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Overview

We introduce (deterministic) finite automata, an “operational” counterpart
of regular expressions and Kleene algebras; we show that every
automaton is equivalent (in the sense of recognizing the same language)
to a deterministic one
We discuss bisimulation, a decidable relation between automata that
implies (and, in the case of deterministic automata, is implied by)
equivalence
We prove (one half of) Kleene’s theorem, stating that a language is
regular iff it is recognized by a finite automaton; together with the other
results, this implies that equivalence of regular expressions over arbitrary
Kleene algebras is decidable
We modify the notion of a finite automaton to match guarded languages
and Kleene algebra with tests; we generalize the results on automata
leading to decidability of equivalence to the guarded setting
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Finite automata – 1
Definition 1
Let Σ be a finite alphabet. A finite automaton (for Σ) is A = 〈Q, δ, I, F 〉 where

Q is a finite set ...states
δ : Q× Σ→ 2Q ...transition relation
I, F ⊆ Q ...initial and final states

An automaton is deterministic if (i) δ(q, a) is a singleton for all q ∈ Q, a ∈ Σ,
and (ii) I is a singleton.

We will often write q a−→ q′ for q′ ∈ δ(q, a).

Definition 2
The language of a q ∈ Q of A, or LA(q), is the smallest subset of Σ∗ such that

if q ∈ F , then ε ∈ LA(q)

if w ∈ LA(q′) and q a−→ q′, then aw ∈ LA(q)

The language of A (language recognized by A) is L(A) :=
⋃
q∈I LA(q).
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Finite automata – 2

A path in an automaton is a sequence of the form

q1a1q2 . . . an−1qn

where (i) n ≥ 1, qi ∈ Q and aj ∈ Σ, and (ii) qi
ai−→ qi+1 for all i < n. We will

often denote paths as q1
a1−→ q2 . . .

an−1−−−→ qn.

We define the accessibility relation δ∗ : Q× Σ∗ → 2Q by induction on the
length of w ∈ Σ∗ (q w−→ q′ means q′ ∈ δ∗(q, w)):

q
ε−→ q′ iff q = q′

q
aw−−→ q′ iff there is p ∈ Q such that q a−→ p and p w−→ q′.

Exercise 1

Prove that w ∈ LA(q) iff there is p ∈ F of A such that q w−→ p.
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Finite automata – 3

Example (Automaton A1)

q0 q1

b

a

a

b

in L(A1): b, bab, baab, baabb, ...

not in L(A1): a, aba, ...

Example (Automaton A2)

q0 q1 q2 q3

a, . . . , z

a r r
in L(A2): arr,
goldarr, ...
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Bisimulation – 1

Let Ai = 〈Qi, δi, Ii, Fi〉 be a finite automaton for the same Σ and i ∈ {1, 2}.

Definition 3
A simulation of A1 by A2 is a relation R ⊆ Q1 ×Q2 such that, for all q1 ∈ Q1

and q2 ∈ Q2, q1 R q2 implies
1 q1 ∈ F1 only if q2 ∈ F2

2 q1
a−→1 q

′
1 only if there is q′2 such that q2

a−→2 q
′
2 and q′1Rq′2.

A bisimulation between A1 and A2 is a simulation of A1 by A2 such that its
converse is a simulation of A2 by A1.
A state q1 of A1 is (bi)similar to a state q2 of A2 iff there is a (bi)simulation R
such that q1 R q2 (notation: q1 → q2 and q1 ↔ q2). A1 is (bi)similar to A2

(notation A1 → A2, resp. A1 ↔ A2) iff there is a (bi)simulation R “defined on”
each q ∈ I1 (each q1 ∈ I2 and Q2 ∈ I2).
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Bisimulation – 2

Example (Bisimilar automata)

q0 q1

q2

b

b
aa

b

a
p0 p1

p2

b

b
aa

b

a

R = {〈q0, p1〉, 〈q2, p1〉, 〈q1, p0〉, 〈q1, p2〉}
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Bisimulation – 3

Non-bisimilar automata

q0

q1

q2 q3

a

b c

p0

p1 p2

p3 p4

a a

b c
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Bisimulation – 4

Proposition 1

Let A1, A2 be two finite automata and q1 ∈ Q1, q2 ∈ Q2. Then:
1 q1 → q2 implies L(q1) ⊆ L(q2)

2 if A2 is deterministic, then L(q1) ⊆ L(q2) implies q1 → q2.

