Finite automata

Dynamic Logic - Part 3

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

Faculty of Arts, Charles University
Fall Semester 2023-24

Overview

■ We introduce (deterministic) finite automata, an "operational" counterpart of regular expressions and Kleene algebras; we show that every automaton is equivalent (in the sense of recognizing the same language) to a deterministic one

■ We discuss bisimulation, a decidable relation between automata that implies (and, in the case of deterministic automata, is implied by) equivalence

■ We prove (one half of) Kleene's theorem, stating that a language is regular iff it is recognized by a finite automaton; together with the other results, this implies that equivalence of regular expressions over arbitrary Kleene algebras is decidable

- We modify the notion of a finite automaton to match guarded languages and Kleene algebra with tests; we generalize the results on automata leading to decidability of equivalence to the guarded setting

Finite automata - 1

Definition 1

Let Σ be a finite alphabet. A finite automaton (for Σ) is $A=\langle Q, \delta, I, F\rangle$ where
■ Q is a finite set ...states

- $\delta: Q \times \Sigma \rightarrow 2^{Q} \quad$...transition relation

■ $I, F \subseteq Q \quad$...initial and final states
An automaton is deterministic if (i) $\delta(q, \mathrm{a})$ is a singleton for all $q \in Q$, a $\in \Sigma$, and (ii) I is a singleton.

We will often write $q \xrightarrow{\mathrm{a}} q^{\prime}$ for $q^{\prime} \in \delta(q, \mathrm{a})$.

Definition 2

The language of a $q \in Q$ of A, or $L_{A}(q)$, is the smallest subset of Σ^{*} such that
■ if $q \in F$, then $\epsilon \in L_{A}(q)$

- if $w \in L_{A}\left(q^{\prime}\right)$ and $q \xrightarrow{\mathrm{a}} q^{\prime}$, then $\mathrm{a} w \in L_{A}(q)$

The language of A (language recognized by A) is $L(A):=\bigcup_{q \in I} L_{A}(q)$.

Finite automata - 2

A path in an automaton is a sequence of the form

$$
q_{1} \mathrm{a}_{1} q_{2} \ldots \mathrm{a}_{n-1} q_{n}
$$

where (i) $n \geq 1, q_{i} \in Q$ and $\mathrm{a}_{j} \in \Sigma$, and (ii) $q_{i} \xrightarrow{\mathrm{a}_{i}} q_{i+1}$ for all $i<n$. We will often denote paths as $q_{1} \xrightarrow{\mathrm{a}_{1}} q_{2} \ldots \xrightarrow{\mathrm{a}_{n-1}} q_{n}$.

We define the accessibility relation $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ by induction on the length of $w \in \Sigma^{*}\left(q \xrightarrow{w} q^{\prime}\right.$ means $\left.q^{\prime} \in \delta^{*}(q, w)\right)$:

■ $q \xrightarrow{\epsilon} q^{\prime}$ iff $q=q^{\prime}$
■ $q \xrightarrow{\text { aw }} q^{\prime}$ iff there is $p \in Q$ such that $q \xrightarrow{\text { a }} p$ and $p \xrightarrow{w} q^{\prime}$.

Exercise 1

Prove that $w \in L_{A}(q)$ iff there is $p \in F$ of A such that $q \xrightarrow{w} p$.

Finite automata - 3

Example (Automaton A_{1})

■ in $L\left(A_{1}\right): \mathrm{b}, \mathrm{bab}, \mathrm{baab}, \mathrm{baabb}, \ldots$
■ not in $L\left(A_{1}\right):$ a, aba, \ldots

Example (Automaton A_{2})

- in $L\left(A_{2}\right)$: arr, goldarr, ...

Bisimulation - 1

Let $A_{i}=\left\langle Q_{i}, \delta_{i}, I_{i}, F_{i}\right\rangle$ be a finite automaton for the same Σ and $i \in\{1,2\}$.

