Kleene algebra (with tests) Dynamic Logic – Lecture 2

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

Faculty of Arts, Charles University Fall Semester 2023-24

Lecture overview

- Kleene algebra (KA) is a (quasi-equational) axiomatization of the algebra of regular languages
- Kleene algebra with tests (KAT) extends KA with a Boolean algebra of tests; typical models are relational and trace models (guarded languages)
- KAT allows to express all the expressions of the formal language of programs; KATs generalize the kinds of program models introduced in the previous lecture

Semirings - 1

Definition 1

A semiring is an algebra $\langle S, +, \cdot, 0, 1 \rangle$ such that

•
$$\langle S, +, 0 \rangle$$
 is a commutative monoid
• $\langle S, \cdot, 1 \rangle$ is a monoid
• $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ and $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
• $0 \cdot x = 0 = x \cdot 0$

A semiring is idempotent iff x + x = x, and complete if $\langle S, +, 0 \rangle$ is a complete monoid and

$$\sum_{i\in I} \left(x\cdot y_i\right) = x\cdot \left(\sum_{i\in I} y_i\right) \qquad \sum_{i\in I} \left(x_i\cdot y\right) = \left(\sum_{i\in I} x_i\right)\cdot y$$

In a complete idempotent semiring (unital quantale): $x^* := \sum_{n \ge 0} x^n$.

Semirings – 2

Examples

- Binary relations: $\langle 2^{X \times X}, \cup, \circ, \emptyset, 1_X \rangle$
- Formal languages: $\langle 2^{A^*}, \cup, \cdot, \emptyset, \{\epsilon\} \rangle$ where ϵ is the empty word and $K \cdot L = \{wu \mid w \in K \& u \in L\}$
- Sets of traces (over Σ and Π): $\langle 2^{Tr}, \cup, \diamond, \emptyset, States \rangle$
- Tropical semiring: $\langle \mathbb{N} \cup \{\infty\}, \min, +, \infty, 0 \rangle$ where $\infty + n = \infty = n + \infty$ and $\min\{n, \infty\} = n$
- **Boolean semiring:** $\langle \{ true, false \}, \lor, \land, false, true \rangle$

Exercise 1

Which examples above are idempotent? complete? What is * in the complete cases?

Kleene algebras - 1

Definition 2

A <u>Kleene algebra</u> is an algebra $\langle X, +, \cdot, *, 0, 1 \rangle$ expanding an idempotent semiring with a unary operation * satisfying:

$$\begin{array}{cccc} 1+xx^*\leq x^* & 1+x^*x\leq x^*\\ y+zx\leq z \implies yx^*\leq z & y+xz\leq z \implies x^*y\leq z\\ (\mbox{where } x\leq y \iff x+y=y \mbox{ and } xy \mbox{ is } x\cdot y)\end{array}$$

A Kleene algebra is *-continuous iff

$$xy^*z = \sum_{k\geq 0} xy^kz$$

for all x, y, z. (The sum is required to exist for all x, y, z by definition of KA*.)

Kleene algebras – 2

Proposition 1

Every (unital) quantale is a *-continuous Kleene algebra.

Proof (partial). We prove $1 + xx^* + x^* = x^*$:

$$\begin{aligned} x^{0} + x \sum_{n \ge 0} x^{n} + \sum_{n \ge 0} x^{n} &= x^{0} + \sum_{n \ge 0} x^{n+1} + \sum_{n \ge 0} x^{n} \\ &= \sum_{n \ge 0} x^{n} + \sum_{n \ge 0} x^{n} = \sum_{n \ge 0} x^{n} \end{aligned}$$

Proposition 2

Not every *-continuous KA is a unital quantale. Not every KA is *-continuous.

Regular expressions - 1

Definition 3

Let Σ be an alphabet. The set $\mathbb{E}(\Sigma)$ of <u>regular expressions</u> over Σ is defined using the following grammar:

$$e, f := \mathbf{a} \in \Sigma \mid 0 \mid 1 \mid e + f \mid e \cdot f \mid e^*$$

Operator precedence: * over +. We'll sometimes write ef instead of $e \cdot f$. Hence, $ef^* + e$ is $(e \cdot (f^*)) + e$.

Definition 4

A <u>Kleene algebra model</u> is $\langle X, v \rangle$ where $X \in \mathsf{KA}$ and $v : \Sigma \to X$. Every $\langle X, v \rangle$ extends to an <u>interpretation</u> $[-]_v : \mathbb{E}(\Sigma) \to X$ (homomorphism). An equation $e \approx f$ is <u>valid in KA</u> iff $[e]_v = [f]_v$ for all $\langle X, v \rangle$. (Notation: $\mathsf{KA} \models e \approx f$, $e \stackrel{\mathsf{KA}}{\equiv} f$ or just $e \equiv f$).

