Finite automata Dynamic Logic – Part 3

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

Faculty of Arts, Charles University Fall Semester 2023-24

Overview

- We introduce (deterministic) finite automata, an "operational" counterpart of regular expressions and Kleene algebras; we show that every automaton is equivalent (in the sense of recognizing the same language) to a deterministic one
- We discuss bisimulation, a decidable relation between automata that implies (and, in the case of deterministic automata, is implied by) equivalence
- We prove (one half of) Kleene's theorem, stating that a language is regular iff it is recognized by a finite automaton; together with the other results, this implies that equivalence of regular expressions over arbitrary Kleene algebras is decidable
- We modify the notion of a finite automaton to match guarded languages and Kleene algebra with tests; we generalize the results on automata leading to decidability of equivalence to the guarded setting

Finite automata – 1

Definition 1

Let Σ be a finite alphabet. A <u>finite automaton</u> (for Σ) is $A = \langle Q, \delta, I, F \rangle$ where

- Q is a finite set ...states
- $\bullet \ \delta: Q \times \Sigma \to 2^Q \quad \dots transition \ relation$
- $I, F \subseteq Q$...initial and final states

An automaton is <u>deterministic</u> if (i) $\delta(q, \mathbf{a})$ is a singleton for all $q \in Q$, $\mathbf{a} \in \Sigma$, and (ii) I is a singleton.

We will often write
$$q \xrightarrow{a} q'$$
 for $q' \in \delta(q, \mathbf{a})$.

Definition 2

The <u>language</u> of a $q \in Q$ of A, or $L_A(q)$, is the smallest subset of Σ^* such that

• if
$$q \in F$$
, then $\epsilon \in L_A(q)$

if $w \in L_A(q')$ and $q \xrightarrow{a} q'$, then $aw \in L_A(q)$

The language of A (language recognized by A) is $L(A) := \bigcup_{q \in I} L_A(q)$.

Finite automata – 2

A path in an automaton is a sequence of the form

 $q_1 a_1 q_2 \dots a_{n-1} q_n$

where (i) $n \ge 1$, $q_i \in Q$ and $a_j \in \Sigma$, and (ii) $q_i \xrightarrow{a_i} q_{i+1}$ for all i < n. We will often denote paths as $q_1 \xrightarrow{a_1} q_2 \dots \xrightarrow{a_{n-1}} q_n$.

We define the accessibility relation $\delta^* : Q \times \Sigma^* \to 2^Q$ by induction on the length of $w \in \Sigma^*$ $(q \xrightarrow{w} q' \text{ means } q' \in \delta^*(q, w))$: $q \xrightarrow{\epsilon} q'$ iff q = q'

$$q \xrightarrow{aw} q' \text{ iff there is } p \in Q \text{ such that } q \xrightarrow{a} p \text{ and } p \xrightarrow{w} q'.$$

Exercise 1

Prove that $w \in L_A(q)$ iff there is $p \in F$ of A such that $q \xrightarrow{w} p$.

Finite automata – 3

Example (Automaton A_1)

- in $L(A_1)$: b, bab, baab, baabb, ...
- not in $L(A_1)$: a, aba, ...

Example (Automaton A_2)

Let $A_i = \langle Q_i, \delta_i, I_i, F_i \rangle$ be a finite automaton for the same Σ and $i \in \{1, 2\}$.

Definition 3

A <u>simulation</u> of A_1 by A_2 is a relation $R \subseteq Q_1 \times Q_2$ such that, for all $q_1 \in Q_1$ and $q_2 \in Q_2$, $q_1 R q_2$ implies

1 $q_1 \in F_1$ only if $q_2 \in F_2$

2 $q_1 \xrightarrow{a} q'_1$ only if there is q'_2 such that $q_2 \xrightarrow{a} q'_2$ and $q'_1 R q'_2$.

A <u>bisimulation</u> between A_1 and A_2 is a simulation of A_1 by A_2 such that its converse is a simulation of A_2 by A_1 .