Definition 3

A simulation of A_{1} by A_{2} is a relation $R \subseteq Q_{1} \times Q_{2}$ such that, for all $q_{1} \in Q_{1}$ and $q_{2} \in Q_{2}, q_{1} R q_{2}$ implies
$1 q_{1} \in F_{1}$ only if $q_{2} \in F_{2}$
$2 q_{1}{ }^{\mathrm{a}}{ }_{1} q_{1}^{\prime}$ only if there is q_{2}^{\prime} such that $q_{2}{ }^{\mathrm{a}}{ }_{2} q_{2}^{\prime}$ and $q_{1}^{\prime} R q_{2}^{\prime}$.
A bisimulation between A_{1} and A_{2} is a simulation of A_{1} by A_{2} such that its converse is a simulation of A_{2} by A_{1}.
A state q_{1} of A_{1} is (bi)similar to a state q_{2} of A_{2} iff there is a (bi)simulation R such that $q_{1} R q_{2}$ (notation: $q_{1} \rightarrow q_{2}$ and $q_{1} \leftrightarrow q_{2}$). A_{1} is (bi)similar to A_{2} (notation $A_{1} \xrightarrow{\longrightarrow} A_{2}$, resp. $A_{1} \overleftrightarrow{(A 2)}$) iff there is a (bi)simulation R "defined on" each $q \in I_{1}$ (each $q_{1} \in I_{2}$ and $Q_{2} \in I_{2}$).

Bisimulation - 2

Example (Bisimilar automata)

$$
R=\left\{\left\langle q_{0}, p_{1}\right\rangle,\left\langle q_{2}, p_{1}\right\rangle,\left\langle q_{1}, p_{0}\right\rangle,\left\langle q_{1}, p_{2}\right\rangle\right\}
$$

Bisimulation - 3

Non-bisimilar automata

Bisimulation - 4

Proposition 1

Let A_{1}, A_{2} be two finite automata and $q_{1} \in Q_{1}, q_{2} \in Q_{2}$. Then:
$1 q_{1} \rightarrow q_{2}$ implies $L\left(q_{1}\right) \subseteq L\left(q_{2}\right)$
2 if A_{2} is deterministic, then $L\left(q_{1}\right) \subseteq L\left(q_{2}\right)$ implies $q_{1} \rightarrow q_{2}$.
Proof (sketch). (1.) Assume $q_{1} \rightarrow q_{2}$ and prove that $w \in L\left(q_{1}\right) \Longrightarrow w \in L\left(q_{2}\right)$ by induction on the length of $w \in \Sigma^{*}$. (2.) Define $R=\left\{\left\langle p_{1}, p_{2}\right\rangle \in Q_{1} \times Q_{2} \mid L\left(p_{1}\right) \subseteq L\left(p_{2}\right)\right\}$ and show that R is a simulation (use Exercise 2).

Corollary

If A_{1}, A_{2} are deterministic, then $q_{1} \leftrightarrow q_{2}$ iff $L\left(q_{1}\right)=L\left(q_{2}\right)$.
Fact: There is a polynomial-time algorithm for checking if $q_{1} \leftrightarrow q_{2}$. (See (Kappé, 2023), lecture 3.)

Determinization - 1

Definition 4

Let $A=\langle Q, \delta, I, F\rangle$ be a finite automaton. The determinization of A is the deterministic automaton $A^{\text {det }}$ such that

- $Q^{\text {det }}=2^{Q}$
- $\delta^{\text {det }}(X, \mathrm{a})=\left\{q^{\prime} \mid q \xrightarrow{\mathrm{a}} q^{\prime}\right.$ for some $\left.q \in X\right\}$ for all $X \subseteq Q$

■ $I^{\text {det }}=\{I\}$
■ $F^{\text {det }}=\{X \subseteq Q \mid X \cap F \neq \emptyset\}$

Example

Determinization - 2

Proposition 2

For all $A, L(A)=L\left(A^{\text {det }}\right)$.
Proof (sketch). $L(A) \subseteq L\left(A^{\text {det }}\right)$ since $A \longrightarrow A^{\text {det }}$ for $R=\{\langle q, X\rangle \mid q \in X\}$. Converse inclusion: prove that $w \in L^{\operatorname{det}}(X) \Longrightarrow w \in L(X)$ by induction on the length of $w \in \Sigma^{*}$ (where $L^{\operatorname{det}}(X)$ is $L_{A^{\text {det }}}(X)$ and $L(X)=\bigcup_{q \in X} L_{A}(q)$)

Corollary

Hence, there is an algorithm for deciding $L(A)=L(B)$ for arbitrary automata A, B. (Its running time may be exponential in the size of A, B.)

Kleene's Theorem - 1

Theorem 1 (Kleene 1956)

A language $L \subseteq \Sigma^{*}$ is regular iff there is a deterministic finite automaton A such that $L=L(A)$.

