
Programs and Their Semantics
Dynamic Logic, Lecture 1

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

Faculty of Arts, Charles University
Fall Semester 2023-24



Course overview – 1

The course introduces some logics for reasoning about the properties of
computer programs (mostly equivalence and correctness). In particular,

Kleene algebra and

modal logic (Propositional Dynamic Logic, Linear Temporal Logic).

Some related topics (e.g. finite automata) will be discussed along the way.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 1 / 18



Course overview – 2

The fail/pass decision will be based on
lecture attendance
solution of 2 problem sets (roughly: mid-Nov and early Jan)

Course materials etc.
email me: sedlar@cs.cas.cz

course webpage:

Me: Igor Sedlár, Institute of Computer Science CAS. (Pod Vodárenskou věžı́
271/2, Prague 8. Metro C, Ládvı́.) www.cs.cas.cz/sedlar/

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 2 / 18



Equivalence of programs: A motivating example

(i)

def print primes(y):

x := 2
while x ≤ y do

if is prime(x) then
print(x)
x := x + 1

else
x := x + 1

end if
end while

(ii)

def print primes(y):

x := 2
while x ≤ y do

if is prime(x) then
print(x)

end if
x := x + 1

end while

Figure: Two programs for printing out primes.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 3 / 18



A formal language of programs
Propositional variables: Π = {p1, p2, . . .}, program (action) variables
Σ = {a1, a2, . . .}.

Definition 1
Boolean formulas (Fm)

B,C ::= p ∈ Π
| > true
| ⊥ false
| ¬B not
| B ∧ C and
| B ∨ C or

Program expressions (Pr)

E,F ::= a ∈ Σ
| skip “Do nothing” / “Wait”
| abort “Stop the computation”
| E;F “Do E, then do F ”
| if B then E else F Conditionals
| while B do E While loops

Example ...(i)
a; (while range do (if prime then print; inc else inc))

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 4 / 18



Relational semantics – 1

Definition 2
A relational model for programs is M = 〈X, satM , relM 〉 where

X 6= ∅
satM : Π→ P(X)

relM : Σ→ P(X ×X)

satM generalizes to Fm→ P(X) in the usual way.

Intuition: X is a set of “states”; satM (p) is the set of states where p “is satisfied” and
relM (a) is the “input-output relation” for a (〈x, y〉 ∈ relM (a) iff a may halt in state y
when executed in x).

Note: relM (a) is not necessarily a (total) function (non-determinism).

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 5 / 18



Relational semantics – 2

Example ...(i) again

X = N× N×
finite sequences over N︷︸︸︷

N∗

sat(range) = {〈n,m, s〉 | n ≤ m}

sat(prime) = {〈n,m, s〉 | n is prime}

and rel is defined so that

〈n,m, s〉 a−→ 〈2,m, s〉 〈n,m, s〉 print−−−→ 〈n,m, sn〉

〈n,m, s〉 inc−−→ 〈n + 1,m, s〉

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 6 / 18



Relational semantics – 3
Recall: If R,R1, R2 ⊆ X ×X , then

R1 ◦R2 = {〈x, y〉 | ∃z ∈ X : 〈x, z〉 ∈ R1 & 〈z, y〉 ∈ R2}
R∗ =

⋃
n≥0 R

n, where R0 = 1X = {〈x, x〉 | x ∈ X} and Rn+1 = Rn ◦R.

Definition 3
Given M , we define J−KM : Fm ∪ Pr → P(X ×X):

JBKM = 1satM (B) and JaKM = relM (a) for B ∈ Fm, a ∈ Σ

JskipKM = 1X and JabortKM = ∅

JE;F KM = JEKM ◦ JF KM

Jif B then E else F KM = (JBKM ◦ JEKM ) ∪ (J¬BKM ◦ JF KM )

Jwhile B do EKM = (JBKM ◦ JEKM )∗ ◦ J¬BKM
Programs P and Q are relationally equivalent iff JP KM = JQKM for all M .
(Notation: P ≡ Q).