A state q_1 of A_1 is <u>(bi)similar</u> to a state q_2 of A_2 iff there is a (bi)simulation R such that $q_1 R q_2$ (notation: $q_1 \rightarrow q_2$ and $q_1 \rightarrow q_2$). A_1 is (bi)similar to A_2 (notation $A_1 \rightarrow A_2$, resp. $A_1 \leftrightarrow A_2$) iff there is a (bi)simulation R "defined on" each $q \in I_1$ (each $q_1 \in I_2$ and $Q_2 \in I_2$).

Proposition 1

Let A_1 , A_2 be two finite automata and $q_1 \in Q_1$, $q_2 \in Q_2$. Then:

- 1 $q_1 \rightarrow q_2$ implies $L(q_1) \subseteq L(q_2)$
- 2 if A_2 is deterministic, then $L(q_1) \subseteq L(q_2)$ implies $q_1 \rightarrow q_2$.

Proof (sketch). (1.) Assume $q_1 \rightarrow q_2$ and prove that $w \in L(q_1) \implies w \in L(q_2)$ by induction on the length of $w \in \Sigma^*$. (2.) Define $R = \{ \langle p_1, p_2 \rangle \in Q_1 \times Q_2 \mid L(p_1) \subseteq L(p_2) \}$ and show that R is a simulation (use Exercise 2).

Corollary

If A_1 , A_2 are deterministic, then $q_1 \leftrightarrow q_2$ iff $L(q_1) = L(q_2)$.

Fact: There is a polynomial-time algorithm for checking if $q_1 \leftrightarrow q_2$. (See (Kappé, 2023), lecture 3.)

Determinization - 1

Definition 4

Let $A = \langle Q, \delta, I, F \rangle$ be a finite automaton. The <u>determinization</u> of A is the deterministic automaton A^{det} such that

$$\begin{array}{l} \mathbf{Q}^{\mathsf{det}} = 2^Q \\ \mathbf{a} \ \delta^{\mathsf{det}}(X, \mathbf{a}) = \{q' \mid q \xrightarrow{\mathbf{a}} q' \text{ for some } q \in X\} \text{ for all } X \subseteq Q \\ \mathbf{I}^{\mathsf{det}} = \{I\} \\ \mathbf{F}^{\mathsf{det}} = \{X \subseteq Q \mid X \cap F \neq \emptyset\} \end{array}$$

Example

Determinization – 2

Proposition 2

For all A, $L(A) = L(A^{det})$.

Proof (sketch). $L(A) \subseteq L(A^{det})$ since $A \to A^{det}$ for $R = \{\langle q, X \rangle \mid q \in X\}$. Converse inclusion: prove that $w \in L^{det}(X) \implies w \in L(X)$ by induction on the length of $w \in \Sigma^*$ (where $L^{det}(X)$ is $L_{A^{det}}(X)$ and $L(X) = \bigcup_{q \in X} L_A(q)$)

Corollary

Hence, there is an algorithm for deciding L(A) = L(B) for arbitrary automata A, B. (Its running time may be exponential in the size of A, B.)

Theorem 1 (Kleene 1956)

A language $L \subseteq \Sigma^*$ is regular iff there is a deterministic finite automaton A such that L = L(A).

Proof (sketch). (i) Regular expression $e \longrightarrow$ "Antimirov automaton" A_e such that $L(A_e) = \llbracket e \rrbracket$ (see below). (ii) E.g. solving systems of equations (Kappé, 2023) or state elimination (Hopcroft et al., 2007; Sipser, 2013).

Definition 5

The set of accepting expressions $\mathbb A$ is the smallest subset of $\mathbb E$ such that

$$\frac{e\in\mathbb{A}\ f\in\mathbb{E}}{1\in\mathbb{A}}\qquad \frac{e\in\mathbb{A}\ f\in\mathbb{E}}{e+f,f+e\in\mathbb{A}}\qquad \frac{e,f\in\mathbb{A}}{e\cdot f\in\mathbb{A}}\qquad \frac{e\in\mathbb{E}}{e^*\in\mathbb{A}}$$

Note that $e \in \mathbb{A}$ iff $\epsilon \in \llbracket e \rrbracket$. (Exercise 3.)