Regular expressions – 2

Definition 5

The (canonical) language interpretation is $[\![-]\!]: \mathbb{E}(\Sigma) \to 2^{\Sigma^*}$ such that

$$\llbracket \mathbf{a} \rrbracket = \{ \mathbf{a} \} \qquad \llbracket 0 \rrbracket = \emptyset \qquad \llbracket 1 \rrbracket = \{ \epsilon \}$$

 $[\![e+f]\!] = [\![e]\!] \cup [\![f]\!] \quad [\![e \cdot f]\!] = [\![e]\!] \cdot [\![f]\!] \quad [\![e^*]\!] = \bigcup_{n \ge 0} [\![e]\!]^n = [\![e]\!]^*$

A language $L \subseteq \Sigma^*$ is <u>regular</u> iff there is $e \in \mathbb{E}(\Sigma)$ such that $L = \llbracket e \rrbracket$.

Proof of Prop. 2, first part (hint). Show that the Kleene algebra of regular languages is *-continuous but not a (unital) quantale.

Proposition 3

A language $L \subseteq \Sigma^*$ is regular iff it belongs to the closure of the set of finite subsets of Σ^* under the <u>regular operations</u> \cup , \cdot and * .

Completeness

Theorem 1 (Kozen 1994)

 $\mathsf{KA} \models e \approx f \text{ iff } \llbracket e \rrbracket = \llbracket f \rrbracket.$

Proof (sketch). L \Rightarrow R: The algebra of regular languages is a Kleene algebra. R \Rightarrow L: Much more intricate and beyond our scope (see notes).

Note: This is a completeness theorem for the algebra of regular languages since $KA \models e \approx f$ iff $e \approx f$ is derivable from the obvious quasi-equational axiomatization.

Kleene algebras with tests - 1

Definition 6

A <u>Kleene algebra with tests</u> is an algebra $\langle X, B, +, \cdot, *, -, 0, 1 \rangle$ where

• $\langle X, +, \cdot, ^*, 0, 1 \rangle$ is a Kleene algebra

• $B \subseteq X$ and $-: B \rightarrow B$ (partial on X)

• $\langle B, +, \cdot, -, 0, 1 \rangle$ is a Boolean algebra.

A KAT is *-continuous iff its underlying KA is.

Intuition: B is a collection of "tests", special actions among all the X. Tests pertain to Boolean statements, hence they form a Boolean algebra.

Kleene algebras with tests - 2

Examples

- Every KA ($B = \{0, 1\}$)
- Binary relations:

 $\langle 2^{X\times X}, 2^{1_X}\cup, \circ, \, ^*, \, ^-, \emptyset, 1_X\rangle$ where $\, ^-$ is complement w.r.t. 1_X

■ Formal languages: $\langle 2^{\Sigma^*}, \{\emptyset, \{\epsilon\}\}, \cup, \cdot, *, -, \emptyset, \{\epsilon\} \rangle$

Sets of traces (over Σ and Π): $\langle 2^{Tr}, 2^{\text{States}}, \cup, \diamond, *, -, \emptyset, \text{States} \rangle$ where - is complement w.r.t. States.

Note: $Reg(\Sigma)$ forms a Boolean algebra, but \wedge is \cap , not \cdot .

Definition 7

Let Σ and Π be alphabets. The set $\mathbb{E}(\Sigma, \Pi)$ of <u>regular expressions over Σ </u> with tests over Π is defined using the following (two-sorted) grammar:

$$b, c := \mathbf{p} \in \Pi \mid b + c \mid b \cdot c \mid \overline{b} \mid 0 \mid 1$$

$$e, f := \mathbf{a} \in \Sigma \mid b \mid e + f \mid e \cdot f \mid e^*$$

We define:

if b then
$$e$$
 else $f := be + \overline{b}f$ while b do $e := (be)^*\overline{b}$

Definition 8

A <u>KAT model</u> is $\langle X, v \rangle$ where $X \in \text{KAT}$ and $v : \Sigma \cup \Pi \to X$ such that $v(\mathbf{p}) \in B$ for all $\mathbf{p} \in \Pi$. Every $\langle X, v \rangle$ extends to an <u>interpretation</u> $[\![-]\!]_v : \mathbb{E} \to X$ (homomorphism). Validity: $\text{KAT} \models e \approx f$ iff $[\![e]\!]_v = [\![f]\!]_v$ for all $\langle X, v \rangle$.

Exercise 2

Show that if X is a relational KAT or a KAT of traces, then the interpretation of if *b* then *e* else *f* and while *b* do *e* induced by any $\langle X, v \rangle$ coincides with the relational and trace semantics of programs as defined in the previous lecture.

We assume that Π is finite and comes with a fixed ordering: p_1, \ldots, p_n .