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 7 / 18



Relational semantics – 4

Simplifying notation:
skip = 1 abort = 0

if B then E else F = E +B F while B do E = E(B)

We define assert B := 1 +B 0. We usually write “B” instead of “assert B”.

We defineH : Pr → Fm (the halt predicate):

H(a) := ⊥ H(skip) := > H(abort) := ⊥ H(E;F ) := H(E) ∧H(F )

H(E +B F ) := (B ∧H(E)) ∨ (¬B ∧H(F )) H(E(B)) := ¬B.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 8 / 18



Relational semantics – 5

Proposition 1
GKAT axioms are relationally valid:

U1. E +B E ≡ E

U2. E +B F ≡ F +(¬B) E

U3. (E +B F ) +C G ≡ E +(B∧C) (F +C G)

U4. E +B F ≡ B;E +B F

U5. (E +B F );G ≡ (E;G) +B (F ;G)

W1. E(B) ≡ E;E(B) +B 1

W2. (E +C 1)(B) ≡ (C;E)(B)

S1. E; (F ;G) ≡ (E;F );G

S2. 0;E ≡ 0

S3. E; 0 ≡ 0

S4. 1;E ≡ E

S5. E; 1 ≡ E

W3.
G ≡ E;G +B F

G ≡ E(B);F
ifH(E) = ⊥

Example
Hence, (E;F +C F )(B) ≡ ((E +C 1);F )(B).

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 9 / 18



Trace semantics – 1
A state is a complete and consistent set of literals (containing exactly one of p
and p̄ for each p ∈ Π). We write S � r if r ∈ S. (S � B as expected.)

Definition 4
A trace (over Π and Σ) is a sequence of the form

S1a1S2 . . . an−1Sn

where n ≥ 1, each Si is a state (over Π) and each aj ∈ Σ. Let Tr be the set
of all traces.

Note: If Π is finite, then each state is a word over the set of literals and each trace is a word in
(States · Σ)∗ · States.

Example
(on ok) switch (on ok) switch (on ok) break (on ok)

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 10 / 18



Trace semantics – 2

Definition 5
A trace model for programs is tra : Σ→ Tr where

tra(a) ⊆ {SaT | S, T states}

The canonical trace model is the maximal trace model
(i.e. can(a) = {SaT | S, T states}).

Fusion product: partial function � : Tr × Tr → Tr

xS � Ty =

{
xSy S = T

undefined S 6= T

Lifted to sets of traces: K � L = {w � u | w ∈ K & u ∈ L}. We define
K0 := States, Kn+1 = Kn �K, and K∗ =

⋃
n≥0K

n.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 11 / 18



Trace semantics – 3

Definition 6
Given tra, we define J−Ktra : Fm ∪ Pr → 2Tr as follows:

JBKtra = {S | S � B} and JaKtra = tra(a)

JskipKtra = States JabortKtra = ∅

JE;F Ktra = JEKtra � JF Ktra

Jif B then E else F Ktra = (JBKtra � JEKtra) ∪ (J¬BKtra � JF Ktra)

Jwhile B do EKtra = (JBKtra � JEKtra)∗ � J¬BKtra

We denote J−Kcan simply as J−K.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 12 / 18



Trace semantics – 4

Theorem 1

E ≡ F iff JEK = JF K.

Proof (sketch). 1. For each M = 〈X, satM , relM 〉, let M̂ : Tr → 2X×X such that

M̂(S) =
⋂
p∈S

JpKM M̂(wau) = M̂(w) ◦ relM (a) ◦ M̂(u) .

We denote M̂(K) =
⋃

w∈K M̂(w) and prove JEKM = M̂(JEK) by induction on E.

2. Let cay : 2Tr → 2Tr×Tr where

cay(L) = {〈w,w � u〉 | w ∈ Tr & u ∈ L}

The function cay is injective. We prove by induction on E that JEKM = cay (JEK) for
M = 〈Tr, satM , relM 〉 where satM (p) = {w | 〈w,w〉 ∈ cay (JpK)} and
relM (a) = cay (JaK).