Definition 6

<u>Expression accessibility</u>: We define $\rightarrow_{\mathbb{E}} \subseteq \mathbb{E} \times \Sigma \times \mathbb{E}$ as the smallest relation satisfying

tistying	$\overline{a \xrightarrow{a}_{\mathbb{E}} 1}$		$\frac{f \xrightarrow{\mathbf{a}}_{\mathbb{E}} f'}{e + f \xrightarrow{\mathbf{a}}_{\mathbb{E}} f'}$
	$e \xrightarrow{\mathbf{a}}_{\mathbb{E}} e'$ $f \xrightarrow{\mathbf{a}}_{\mathbb{E}} e' \cdot f$	$\frac{e \in \mathbb{A} \qquad f \xrightarrow{\mathbf{a}}_{\mathbb{E}}}{e \cdot f \xrightarrow{\mathbf{a}}_{\mathbb{E}} f'}$	$\frac{f'}{e^* \stackrel{\mathbf{a}}{\to}_{\mathbb{E}} e'} = \frac{e \stackrel{\mathbf{a}}{\to}_{\mathbb{E}} e'}{e^* \stackrel{\mathbf{a}}{\to}_{\mathbb{E}} e' \cdot e^*}$

Definition 7

<u>Reachable expressions</u>: for each $e \in \mathbb{E}$, the set $\rho(e) \subseteq \mathbb{E}$ is defined as follows:

$$\rho(\mathbf{0}) = \rho(\mathbf{1}) = \emptyset \qquad \rho(\mathbf{a}) = \{\mathbf{1}\} \qquad \rho(e+f) = \rho(e) + \rho(f)$$

$$\rho(e \cdot f) = \{e' \cdot f \mid e' \in \rho(f)\} \cup \rho(f) \qquad \rho(e^*) = \{e' \cdot e^* \mid e' \in \rho(e)\}$$

Note: $\rho(e)$ is finite for all $e \in \mathbb{E}$.

Lemma 1

The following hold for all $e \in \mathbb{E}$: 1 If $e \xrightarrow{a}_{\mathbb{E}} e'$, then $e' \in \rho(e)$. 2 If $e' \in \rho(e)$ and $e' \xrightarrow{a}_{\mathbb{E}} e''$, then $e'' \in \rho(e)$.

Proof (sketch). Induction on the complexity of e. See (Kappé, 2023), lecture 3.

Igor Sedlár (ICS CAS)

Definition 8

The Antimirov automaton for e is

$$A_e = \left\langle \hat{\rho}(e), \to_{\mathbb{E}}, \{e\}, \mathbb{A} \cap \hat{\rho}(e) \right\rangle,$$

where $\hat{\rho}(e) = \rho(e) \cup \{e\}$.

The Iverson bracket: $[\Phi(e)] = 1$ if *e* satisfies the predicate Φ and = 0 otherwise.

Theorem 2 (The fundamental theorem)

For all
$$e \in \mathbb{E}$$
:
 $e \equiv [e \in \mathbb{A}] + \sum \{ \mathbf{a} \cdot e' \mid e \xrightarrow{\mathbf{a}}_{\mathbb{E}} e' \}$

Proof (sketch). Induction on *e*. The base case: $a \equiv 0 + a \cdot 1$. Induction step for $e \cdot f$:

$$\begin{split} e \cdot f &\equiv [e \in \mathbb{A}] \cdot [f \in \mathbb{A}] + [e \in \mathbb{A}] \cdot \sum_{\substack{f \xrightarrow{\mathbf{a}} f'}} \mathbf{a} \cdot f' + \sum_{\substack{e \xrightarrow{\mathbf{a}} e'}} \mathbf{a} \cdot e' \cdot f \\ &\equiv [e \cdot f \in \mathbb{A}] + \sum_{e \cdot f \xrightarrow{\mathbf{a}} g} \mathbf{a} \cdot g \end{split}$$

(Note that $\sum \delta(e \cdot f, \mathbf{a}) \equiv \sum \{e' \cdot f \mid e \xrightarrow{\mathbf{a}} e'\} + [e \in \mathbb{A}] \cdot \sum \{f' \mid f \xrightarrow{\mathbf{a}} f'\}.$) (Exercise 4.)