Proof (sketch). (i) Regular expression $e \longrightarrow$ "Antimirov automaton" A_{e} such that $L\left(A_{e}\right)=\llbracket e \rrbracket$ (see below). (ii) E.g. solving systems of equations (Kappé, 2023) or state elimination (Hopcroft et al., 2007; Sipser, 2013).

Kleene's Theorem - 2

Definition 5

The set of accepting expressions \mathbb{A} is the smallest subset of \mathbb{E} such that

$$
\overline{1 \in \mathbb{A}} \quad \frac{e \in \mathbb{A} f \in \mathbb{E}}{e+f, f+e \in \mathbb{A}} \quad \frac{e, f \in \mathbb{A}}{e \cdot f \in \mathbb{A}} \quad \frac{e \in \mathbb{E}}{e^{*} \in \mathbb{A}}
$$

Note that $e \in \mathbb{A}$ iff $\epsilon \in \llbracket e \rrbracket$. (Exercise 3.)

Definition 6

Expression accessibility: We define $\rightarrow_{\mathbb{E}} \subseteq \mathbb{E} \times \Sigma \times \mathbb{E}$ as the smallest relation satisfying

$$
\begin{aligned}
& \overline{\mathrm{a} \xrightarrow{\mathrm{a}}_{\mathbb{E}} 1} \quad \frac{e \xrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime}}{e+f \xrightarrow[\rightarrow]{\mathbb{E}} e^{\prime}} \quad \frac{f \xrightarrow[\rightarrow]{\mathrm{a}}_{\mathbb{E}} f^{\prime}}{e+f \xrightarrow[\rightarrow]{\mathbb{a}} f^{\prime}} \\
& \frac{e \stackrel{\mathrm{a}}{\mathbb{a}} e^{\prime}}{e \cdot f \xrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime} \cdot f} \quad \frac{e \in \mathbb{A} \quad f \stackrel{\mathrm{a}}{\mathbb{E}} f^{\prime}}{e \cdot f \xrightarrow{\mathrm{a}}_{\mathbb{E}} f^{\prime}} \quad \frac{e \stackrel{\mathrm{a}}{\mathbb{A}} e^{\prime}}{e^{*} \xrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime} \cdot e^{*}}
\end{aligned}
$$

Kleene's Theorem - 3

Definition 7

$$
\begin{aligned}
\rho(0)=\rho(1)=\emptyset \quad \rho(\mathrm{a})=\{1\} & \rho(e+f)=\rho(e)+\rho(f) \\
\rho(e \cdot f)=\left\{e^{\prime} \cdot f \mid e^{\prime} \in \rho(f)\right\} \cup \rho(f) & \rho\left(e^{*}\right)=\left\{e^{\prime} \cdot e^{*} \mid e^{\prime} \in \rho(e)\right\}
\end{aligned}
$$

Note: $\rho(e)$ is finite for all $e \in \mathbb{E}$.

Lemma 1

The following hold for all $e \in \mathbb{E}$:
1 If $e \xrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime}$, then $e^{\prime} \in \rho(e)$.
2 If $e^{\prime} \in \rho(e)$ and $e^{\prime} \xrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime \prime}$, then $e^{\prime \prime} \in \rho(e)$.
Proof (sketch). Induction on the complexity of e. See (Kappé, 2023), lecture 3.

Kleene's Theorem - 4

Definition 8

The Antimirov automaton for e is

$$
A_{e}=\left\langle\hat{\rho}(e), \rightarrow_{\mathbb{E}},\{e\}, \mathbb{A} \cap \hat{\rho}(e)\right\rangle
$$

where $\hat{\rho}(e)=\rho(e) \cup\{e\}$.

Kleene's Theorem - 5

The Iverson bracket: $[\Phi(e)]=1$ if e satisfies the predicate Φ and $=0$ otherwise.

Theorem 2 (The fundamental theorem)

For all $e \in \mathbb{E}$:

$$
e \equiv[e \in \mathbb{A}]+\sum\left\{\mathrm{a} \cdot e^{\prime} \mid e \overrightarrow{\mathrm{a}}_{\mathbb{E}} e^{\prime}\right\}
$$

Proof (sketch). Induction on e. The base case: $\mathrm{a} \equiv 0+\mathrm{a} \cdot 1$. Induction step for $e \cdot f$:

$$
\begin{aligned}
e \cdot f & \equiv[e \in \mathbb{A}] \cdot[f \in \mathbb{A}]+[e \in \mathbb{A}] \cdot \sum_{f \xrightarrow{\mathrm{a}} f^{\prime}} \mathrm{a} \cdot f^{\prime}+\sum_{e^{\mathrm{a} \rightarrow} e^{\prime}} \mathrm{a} \cdot e^{\prime} \cdot f \\
& \equiv[e \cdot f \in \mathbb{A}]+\sum_{e \cdot f \xrightarrow{\mathrm{a}} g} \mathrm{a} \cdot g
\end{aligned}
$$