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 13 / 18



Completeness – 1

Recall the GKAT axioms:

BA. E = F valid in BA

U1. E +B E = E

U2. E +B F = F +(¬B) E

U3. (E +B F ) +C G = E +(B∧C) (F +C G)

U4. E +B F = B;E +B F

U5. (E +B F );G = (E;G) +B (F ;G)

W1. E(B) = E;E(B) +B 1

W2. (E +C 1)(B) = (C;E)(B)

S1. E; (F ;G) = (E;F );G

S2. 0;E = 0

S3. E; 0 = 0

S4. 1;E = E

S5. E; 1 = E

W3.
G = E;G +B F

G = E(B);F
ifH(E) ≡ ⊥

Definition 7
A program equation E = F is provable iff it is derivable from the GKAT axioms
(using equational logic). Notation: ` E = F .

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 14 / 18



Completeness – 2

Let GKAT+UA be the set of GKAT axioms extended with the Uniqueness
Axiom of Smolka et al. 2020. We express by `UA E = F that E = F is
provable in GKAT+UA.

Theorem 2

`UA E = F iff JEK = JF K.

Proof is beyond the scope of these lectures; see Smolka et al. 2020.

Open problem
Give a sound and complete axiomatization of relational equivalence using only
standard equational and quasi-equational axioms.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 15 / 18



Hoare completeness – 1

Partial correctness: If B holds and E is executed, then C will hold upon
termination of E (notation: {B}E{C}).

Hoare logic:

{B}skip{B} {B}abort{⊥}
{B}E{C} {C}F{D}
{B}E;F{D}

{B ∧ C}E{D} {¬B ∧ C}F{D}
{C}if B then E else F{D}

{B ∧ C}E{C}
{C}while B do E{¬B ∧ C}

B′ � B {B}E{C} C � C ′

{B′}E{C ′}

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 16 / 18



Hoare completeness – 2

The following are equivalent:
1 {B}E{C} is satisfied in M

2 JB;E;CKM = JB;EKM
3 JB;E; C̄KM = J⊥KM .

Theorem 3

` B;E;C = B;E iff JB;E;CK = JB;EK.

Proof (sketch). 1. Soundness: Induction on length of derivation. 2. Completeness:
Structural induction on E.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 17 / 18



Notes

The “logic of programs” introduced in this lecture is a version of
Guarded Kleene Algebra With Tests; see (Smolka et al., 2020).

It is a “propositional variant” of while programs; see (Hoare, 1969) and Ch. 3 of
(Apt et al., 2009).

Our proof of Theorem 1 derives from Kappé’s lecture notes (Kappé, 2022); the
argument goes back to (Pratt, 1980).

(A first-order version of) Hoare logic was introduced by Hoare (1969); the relation
of its propositional version to a formalism related to ours is studied by Kozen
(2000).

Theorems 3 and 2 are established in (Smolka et al., 2020).

The standard completeness problem is discussed in (Kappé et al., 2023).

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 18 / 18



References

• Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Sequential and Concurrent
Programs. Texts in Computer Science. Springer, 3rd edition, 2009.

• Charles Anthony R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12:576–580,
1969.

• Tobias Kappé. Kleene algebra. Course notes, University of Amsterdam, 2022.

• Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Logic, 1(1):60–76,
July 2000.

• Tobias Kappé, Todd Schmid, and Alexandra Silva. A Complete Inference System for Skip-free Guarded
Kleene Algebra with Tests. In T. Wies, editor, Programming Languages and Systems. ESOP 2023., pages
309–336. Springer Nature Switzerland, 2023.

• Vaughan Pratt. Dynamic algebras and the nature of induction. In Proceedings of the Twelfth Annual ACM
Symposium on Theory of Computing, STOC ’80, pages 22–28, New York, NY, USA, 1980. ACM.

• Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded
Kleene algebra with tests: Verification of uninterpreted programs in nearly linear time. In Proc. 47th ACM
SIGPLAN Symp. Principles of Programming Languages (POPL’20), pages 61:1–28, New Orleans,
January 2020. ACM.

Igor Sedlár (ICS CAS) Dynamic Logic 01 FF UK, Fall 2023-24 18 / 18