Corollary

For all $e \in \mathbb{E}$: $L(A_e) = \llbracket e \rrbracket$.

Proof (sketch). $w \in L(A_e)$ iff $w \in [\![e]\!]$ by induction on the length of w. (Exercise 5.)

Compiling regular expressions:

$$e \equiv f \iff \llbracket e \rrbracket = \llbracket f \rrbracket$$
$$\iff L(A_e) = L(A_f)$$
$$\iff L(A_e^{\mathsf{det}}) = L(A_f^{\mathsf{det}})$$
$$\iff (A_e^{\mathsf{det}}, e) \iff (A_f^{\mathsf{det}}, f)$$

To decide if $e \equiv f$:

- **1** construct A_e and A_f ,
- 2 determinize to A_e^{det} and A_f^{det} ,
- $\textbf{3} \text{ check if } (A_e^{\det}, e) \xleftarrow{} (A_f^{\det}, f).$

Guarded automata - 1

Recall: At is the set of atoms over Π ; guarded strings over Σ , Π are words in $(At \cdot \Sigma)^* \cdot At$.

Definition 9

An guarded automaton (over Σ, Π) is $A = \langle Q, \delta, I, F \rangle$ where

• $\delta: Q \times At \times \Sigma \rightarrow 2^Q$...guarded transition relation

- $I \subseteq Q$...initial states
- $F: Q \rightarrow 2^{At}$...guards of finality

A is deterministic iff I and the range of δ are singletons.

We often write $q \xrightarrow{S|\mathbf{a}} q'$ for $q' \in \delta(q, S, \mathbf{a})$ and $S \in F(q)$ for F(q, S) = 1. Note that "ordinary" automata are a special case for $\Pi = \emptyset$. (In that case, $At = \{\epsilon\}$.)

Guarded automata - 2

Definition 10

The language of $q \in Q$ of A, or $L_A(q)$, is the smallest subset of GS such that

If
$$S \in F(q)$$
, then $S \in L_A(q)$,

if
$$w \in L_A(q')$$
 and $q \xrightarrow{S|a} q'$, then $Saw \in L_A(q)$.

The language of A (language recognized by A) is $L(A) := \bigcup_{q \in I} L_A(q)$.

Guarded automata - 3

Example

Accepted (in $L(q_0)$):

- p

 <u>p</u>ap, pap
- 🔳 p̄apap̄, p̄apbpap̄, ...

Not accepted:

- pbp, pbp, pbp, pbp
- рарврар, рарвр, ...

Guarded bisimulation - 1

Definition 11

A guarded simulation of A_1 by A_2 is a relation $R\subseteq Q_1\times Q_2$ such that $q_1 \; R \; q_2$ entails

1
$$S \in F_1(q_1)$$
 only if $S \in F_2(q_2)$

 $2 q_1 \xrightarrow{S|\mathbf{a}} q'_1 \text{ only if there is } q'_2 \text{ such that } q_2 \xrightarrow{S|\mathbf{a}} q'_2 \text{ and } q'_1 R q'_2.$

A <u>guarded bisimulation</u> between A_1 and A_2 is a simulation of A_1 by A_2 such that its converse is a guarded simulation of A_2 by A_1 .

<u>Guarded (bi) similarity</u> of states (automata) is defined (and denoted) similarly as before.

Guarded bisimulation – 2

Proposition 3

Let A_1, A_2 be two guarded automata and $q_1 \in Q_1, q_2 \in Q_2$. Then: 1 $q_1 \rightarrow q_2$ implies $L(q_1) \subseteq L(q_2)$ 2 if A_2 is deterministic, then $L(q_1) \subseteq L(q_2)$ implies $q_1 \rightarrow q_2$.

Proof (sketch). Similar as the proof of Prop. 1; see Exercise 7.