(Note that $\sum \delta(e \cdot f, \mathrm{a}) \equiv \sum\left\{e^{\prime} \cdot f \mid e \xrightarrow{\mathrm{a}} e^{\prime}\right\}+[e \in \mathbb{A}] \cdot \sum\left\{f^{\prime} \mid f \xrightarrow{\mathrm{a}} f^{\prime}\right\}$. .) (Exercise 4.)

Corollary

For all $e \in \mathbb{E}: L\left(A_{e}\right)=\llbracket e \rrbracket$.
Proof (sketch). $w \in L\left(A_{e}\right)$ iff $w \in \llbracket e \rrbracket$ by induction on the length of w. (Exercise 5.)

Kleene's Theorem - 6

Compiling regular expressions:

$$
\begin{aligned}
e \equiv f & \Longleftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket \\
& \Longleftrightarrow L\left(A_{e}\right)=L\left(A_{f}\right) \\
& \Longleftrightarrow L\left(A_{e}^{\text {det }}\right)=L\left(A_{f}^{\text {det }}\right) \\
& \Longleftrightarrow\left(A_{e}^{\text {det }}, e\right) \leftrightarrows\left(A_{f}^{\text {det }}, f\right)
\end{aligned}
$$

To decide if $e \equiv f$:
1 construct A_{e} and A_{f},
2 determinize to $A_{e}^{\text {det }}$ and $A_{f}^{\text {det }}$,
3 check if $\left(A_{e}^{\text {det }}, e\right) \leftrightarrows\left(A_{f}^{\text {det }}, f\right)$.

Guarded automata - 1

Recall: $A t$ is the set of atoms over Π; guarded strings over Σ, Π are words in $(A t \cdot \Sigma)^{*} \cdot A t$.

Definition 9

An guarded automaton (over Σ, Π) is $A=\langle Q, \delta, I, F\rangle$ where
■ $\delta: Q \times A t \times \Sigma \rightarrow 2^{Q} \quad \ldots$ guarded transition relation
■ $I \subseteq Q \quad$...initial states
■ $F: Q \rightarrow 2^{\text {At }} \quad$...guards of finality
A is deterministic iff I and the range of δ are singletons.
We often write $q \xrightarrow{S \mid \mathrm{a}} q^{\prime}$ for $q^{\prime} \in \delta(q, S$, a) and $S \in F(q)$ for $F(q, S)=1$. Note that "ordinary" automata are a special case for $\Pi=\emptyset$. (In that case, $A t=\{\epsilon\}$.)

Guarded automata - 2

Definition 10

The language of $q \in Q$ of A, or $L_{A}(q)$, is the smallest subset of $G S$ such that

- if $S \in F(q)$, then $S \in L_{A}(q)$,

■ if $w \in L_{A}\left(q^{\prime}\right)$ and $q \xrightarrow{S \mid \mathrm{a}} q^{\prime}$, then $S \mathrm{a} w \in L_{A}(q)$.
The language of A (language recognized by A) is $L(A):=\bigcup_{q \in I} L_{A}(q)$.

Guarded automata - 3

Example

Accepted (in $L\left(q_{0}\right)$):

- $\overline{\mathrm{p}} \mathrm{ap}, \mathrm{pap}$

Not accepted:
- pbp, $\overline{\mathrm{p}} \mathrm{p} \overline{\mathrm{p}}, \mathrm{pb} \overline{\mathrm{p}}, \overline{\mathrm{p}} \mathrm{p}$
- pap̄bp̄ap̄, pap̄bp, ...

Guarded bisimulation - 1

Definition 11

A guarded simulation of A_{1} by A_{2} is a relation $R \subseteq Q_{1} \times Q_{2}$ such that $q_{1} R q_{2}$ entails
$1 S \in F_{1}\left(q_{1}\right)$ only if $S \in F_{2}\left(q_{2}\right)$
$2 q_{1} \xrightarrow{S \mid \mathrm{a}} q_{1}^{\prime}$ only if there is q_{2}^{\prime} such that $q_{2} \xrightarrow{S \mid \mathrm{a}} q_{2}^{\prime}$ and $q_{1}^{\prime} R q_{2}^{\prime}$.
A guarded bisimulation between A_{1} and A_{2} is a simulation of A_{1} by A_{2} such that its converse is a guarded simulation of A_{2} by A_{1}.