Proof (sketch). (1.) Assume q1 → q2 and prove that w ∈ L(q1) =⇒ w ∈ L(q2) by induction
on the length of w ∈ Σ∗. (2.) Define R = {〈p1, p2〉 ∈ Q1 ×Q2 | L(p1) ⊆ L(p2)} and show
that R is a simulation (use Exercise 2).

Corollary
If A1, A2 are deterministic, then q1 ↔ q2 iff L(q1) = L(q2).

Fact: There is a polynomial-time algorithm for checking if q1 ↔ q2. (See
(Kappé, 2023), lecture 3.)
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Determinization – 1
Definition 4
Let A = 〈Q, δ, I, F 〉 be a finite automaton. The determinization of A is the
deterministic automaton Adet such that

Qdet = 2Q

δdet(X, a) = {q′ | q a−→ q′ for some q ∈ X} for all X ⊆ Q
Idet = {I}
F det = {X ⊆ Q | X ∩ F 6= ∅}

Example

q0 q1

a

a

b

det
=====⇒

{q0} {q0, q1}

{q1}∅

b

a a

b

b

aa, b
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Determinization – 2

Proposition 2

For all A, L(A) = L(Adet).

Proof (sketch). L(A) ⊆ L(Adet) since A→ Adet for R = {〈q,X〉 | q ∈ X}. Converse
inclusion: prove that w ∈ Ldet(X) =⇒ w ∈ L(X) by induction on the length of w ∈ Σ∗

(where Ldet(X) is LAdet(X) and L(X) =
⋃

q∈X LA(q))

Corollary
Hence, there is an algorithm for deciding L(A) = L(B) for arbitrary automata
A,B. (Its running time may be exponential in the size of A,B.)
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Kleene’s Theorem – 1

Theorem 1 (Kleene 1956)
A language L ⊆ Σ∗ is regular iff there is a deterministic finite automaton A
such that L = L(A).

Proof (sketch). (i) Regular expression e −→ “Antimirov automaton” Ae such that L(Ae) = JeK
(see below). (ii) E.g. solving systems of equations (Kappé, 2023) or state elimination (Hopcroft
et al., 2007; Sipser, 2013).
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Kleene’s Theorem – 2

Definition 5
The set of accepting expressions A is the smallest subset of E such that

1 ∈ A
e ∈ A f ∈ E

e+ f, f + e ∈ A
e, f ∈ A
e · f ∈ A

e ∈ E
e∗ ∈ A

Note that e ∈ A iff ε ∈ JeK. (Exercise 3.)

Definition 6
Expression accessibility: We define→E ⊆ E× Σ× E as the smallest relation
satisfying

a
a−→E 1

e
a−→E e

′

e+ f
a−→E e′

f
a−→E f

′

e+ f
a−→E f ′

e
a−→E e

′

e · f a−→E e′ · f
e ∈ A f

a−→E f
′

e · f a−→E f ′

e
a−→E e

′

e∗
a−→E e′ · e∗
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Kleene’s Theorem – 3

Definition 7
Reachable expressions: for each e ∈ E, the set ρ(e) ⊆ E is defined as follows:

ρ(0) = ρ(1) = ∅ ρ(a) = {1} ρ(e+ f) = ρ(e) + ρ(f)

ρ(e · f) = {e′ · f | e′ ∈ ρ(f)} ∪ ρ(f) ρ(e∗) = {e′ · e∗ | e′ ∈ ρ(e)}

Note: ρ(e) is finite for all e ∈ E.

Lemma 1

The following hold for all e ∈ E:
1 If e a−→E e

′, then e′ ∈ ρ(e).
2 If e′ ∈ ρ(e) and e′ a−→E e

′′, then e′′ ∈ ρ(e).

Proof (sketch). Induction on the complexity of e. See (Kappé, 2023), lecture 3.
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Kleene’s Theorem – 4

Definition 8
The Antimirov automaton for e is

Ae = 〈ρ̂(e),→E, {e},A ∩ ρ̂(e)〉 ,

where ρ̂(e) = ρ(e) ∪ {e}.
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Kleene’s Theorem – 5
The Iverson bracket: [Φ(e)] = 1 if e satisfies the predicate Φ and = 0 otherwise.

Theorem 2 (The fundamental theorem)

For all e ∈ E:
e ≡ [e ∈ A] +

∑
{a · e′ | e a−→E e

′}

Proof (sketch). Induction on e. The base case: a ≡ 0 + a · 1. Induction step for e · f :

e · f ≡ [e ∈ A] · [f ∈ A] + [e ∈ A] ·
∑

f
a−→f ′

a · f ′ +
∑
e

a−→e′

a · e′ · f

≡ [e · f ∈ A] +
∑

e·f
a−→g

a · g

(Note that
∑
δ(e · f, a) ≡

∑
{e′ · f | e a−→ e′}+ [e ∈ A] ·

∑
{f ′ | f a−→ f ′}.) (Exercise 4.)