Corollary

If A_1 , A_2 are deterministic, then $q_1 \leftrightarrow q_2$ iff $L(q_1) = L(q_2)$.

Fact: As before, there is a polynomial-time algorithm for checking if $q_1 \leftrightarrow q_2$.

Guarded determinization - 1

Definition 12

Let $A = \langle Q, \delta, I, F \rangle$ be a guarded automaton. The <u>determinization</u> of A is the deterministic guarded automaton A^{det} such that

$$\begin{array}{l} Q^{\mathsf{det}} = 2^Q \\ \bullet \ \delta^{\mathsf{det}}(X,S,\mathbf{a}) = \{q' \mid q \xrightarrow{S|\mathbf{a}} q' \text{ for some } q \in X\} \text{ for all } X \subseteq Q \\ \bullet \ I^{\mathsf{det}} = \{I\} \\ \bullet \ F^{\mathsf{det}}(X) = \bigcup_{q \in X} F(q) \text{ for all } X \subseteq Q \end{array}$$

Guarded determinization – 2

Proposition 4

For all guarded A, $L(A) = L(A^{det})$.

Proof (sketch). Similar to the proof of Prop. 2. See Exercise 8.

Corollary

Hence, there is an algorithm for deciding L(A) = L(B) for arbitrary guarded automata A, B. (Its running time may be exponential in the size of A, B.)

Theorem 3

A guarded language $L \subseteq GS$ is regular iff there is a deterministic guarded automaton A such that L = L(A).

In this section, let \mathbb{E} be $\mathbb{E}(\Sigma, \Pi)$ for some fixed Σ and Π , and let $At = At(\Pi)$. For atom S and Boolean formula b, we write $S \vDash b$ if S satisfies b (in the obvious sense).

Definition 13

Let the <u>accepting atoms</u> function $\mathbb{A}: \mathbb{E} \to 2^{At}$ be defined as follows:

$$\begin{split} \mathbb{A}(\mathbf{a}) &= \emptyset \qquad \mathbb{A}(b) = \{S \mid S \vDash b\} \qquad \mathbb{A}(e+f) = \mathbb{A}(e) \cup \mathbb{A}(f) \\ \mathbb{A}(e \cdot f) &= \mathbb{A}(e) \cap \mathbb{A}(f) \qquad \mathbb{A}(e^*) = At \end{split}$$

Note that $\mathbb{A}(e) = \llbracket e \rrbracket \cap At$.

Definition 14

<u>Expression accessibility</u>: We define $\rightarrow_{\mathbb{E}} \subseteq \mathbb{E} \times At \times \Sigma \times \mathbb{E}$ as the smallest relation satisfying

$$\frac{e \xrightarrow{S|\mathbf{a}} e'}{\mathbf{a} \xrightarrow{S|\mathbf{a}} \mathbf{E} \mathbf{1}} = \frac{e \xrightarrow{S|\mathbf{a}} e'}{e+f \xrightarrow{S|\mathbf{a}} \mathbf{E} e'} = \frac{f \xrightarrow{S|\mathbf{a}} e'}{e+f \xrightarrow{S|\mathbf{a}} \mathbf{E} f'}$$
$$\frac{e \xrightarrow{S|\mathbf{a}} e'}{e \cdot f \xrightarrow{S|\mathbf{a}} \mathbf{E} e' \cdot f} = \frac{S \in \mathbb{A}(e) \quad f \xrightarrow{S|\mathbf{a}} e'}{e \cdot f \xrightarrow{S|\mathbf{a}} \mathbf{E} f'} = \frac{e \xrightarrow{S|\mathbf{a}} e'}{e^* \xrightarrow{S|\mathbf{a}} \mathbf{E} e' \cdot e^*}$$

Definition 15

<u>Reachable expressions:</u> for each $e \in \mathbb{E}$, the set $\rho(e) \subseteq \mathbb{E}$ is defined as follows:

$$\rho(b) = \emptyset \qquad \rho(\mathbf{a}) = \{\mathbf{1}\} \qquad \rho(e+f) = \rho(e) + \rho(f)$$

 $\rho(e \cdot f) = \{e' \cdot f \mid e' \in \rho(f)\} \cup \rho(f) \qquad \rho(e^*) = \{e' \cdot e^* \mid e' \in \rho(e)\}$

Note: $\rho(e)$ is finite for all $e \in \mathbb{E}$.

