;E ≡ E

S5. E; 1 ≡ E

W3.
G ≡ E;G+B F

G ≡ E(B);F
ifH(E) = ⊥

Example 4
Hence, ((E;F ) +C F )(B) ≡ ((E +C 1);F )(B).

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 10 / 22



Trace semantics – 1
A state is a complete and consistent set of literals (containing exactly one of p and p̄

for each p ∈ Π). We write S ⊨ r if r ∈ S. (S ⊨ B as expected.)

Definition 4
A trace (over Π and Σ) is a sequence of the form

S1a1S2 . . . an−1Sn

where n ≥ 1, each Si is a state (over Π) and each aj ∈ Σ. Tr is the set of all traces.

Note: If Π is finite, then each state is a word over the set of literals and each trace is a word in the regular
language (States · Σ)∗ · States.

Example 4
(on ok) switch (on ok) switch (on ok) break (on ok)

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 11 / 22



Trace semantics – 2

Definition 5
A trace model for programs is tra : Σ → Tr where

tra(a) ⊆ {SaT | S, T states}

The canonical trace model is can : a 7→ {SaT | S, T states}.

Fusion product: partial function ⋄ : Tr × Tr → Tr

xS ⋄ Ty =

{
xSy S = T

undefined S ̸= T

Lifted to sets of traces: K ⋄ L = {w ⋄ u | w ∈ K & u ∈ L}. We define
K0 := States, Kn+1 = Kn ⋄K, and K∗ =

⋃
n≥0K

n.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 12 / 22



Trace semantics – 3

Definition 6
Given tra, we define J−Ktra : Fm ∪ Pr → 2Tr as follows:

JBKtra = {S | S ⊨ B} and JaKtra = tra(a)

JskipKtra = States JabortKtra = ∅

JE;F Ktra = JEKtra ⋄ JF Ktra

Jif B then E else F Ktra = (JBKtra ⋄ JEKtra) ∪ (J¬BKtra ⋄ JF Ktra)

Jwhile B do EKtra = (JBKtra ⋄ JEKtra)∗ ⋄ J¬BKtra

We denote J−Kcan simply as J−K.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 13 / 22



Trace semantics – 4

Example 5
An example trace model for Σ = {a, b} and Π = {p, q}:

JpK = {pq, pq̄}, JqK = {pq, p̄q}

JaK = {pqap̄q, pq̄ap̄q̄, p̄qapq, p̄q̄apq̄}, JbK = {pqbpq̄, pq̄bpq, p̄qbp̄q̄, p̄q̄bp̄q}

Ja; bK = {pqap̄qbp̄q̄, p̄qapqbpq̄, pq̄ap̄q̄bp̄q, . . .}

Jif p then a else bK = {pqap̄q, pq̄ap̄q̄, p̄qbp̄q̄, p̄q̄bp̄q}

Jwhile p do aK = {pqap̄q, pq̄ap̄q̄, p̄q, p̄q̄}, Jwhile p do bK = {p̄q, p̄q̄}

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 14 / 22



Trace semantics – 5

Theorem 1
E ≡ F iff JEK = JF K.

Proof (sketch). 1. For each M = ⟨X, satM , relM ⟩, let M̂ : Tr → 2X×X such that

M̂(S) =
⋂
p∈S

JpKM M̂(wau) = M̂(w) ◦ relM (a) ◦ M̂(u) .

We denote M̂(K) =
⋃

w∈K M̂(w) and prove JEKM = M̂(JEK) by induction on E.

2. Let cay : 2Tr → 2Tr×Tr where

cay(L) = {⟨w,w ⋄ u⟩ | w ∈ Tr & u ∈ L}

The function cay is injective. We prove by induction on E that JEKM = cay (JEK) for
M = ⟨Tr, satM , relM ⟩ where satM (p) = {w | ⟨w,w⟩ ∈ cay (JpK)} and
relM (a) = cay (JaK).

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 15 / 22



Completeness – 1
Recall the GKAT axioms:

BA. B = C valid in BA

U1. E +B E = E

U2. E +B F = F +(¬B) E

U3. (E +B F ) +C G = E +(B∧C) (F +C G)

U4. E +B F = B;E +B F

U5. (E +B F );G = (E;G) +B (F ;G)

W1. E(B) = E;E(B) +B 1

W2. (E +C 1)(B) = (C;E)(B)

S1. E; (F ;G) = (E;F );G

S2. 0;E = 0

S3. E; 0 = 0

S4. 1;E = E

S5. E; 1 = E

W3.
G = E;G+B F

G = E(B);F
ifH(E) ≡ ⊥

Definition 7
A program equation E = F is provable iff it is derivable from the GKAT axioms (using
equational logic). Notation: ⊢ E = F .