Corollary
For all e ∈ E: L(Ae) = JeK.

Proof (sketch). w ∈ L(Ae) iff w ∈ JeK by induction on the length of w. (Exercise 5.)
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Kleene’s Theorem – 6

Compiling regular expressions:

e ≡ f ⇐⇒ JeK = JfK
⇐⇒ L(Ae) = L(Af )

⇐⇒ L(Adet
e ) = L(Adet

f )

⇐⇒ (Adet
e , e)↔ (Adet

f , f)

To decide if e ≡ f :
1 construct Ae and Af ,
2 determinize to Adet

e and Adet
f ,

3 check if (Adet
e , e)↔ (Adet

f , f).
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Guarded automata – 1

Recall: At is the set of atoms over Π; guarded strings over Σ,Π are words in (At · Σ)∗ ·At.

Definition 9
An guarded automaton (over Σ,Π) is A = 〈Q, δ, I, F 〉 where

δ : Q×At× Σ→ 2Q ...guarded transition relation
I ⊆ Q ...initial states
F : Q→ 2At ...guards of finality

A is deterministic iff I and the range of δ are singletons.

We often write q
S|a−−→ q′ for q′ ∈ δ(q, S, a) and S ∈ F (q) for F (q, S) = 1.

Note that “ordinary” automata are a special case for Π = ∅. (In that case,
At = {ε}.)
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Guarded automata – 2

Definition 10
The language of q ∈ Q of A, or LA(q), is the smallest subset of GS such that

if S ∈ F (q), then S ∈ LA(q),

if w ∈ LA(q′) and q
S|a−−→ q′, then Saw ∈ LA(q).

The language of A (language recognized by A) is L(A) :=
⋃
q∈I LA(q).
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Guarded automata – 3

Example

q0 q1

p

q2

p̄

p̄ | a

p | a

p | a p̄ | a
p | b, p̄ | b

p̄ | b

p | b

Accepted (in L(q0)):
p̄ap, pap̄
p̄apap̄, p̄apbpap̄, ...

Not accepted:
pbp, p̄bp̄, pbp̄, p̄bp
pap̄bp̄ap̄, pap̄bp, ...
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Guarded bisimulation – 1

Definition 11
A guarded simulation of A1 by A2 is a relation R ⊆ Q1 ×Q2 such that
q1 R q2 entails

1 S ∈ F1(q1) only if S ∈ F2(q2)

2 q1
S|a−−→1 q

′
1 only if there is q′2 such that q2

S|a−−→2 q
′
2 and q′1 R q′2.

A guarded bisimulation between A1 and A2 is a simulation of A1 by A2 such
that its converse is a guarded simulation of A2 by A1.

Guarded (bi) similarity of states (automata) is defined (and denoted) similarly
as before.
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Guarded bisimulation – 2

Proposition 3

Let A1, A2 be two guarded automata and q1 ∈ Q1, q2 ∈ Q2. Then:
1 q1 → q2 implies L(q1) ⊆ L(q2)

2 if A2 is deterministic, then L(q1) ⊆ L(q2) implies q1 → q2.

Proof (sketch). Similar as the proof of Prop. 1; see Exercise 7.

Corollary
If A1, A2 are deterministic, then q1 ↔ q2 iff L(q1) = L(q2).

Fact: As before, there is a polynomial-time algorithm for checking if q1 ↔ q2.
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Guarded determinization – 1

Definition 12
Let A = 〈Q, δ, I, F 〉 be a guarded automaton. The determinization of A is the
deterministic guarded automaton Adet such that

Qdet = 2Q

δdet(X,S, a) = {q′ | q S|a−−→ q′ for some q ∈ X} for all X ⊆ Q
Idet = {I}
F det(X) =

⋃
q∈X F (q) for all X ⊆ Q
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Guarded determinization – 2

Proposition 4

For all guarded A, L(A) = L(Adet).

Proof (sketch). Similar to the proof of Prop. 2. See Exercise 8.

Corollary
Hence, there is an algorithm for deciding L(A) = L(B) for arbitrary guarded
automata A,B. (Its running time may be exponential in the size of A,B.)
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Kleene’s Theorem for guarded automata – 1

Theorem 3
A guarded language L ⊆ GS is regular iff there is a deterministic guarded
automaton A such that L = L(A).
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Kleene’s Theorem for guarded automata – 2

In this section, let E be E(Σ,Π) for some fixed Σ and Π, and let At = At(Π). For atom S and
Boolean formula b, we write S � b if S satisfies b (in the obvious sense).