Guarded (bi) similarity of states (automata) is defined (and denoted) similarly as before.

Guarded bisimulation - 2

Proposition 3

Let A_{1}, A_{2} be two guarded automata and $q_{1} \in Q_{1}, q_{2} \in Q_{2}$. Then:
$1 q_{1} \rightarrow q_{2}$ implies $L\left(q_{1}\right) \subseteq L\left(q_{2}\right)$
2 if A_{2} is deterministic, then $L\left(q_{1}\right) \subseteq L\left(q_{2}\right)$ implies $q_{1} \rightarrow q_{2}$.
Proof (sketch). Similar as the proof of Prop. 1; see Exercise 7.

Corollary

If A_{1}, A_{2} are deterministic, then $q_{1} \leftrightarrow q_{2}$ iff $L\left(q_{1}\right)=L\left(q_{2}\right)$.
Fact: As before, there is a polynomial-time algorithm for checking if $q_{1} \leftrightarrow q_{2}$.

Guarded determinization - 1

Definition 12

Let $A=\langle Q, \delta, I, F\rangle$ be a guarded automaton. The determinization of A is the deterministic guarded automaton $A^{\text {det }}$ such that

- $Q^{\text {det }}=2^{Q}$
- $\delta^{\text {det }}(X, S, \mathbf{a})=\left\{q^{\prime} \mid q \xrightarrow{S \mid a} q^{\prime}\right.$ for some $\left.q \in X\right\}$ for all $X \subseteq Q$

■ $I^{\text {det }}=\{I\}$

- $F^{\text {det }}(X)=\bigcup_{q \in X} F(q)$ for all $X \subseteq Q$

Guarded determinization - 2

Proposition 4

For all guarded $A, L(A)=L\left(A^{\text {det }}\right)$.

Proof (sketch). Similar to the proof of Prop. 2. See Exercise 8.

Corollary

Hence, there is an algorithm for deciding $L(A)=L(B)$ for arbitrary guarded automata A, B. (lts running time may be exponential in the size of A, B.)

Kleene's Theorem for guarded automata - 1

Theorem 3

A guarded language $L \subseteq G S$ is regular iff there is a deterministic guarded automaton A such that $L=L(A)$.

Kleene's Theorem for guarded automata - 2

In this section, let \mathbb{E} be $\mathbb{E}(\Sigma, \Pi)$ for some fixed Σ and Π, and let $A t=A t(\Pi)$. For atom S and Boolean formula b, we write $S \vDash b$ if S satisfies b (in the obvious sense).

Definition 13

Let the accepting atoms function $\mathbb{A}: \mathbb{E} \rightarrow 2^{A t}$ be defined as follows:

$$
\begin{array}{cc}
\mathbb{A}(\mathrm{a})=\emptyset & \mathbb{A}(b)=\{S \mid S \vDash b\} \\
\mathbb{A}(e \cdot f)=\mathbb{A}(e) \cap \mathbb{A}(f) & \mathbb{A}\left(e^{*}\right)=A t
\end{array}
$$

Note that $\mathbb{A}(e)=\llbracket e \rrbracket \cap A t$.

Kleene's Theorem for guarded automata - 3

Definition 14

Expression accessibility: We define $\rightarrow_{\mathbb{E}} \subseteq \mathbb{E} \times A t \times \Sigma \times \mathbb{E}$ as the smallest relation satisfying

$$
\begin{aligned}
& \frac{e \xrightarrow[\longrightarrow]{\mathrm{S} \mid \mathrm{a}} e^{\prime}}{e \cdot f \xrightarrow{S \mid \mathrm{a}} \mathbb{E} e^{\prime} \cdot f} \\
& \begin{aligned}
& S \in \mathbb{A}(e) \quad f \xrightarrow{S \mid \mathrm{a}}_{\mathbb{E}} f^{\prime} \\
& e \cdot f \xrightarrow{S \mid \mathrm{a}} \mathbb{E} f^{\prime} \xrightarrow{e \xrightarrow{S \mid \mathrm{a}} e^{\prime}} \\
& e^{*} \xrightarrow{S \mid \mathrm{a}} e^{\prime} \cdot e^{*}
\end{aligned}
\end{aligned}
$$