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 16 / 22



Completeness – 2

Let GKAT+UA be the set of GKAT axioms extended with the Uniqueness Axiom of
Smolka et al. 2020. We express by ⊢UA E = F that E = F is provable in GKAT+UA.

Theorem 2
⊢UA E = F iff JEK = JF K.

Proof is beyond the scope of these lectures; see Smolka et al. 2020.

Open problem
Give a sound and complete axiomatization of relational equivalence using only
standard equational and quasi-equational axioms.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 17 / 22



Hoare completeness – 1

Partial correctness:
If B holds and E is executed, then C will hold upon termination of E

(notation: {B}E{C}).

Hoare logic:

{B}skip{B} {B}abort{⊥}
{B}E{C} {C}F{D}

{B}E;F{D}

{B ∧ C}E{D} {¬B ∧ C}F{D}
{C}if B then E else F{D}

{B ∧ C}E{C}
{C}while B do E{¬B ∧ C}

B′ ⊨ B {B}E{C} C ⊨ C ′

{B′}E{C ′}

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 18 / 22



Hoare completeness – 2

{B}E{C} is satisfied in M (notation M |= {B}E{C}) iff s ∈ satM (B) and
⟨s, t⟩ ∈ relM (E) imply that t ∈ satM (C). The following are equivalent:

1 M |= {B}E{C}
2 JB;E;CKM = JB;EKM
3 JB;E; C̄KM = J⊥KM .

Theorem 3
⊢ B;E;C = B;E iff JB;E;CK = JB;EK.

Proof (sketch). 1. Soundness: Induction on length of derivation. 2. Completeness: Structural
induction on E.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 19 / 22



Exercises – 1
1.1 Formalise part (ii) of the motivating example.
1.2 Formalise the following two programs. Are they equivalent?

def GCD1(a, b):

while a ̸= b do
if (a > b) then

a := a− b
else

b := b− a
end if

end while
print a

def GCD2(a, b):

if a ̸= b then
if (a > b) then

a := a− b
else

b := b− a
end if

end if
while a ̸= b do

if (a > b) then
a := a− b

else
b := b− a

end if
end while
print a

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 20 / 22



Exercises – 2

1.3 Give examples of pairs of programs you think are equivalent. Formalise them in the
language of programs.

1.4 Prove Proposition 1.

1.5 Can you show that programs in Exercise 1.2 are equivalent by deriving the corresponding
equation from the GKAT axioms?

1.6 In the trace model of Example 1.5, what is the interpretation of the programs
if p then a else a; b and while p do b; a?

1.7 Verify that the GKAT axioms are valid in the canonical trace model for Π = {p, q} and
Σ = {a, b}.

1.8 Show that the function cay defined in the proof of Theorem 1 is injective.

1.9 Finish the proof of Theorem 3.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 21 / 22



Notes

The “logic of programs” introduced in this handout is a version of
Guarded Kleene Algebra With Tests; see (Smolka et al., 2020).

It is a “propositional variant” of while programs; see (Hoare, 1969) and Ch. 3 of (Apt et al.,
2009).

Our proof of Theorem 1 derives from Kappé’s lecture notes (Kappé, 2022); the argument
goes back to (Pratt, 1980).

(A first-order version of) Hoare logic was introduced by Hoare (1969); the relation of its
propositional version to a formalism related to ours is studied by Kozen (2000).

Theorems 3 and 2 are established in (Smolka et al., 2020).

The standard completeness problem is discussed in (Kappé et al., 2023).

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 22 / 22



References

• Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Sequential and Concurrent Programs.
Texts in Computer Science. Springer, 3rd edition, 2009.

• Charles Anthony R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12:576–580, 1969.

• Tobias Kappé. Kleene algebra. Course notes, University of Amsterdam, 2022.

• Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Logic, 1(1):60–76, July 2000.

• Tobias Kappé, Todd Schmid, and Alexandra Silva. A Complete Inference System for Skip-free Guarded Kleene
Algebra with Tests. In T. Wies, editor, Programming Languages and Systems. ESOP 2023., pages 309–336.
Springer Nature Switzerland, 2023.

• Vaughan Pratt. Dynamic algebras and the nature of induction. In Proc. Twelfth Annual ACM Symposium on Theory
of Computing (STOC 1980), pages 22–28. ACM, 1980.

• Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene
algebra with tests: Verification of uninterpreted programs in nearly linear time. In Proc. 47th ACM SIGPLAN Symp.
Principles of Programming Languages (POPL’20), pages 61:1–28, New Orleans, January 2020. ACM.

W. Poiger & I. Sedlár (ICS CAS) Dynamic Logic, Part 1 FF UK, 2025 22 / 22


	Course overview
	Programs