Definition 9

An <u>atom</u> over Π is a sequence $r_1 \dots r_n$ where $r_i \in \{\mathbf{p}_i, \overline{\mathbf{p}}_i\}$. Let A be the set of all atoms over Π . A <u>guarded string</u> over Σ and Π is any word in $(A \cdot \Sigma)^* \cdot A$, that is, any sequence of the form

$$S_1 a_1 S_2 \dots a_{n-1} S_n$$

where $S_i \in A$ over Π and $a_j \in \Sigma$. Let GS be the set of all guarded strings (over Σ, Π).

We write $r_1 \ldots r_n \vDash p_i$ iff $r_i = p_i$.

Fusion product \diamond on guarded strings is defined in the expected way.

Definition 10 The (canonical) <u>language interpretation</u> is $[-] : \mathbb{E} \to 2^{GS}$ such that $[p] = \{S \mid S \models p\}$ $[0] = \emptyset$ [1] = A $[\overline{b}] = A \setminus [b]$ $[a] = \{SaT \mid S, T \in A\}$ $[e + f] = [e] \cup [f]$ $[e \cdot f] = [e] \diamond [f]$ $[e^*] = \bigcup_{n \ge 0} [e]^n = [e]^*$ A guarded language $L \subseteq GS$ is regular iff there is $e \in \mathbb{E}$ such that L = [e].

Completeness

Theorem 2

The following are equivalent:

1 KAT
$$\models e \approx f$$

2 KAT* $\models e \approx f$

$$\mathbf{3} \mathsf{rKAT} \models e \approx f$$

Proof (sketch). $\underline{1 \Rightarrow 2 \Rightarrow 3}$ is trivial. $\underline{3 \Rightarrow 4}$ by a Caley construction: For $L \subseteq GS$, let

$$\mathsf{cay}(L) = \{ \langle w, w \diamond u \rangle \mid w \in GS \& u \in L \}$$

The function cay is injective. We can prove by induction on e that $\llbracket e \rrbracket_{\langle X, v \rangle} = \operatorname{cay}(\llbracket e \rrbracket)$ for X the rKAT of binary relations on GS and $v(\mathbf{x}) = \operatorname{cay}(\llbracket \mathbf{x} \rrbracket)$ for $\mathbf{x} \in \Sigma \cup \Pi$.

<u>4⇒1</u>: It can be shown that for each *e* there is \hat{e} such that (i) KAT $\models e \approx \hat{e}$ and $\llbracket e \rrbracket = \llbracket \hat{e} \rrbracket$ where \hat{e} is seen as a regular expression over $\Sigma \cup \text{Lit}(\Pi)$. Lit(Π) is the set of literals over Π . Then proceed using Theorem 1.

Igor Sedlár (ICS CAS)

Dynamic Logic 02

Exercises

- 3 Finish the proof of Proposition 1.
- 4 Prove that x^* is the least prefixpoint of functions f, g such that f(y) = 1 + xyand g(y) = 1 + yx.
- 5 Prove Proposition 3.
- 6 Show that $\mathsf{KA} \models e \approx f$ iff $\mathsf{KA}^* \models e \approx f$ iff $\mathsf{rKA} \models e \approx f$. (Where KA^* is the class of *-continuous KA and rKA is the class of KA of binary relations.)

7 * Prove by induction of f that for all $e, g \in \mathbb{E}$ and all $\langle X, v \rangle$ where $X \in KAT^*$:

$$[\![efg]\!]_v = \sum_{w \in [\![f]\!]} [\![ewg]\!]_v$$

(note that each $w \in GS$ can be seen as an expression in \mathbb{E}). Infer from that that $KAT \models e \approx f$ iff $KAT^* \models e \approx f$.

Notes

- The study of regular expressions and languages goes back to (Kleene, 1956)
- Kozen's completeness theorem is established in (Kozen, 1994). For an accessible overview, see Kappé's lecture notes (Kappé, 2023).
- Kozen (1990) gives an example of a Kleene algebra that is not *-continuous
- Kleene algebras with tests are introduced in (Kozen, 1997) where their utility in studying programs is discussed as well.
- Theorem 2 is established in (Kozen and Smith, 1997).

References

- Tobias Kappé. Elements of Kleene algebra. Course notes, ESSLLI 2023, 2023.
- Stephen C Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and J. McCarthy, editors, *Automata Studies*, pages 3 41. Princeton University Press, 1956.
- Dexter Kozen. On Kleene algebras and closed semirings. In B. Rovan, editor, International Symposium on Mathematical Foundations of Computer Science, pages 26–47. Springer, 1990.
- Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation, 110(2):366 – 390, 1994.
- Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443, May 1997.
- Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decidability. In Dirk van Dalen and Marc Bezem, editors, *Computer Science Logic*, pages 244–259, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.