Kleene's Theorem for guarded automata - 4

Definition 15

$$
\begin{gathered}
\rho(b)=\emptyset \quad \rho(\mathrm{a})=\{1\} \quad \rho(e+f)=\rho(e)+\rho(f) \\
\rho(e \cdot f)=\left\{e^{\prime} \cdot f \mid e^{\prime} \in \rho(f)\right\} \cup \rho(f) \quad \rho\left(e^{*}\right)=\left\{e^{\prime} \cdot e^{*} \mid e^{\prime} \in \rho(e)\right\}
\end{gathered}
$$

Note: $\rho(e)$ is finite for all $e \in \mathbb{E}$.

Lemma 2

The following claims hold for all $e \in \mathbb{E}$:
1 If $e \xrightarrow{S \mid \mathrm{a}} \mathbb{E} e^{\prime}$, then $e^{\prime} \in \rho(e)$.
2 If $e^{\prime} \in \rho(e)$ and $e^{\prime} \xrightarrow{S \mid a} \mathbb{E} e^{\prime \prime}$, then $e^{\prime \prime} \in \rho(e)$.

Proof (sketch). Induction on the complexity of e, similar to the proof of Lemma 1. (Exercise 9.)

Kleene's Theorem for guarded automata - 5

Definition 16
The Antimirov automaton for e is

$$
A_{e}=\left\langle\hat{\rho}(e), \rightarrow_{\mathbb{E}},\{e\},\left.\mathbb{A}\right|_{\hat{\rho}(e)}\right\rangle,
$$

where $\hat{\rho}(e)=\rho(e) \cup\{e\}$ and $\left.\mathbb{A}\right|_{\hat{\rho}(e)}$ is the restriction of \mathbb{A} to $\hat{\rho}(e)$.

Theorem 4 (The guarded fundamental theorem)
For all $e \in \mathbb{E}$:

$$
e \equiv \sum \mathbb{A}(e)+\sum\left\{\mathrm{a} \cdot e^{\prime} \mid e \stackrel{\mathrm{a}}{\mathbb{E}} e^{\prime}\right\}
$$

Corollary
For all $e \in \mathbb{E}: L\left(A_{e}\right)=\llbracket e \rrbracket$.

Exercises

2 Prove that (i) $\epsilon \in L_{A}(q)$ iff $q \in F$ of A, and (ii) if A is deterministic, then $\mathrm{a} w \in L_{A}(q)$ iff $q \in L_{A}(\delta(q, \mathrm{a}))$.

3 Prove that $e \in \mathbb{A}$ iff $\epsilon \in \llbracket e \rrbracket$. (Hint: Prove that $e \leqq f$ and $e \in \mathbb{A}$ only if there is $f^{\prime} \equiv f$ such that $f \in \mathbb{A}$.)
4^{\star} Finish the proof of Theorem 2. (Hint for the case *: Use $e^{*} \equiv 1+e \cdot e^{*}$ and reason by cases according to whether $e \in \mathbb{A}$ or not.)

5 Prove the corollary to Theorem 2.
6 Define a suitable notion of accessibility relation for guarded automata and prove that $w \in L_{A}(q)$ iff there is p such that last $(w) \in F(p)$ and $q \xrightarrow{w} p$. (See Exercise 1.)

7 Prove Proposition 3.
8 Prove Proposition 4.
9 Prove Lemma 2.
10^ Prove Theorem 4 and its corollary.

Notes

■ Finite automata go back to Kleene (1956) and Rabin and Scott (1959).
■ Excellent introductions to automata theory are (Hopcroft et al., 2007), (Hopcroft and Ullman, 1979) and (Sakarovitch, 2009).

■ Guarded automata were introduced (in a different form) by Kozen (2003).
■ These notes are largely based on Lecture 3 in (Kappé, 2023).

References

- J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Pearson Education, 3rd edition, 2007.
- J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Company, 1979.
- T. Kappé. Elements of Kleene algebra. Course notes, ESSLLI 2023, 2023. URL: https://tobias.kap.pe/esslli/.
- S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3 - 41. Princeton University Press, 1956. doi:10.1515/9781400882618-002.
- D. Kozen. Automata on guarded strings and applications. Matématica Contemporânea, 24:117-139, 2003. doi:10.21711/231766362003/rmc246.
- M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3(2):114-125, 1959. doi:10.1147/rd.32.0114.
- J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, Cambridge, 2009.
- M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition edition, 2013.

