Modal Logics of Programs (Draft) Dynamic Logic – Part 4

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

Faculty of Arts, Charles University Fall Semester 2023-24

Modal logic – 1

Recall that Σ is an alphabet of "action letters" and Π is an alphabet of "propositional letters".

Definition 1

The set $\mathbb{F}(\Sigma,\Pi)$ of modal formulas over Σ and Π is defined using the following grammar:

$$\varphi, \psi := \mathbf{p} \in \Pi \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \mathbf{a} \rangle \varphi$$

Boolean operators $\top, \bot, \land, \rightarrow, \leftrightarrow$ are defined as usual. Moreover, [a] $\varphi := \neg \langle a \rangle \neg \varphi$.

Read $\langle a \rangle \varphi$ as " φ is possible after a" and $[a] \varphi$ as " φ is necessary after a".

Modal logic – 2

Recall relational models (for Σ and Π), $M = \langle X, \operatorname{rel}_M, \operatorname{sat}_M \rangle$ where $X \neq \emptyset$, $\operatorname{rel}_M : \overline{\Sigma} \to 2^{X \times X}$, and $\operatorname{sat}_M : \Pi \to 2^X$.

Definition 2

Given a relational model M, we define $\|-\|_M : \mathbb{F} \to 2^X$ as follows:

$$\begin{split} & \|\mathbf{p}\|_{M} = \operatorname{sat}_{M}(\mathbf{p}) \\ & \|\neg\varphi\|_{M} = X \setminus \|\varphi\|_{M} \\ & \|\varphi \lor \psi\|_{M} = \|\varphi\|_{M} \cup \|\psi\|_{M} \\ & \|\langle \mathbf{a} \rangle \varphi\|_{M} = \langle\!\langle \mathbf{a} \rangle\!\rangle \|\varphi\|_{M} \quad \textit{where} \\ & \quad \langle\!\langle \mathbf{a} \rangle\!\rangle Y = \{x \mid \exists y. \langle x, y \rangle \in \operatorname{rel}_{M}(\mathbf{a}) \ \& \ y \in Y\} \end{split}$$

We also write $(M, x) \vDash \varphi$ instead of $x \in \|\varphi\|_M$. Let $Th(M, x) = \{\varphi \mid (M, x) \vDash \varphi\}$.

Modal logic – 3

Definition 3

A formula φ is <u>valid in M</u> iff $\|\varphi\|_M$ is the set of all states in M (notation: $M \models \varphi$). A formula φ is <u>valid in a class of models \mathcal{K} </u> iff $M \models \varphi$ for all $M \in \mathcal{K}$ (notation: $\mathcal{K} \models \varphi$).

Example	
Valid:	Not valid:
$\blacksquare \langle \mathbf{a} \rangle (\varphi \lor \psi) \leftrightarrow \langle \mathbf{a} \rangle \varphi \lor \langle \mathbf{a} \rangle \psi$	$\blacksquare \langle \mathbf{a} \rangle (\varphi \wedge \psi) \leftrightarrow \langle \mathbf{a} \rangle \varphi \wedge \langle \mathbf{a} \rangle \psi$
■ ⟨a⟩⊥ ↔ ⊥	$\blacksquare \langle \mathbf{a} \rangle \top \leftrightarrow \top$

Example

- $\blacksquare \ M \vDash \langle \mathbf{a} \rangle \top \text{ iff a terminates when run in any state of } M$
- $M \vDash \varphi \rightarrow [a] \psi$ iff a is partially correct with respect to precondition φ and postcondition ψ (recall "Hoare triples")

Bisimulation

Definition 4

$\begin{array}{l} (M_1, x_1) & \underset{}{\leftrightarrow} & (M_2, x_2) \text{ iff} \\ \bullet & (M_1, x_1) \vDash \mathsf{p} \text{ iff } (M_2, x_2) \vDash \mathsf{p} \text{ for all } \mathsf{p} \in \Pi \\ \bullet & x_1 \xrightarrow{\mathsf{a}} y_1 \text{ only if there is } y_2 \text{ such that } x_2 \xrightarrow{\mathsf{a}} y_2 \text{ and } (M_1, y_1) & \underset{}{\leftrightarrow} & (M_2, y_2) \\ \bullet & x_2 \xrightarrow{\mathsf{a}} y_2 \text{ only if there is } y_1 \text{ such that } x_1 \xrightarrow{\mathsf{a}} y_1 \text{ and } (M_1, y_1) & \underset{}{\leftrightarrow} & (M_2, y_2) \end{array}$

Proposition 1

1 If
$$(M_1, x_1) \leftrightarrow (M_2, x_2)$$
, then $Th(M_1, x_1) = Th(M_2, x_2)$.

2 If M_1, M_2 are finitely branching,^a then $Th(M_1, x_1) = Th(M_2, x_2)$ implies $(M_1, x_1) \leftrightarrow (M_2, x_2)$.

^aFor all $\mathbf{a} \in \Sigma$ and all $y \in X_i$, the set $\operatorname{rel}_{M_i}(\mathbf{a})[y]$ is finite.

Proof (sketch). (1.) Induction on formulas. (2.) Modal equivalence is a bisimulation relation.

Finish the proof of Prop. 1.

 An excellent introduction to modal logic is the "blue book" (Blackburn, de Rijke, Venema, 2001).

References

• P. Blackburn, M. de Rijke, and Y. Venema. *Modal Logic*. Cambridge University Press, 2001.