Lemma 2

The following claims hold for all $e \in \mathbb{E}$: 1 If $e \xrightarrow{S|\mathbf{a}}_{\mathbb{E}} e'$, then $e' \in \rho(e)$. 2 If $e' \in \rho(e)$ and $e' \xrightarrow{S|\mathbf{a}}_{\mathbb{E}} e''$, then $e'' \in \rho(e)$.

Proof (sketch). Induction on the complexity of e, similar to the proof of Lemma 1. (Exercise 9.)

Definition 16

The Antimirov automaton for e is

$$A_e = \langle \hat{\rho}(e), \to_{\mathbb{E}}, \{e\}, \mathbb{A}|_{\hat{\rho}(e)} \rangle,$$

where $\hat{\rho}(e) = \rho(e) \cup \{e\}$ and $\mathbb{A}|_{\hat{\rho}(e)}$ is the restriction of \mathbb{A} to $\hat{\rho}(e)$.

Theorem 4 (The guarded fundamental theorem)

For all
$$e \in \mathbb{E}$$
:
 $e \equiv \sum \mathbb{A}(e) + \sum \{ \mathbf{a} \cdot e' \mid e \xrightarrow{\mathbf{a}}_{\mathbb{E}} e' \}$

Corollary

For all $e \in \mathbb{E}$: $L(A_e) = \llbracket e \rrbracket$.

Exercises

- 2 Prove that (i) $\epsilon \in L_A(q)$ iff $q \in F$ of A, and (ii) if A is deterministic, then $\mathbf{a}w \in L_A(q)$ iff $q \in L_A(\delta(q, \mathbf{a}))$.
- 3 Prove that $e \in \mathbb{A}$ iff $\epsilon \in \llbracket e \rrbracket$. (Hint: Prove that $e \leq f$ and $e \in \mathbb{A}$ only if there is $f' \equiv f$ such that $f \in \mathbb{A}$.)
- **4** [★] Finish the proof of Theorem 2. (Hint for the case *: Use $e^* \equiv 1 + e \cdot e^*$ and reason by cases according to whether $e \in A$ or not.)
- 5 Prove the corollary to Theorem 2.
- **6** Define a suitable notion of accessibility relation for guarded automata and prove that $w \in L_A(q)$ iff there is p such that $last(w) \in F(p)$ and $q \xrightarrow{w} p$. (See Exercise 1.)
- 7 Prove Proposition 3.
- 8 Prove Proposition 4.
- 9 Prove Lemma 2.
- 10^{\star} Prove Theorem 4 and its corollary.

- Finite automata go back to Kleene (1956) and Rabin and Scott (1959).
- Excellent introductions to automata theory are (Hopcroft et al., 2007), (Hopcroft and Ullman, 1979) and (Sakarovitch, 2009).
- Guarded automata were introduced (in a different form) by Kozen (2003).
- These notes are largely based on Lecture 3 in (Kappé, 2023).

References

- J. Hopcroft, R. Motwani, and J. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Pearson Education, 3rd edition, 2007.
- J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Company, 1979.
- T. Kappé. Elements of Kleene algebra. Course notes, ESSLLI 2023, 2023. URL: https://tobias.kap.pe/esslli/.
- S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and J. McCarthy, editors, *Automata Studies*, pages 3 – 41. Princeton University Press, 1956. doi:10.1515/9781400882618-002.
- D. Kozen. Automata on guarded strings and applications. *Matématica Contemporânea*, 24:117–139, 2003. doi:10.21711/231766362003/rmc246.
- M. O. Rabin and D. Scott. Finite automata and their decision problems. *IBM Journal of Research and Development*, 3(2):114–125, 1959. doi:10.1147/rd.32.0114.
- J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, Cambridge, 2009.
- M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition edition, 2013.