Definition 13
Let the accepting atoms function A : E→ 2At be defined as follows:

A(a) = ∅ A(b) = {S | S � b} A(e+ f) = A(e) ∪ A(f)

A(e · f) = A(e) ∩ A(f) A(e∗) = At

Note that A(e) = JeK ∩At.
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Kleene’s Theorem for guarded automata – 3

Definition 14
Expression accessibility: We define→E ⊆ E×At× Σ× E as the smallest
relation satisfying

a
S|a−−→E 1

e
S|a−−→E e

′

e+ f
S|a−−→E e′

f
S|a−−→E f

′

e+ f
S|a−−→E f ′

e
S|a−−→E e

′

e · f S|a−−→E e′ · f

S ∈ A(e) f
S|a−−→E f

′

e · f S|a−−→E f ′

e
S|a−−→E e

′

e∗
S|a−−→E e′ · e∗
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Kleene’s Theorem for guarded automata – 4

Definition 15
Reachable expressions: for each e ∈ E, the set ρ(e) ⊆ E is defined as follows:

ρ(b) = ∅ ρ(a) = {1} ρ(e+ f) = ρ(e) + ρ(f)

ρ(e · f) = {e′ · f | e′ ∈ ρ(f)} ∪ ρ(f) ρ(e∗) = {e′ · e∗ | e′ ∈ ρ(e)}

Note: ρ(e) is finite for all e ∈ E.

Lemma 2

The following claims hold for all e ∈ E:

1 If e
S|a−−→E e

′, then e′ ∈ ρ(e).

2 If e′ ∈ ρ(e) and e′
S|a−−→E e

′′, then e′′ ∈ ρ(e).

Proof (sketch). Induction on the complexity of e, similar to the proof of Lemma 1. (Exercise 9.)
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Kleene’s Theorem for guarded automata – 5

Definition 16
The Antimirov automaton for e is

Ae = 〈ρ̂(e),→E, {e},A|ρ̂(e)〉 ,

where ρ̂(e) = ρ(e) ∪ {e} and A|ρ̂(e) is the restriction of A to ρ̂(e).

Theorem 4 (The guarded fundamental theorem)

For all e ∈ E:
e ≡

∑
A(e) +

∑
{a · e′ | e a−→E e

′}

Corollary
For all e ∈ E: L(Ae) = JeK.
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Exercises
2 Prove that (i) ε ∈ LA(q) iff q ∈ F of A, and (ii) if A is deterministic, then

aw ∈ LA(q) iff q ∈ LA(δ(q, a)).

3 Prove that e ∈ A iff ε ∈ JeK. (Hint: Prove that e 5 f and e ∈ A only if there is
f ′ ≡ f such that f ∈ A.)

4 ? Finish the proof of Theorem 2. (Hint for the case ∗: Use e∗ ≡ 1 + e · e∗ and
reason by cases according to whether e ∈ A or not.)

5 Prove the corollary to Theorem 2.

6 Define a suitable notion of accessibility relation for guarded automata and prove
that w ∈ LA(q) iff there is p such that last(w) ∈ F (p) and q w−→ p. (See
Exercise 1.)

7 Prove Proposition 3.

8 Prove Proposition 4.

9 Prove Lemma 2.

10? Prove Theorem 4 and its corollary.
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Notes

Finite automata go back to Kleene (1956) and Rabin and Scott (1959).

Excellent introductions to automata theory are (Hopcroft et al., 2007),
(Hopcroft and Ullman, 1979) and (Sakarovitch, 2009).

Guarded automata were introduced (in a different form) by Kozen (2003).

These notes are largely based on Lecture 3 in (Kappé, 2023).
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2003. doi:10.21711/231766362003/rmc246.

• M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and
Development, 3(2):114–125, 1959. doi:10.1147/rd.32.0114.

• J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, Cambridge, 2009.

• M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition edition, 2013.

Igor Sedlár (ICS CAS) Dynamic Logic 03 FF UK, Fall 2023-24 30 / 30

https://tobias.kap.pe/esslli/
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.21711/231766362003/rmc246
https://doi.org/10.1147/rd.32.0114

	Introduction
	Finite automata
	Bisimulation
	Determinization
	Kleene's theorem
	Automata on guarded strings
	Guarded bisimulation
	Determinization of guarded automata
	Kleene's Theorem for guarded automata

