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Abstract

In this paper, we study epistemic extensions of distributive substructural in-
quisitive logics. Substructural inquisitive logics are logics of questions based on
substructural logics of declarative sentences. They generalize basic inquisitive
logic which is based on the classical logic of declaratives. We show that if the un-
derlying substructural logic is distributive, the generalization can be extended
to embrace also the epistemic modalities “knowing whether” and “wondering
whether” that are applicable to questions. We construct a semantic framework
for a language of propositional substructural logics enriched with a question
forming operator (inquisitive disjunction) and epistemic modalities. We show
that within this framework one can define a canonical model with suitable prop-
erties for any (syntactically defined) epistemic inquisitive logic. This leads to a
general approach to completeness proofs for such logics. A deductive system for
the weakest epistemic inquisitive logic is described and completeness proved for
this special case using the general method.

Keywords: Epistemic logic, Modal logic, Substructural logic, Inquisitive logic,
Logic of questions

1 Introduction

The standard inquisitive logic is a logic of questions based on the classical logic of
declarative sentences [5, 4, 7]. Inquisitive logic and inquisitive semantics were general-
ized in [13, 14, 8] where it was shown that one can similarly base a logic of questions
on intuitionistic logic of declaratives. A further step was made in [15] where inquisitive
semantics was formulated for a large class of substructural logics. It was shown that
any logic that is at least as strong as a particular weak substructructural logic (a ver-
sion of Full Lambek Logic) can be extended with questions in an analogous way, and
for these non-classical inquisitive logics a suitable semantic framework was developed.

∗Work on this paper was supported by grant no. 18-19162Y of the Czech Science Foundation.
We would also like to thank the anonymous reviewers for their useful comments that helped us to
improve the paper significantly.
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The aim of this paper is to show that this generalization of inquisitive semantics and
logic can be stretched a little more to be applicable also to the epistemic extension
of the standard inquisitive logic [3, 6]. As a result, we obtain a general semantic
framework for non-classical epistemic logics, which – in comparison to other semantic
frameworks for non-classical epistemic logics like those from [2] and [18] – has the extra
merit of allowing agents to be equipped not only with information states but also with
issues. This semantics determines a weakest logic for which we provide a sound and
complete axiomatization.

A crucial notion in the standard inquisitive semantics is the notion of an informa-
tion state defined as a set of possible worlds. Defined in this way, information states
form a concrete Boolean algebra. The generalization of inquisitive semantics formu-
lated in [15] is based on the observation that we can completely abstract away from
possible worlds and formulate the whole semantics on the basis of more abstract struc-
tures of information states without loss of the crucial features of inquisitive semantics.

The inquisitive epistemic logic (IEL) is an interesting extension of the standard in-
quisitive logic. A natural question arises whether it also can be generalized in the same
manner. However, this task is not straightforward. A peculiar feature of the semantics
of IEL is that it exploits a strong interaction between possible worlds and information
states so that the layer of possible worlds cannot be simply ignored in the generaliza-
tion. This makes our current task (which is to develop a suitable semantic framework
for non-classical inquisitive epistemic logics) rather challenging. We will show that the
obstacles can be overcome provided that the underlying logic of declarative sentences
is distributive.

We put forward a general semantic approach in which possible worlds are replaced
with situations in the sense of situation semantics [1]. In this framework, information
states are not represented simply as sets of possible worlds but rather as sets of situa-
tions. This shift allows us to avoid various disputable features of classical logic while
preserving the characteristic principles of inquisitive epistemic logic.

The paper is structured in the following way. First, Section 2 provides a brief
introduction to standard inquisitive epistemic logic and its semantics. Sections 3 and
4 present respectively a semantic and a syntactic generalization of IEL. In Section 4, a
general method is developed that allows one to prove completeness results for a large
class of inquisitive epistemic logics provided that they are distributive and constructive
(i.e. inquisitive disjunction has the disjunction property).

2 Inquisitive epistemic logic

Inquisitive semantics is a framework suitable for a uniform formal representation of
the semantic content of statements and questions. In its most basic form it is usually
formulated for a formal language consisting of formulas built up from atomic formulas
and the constant for contradiction ⊥ by the connectives → (implication), ∧ (con-
junction) and

>

(inquisitive disjunction). Negation, non-inquisitive disjunction, and
equivalence are defined in the standard way: ¬ϕ =def ϕ→ ⊥, ϕ∨ψ =def ¬(¬ϕ∧¬ψ),
ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ). We can denote this language as LB. In this paper,
our starting point is the language of Inquisitive Epistemic Logic (IEL) introduced in
[3, 6], which adds to LB two epistemic modalities (for each agent a): Ka (knowledge

2



modality) and Ea (entertaining modality). We will denote this language as LBE.
Inquisitive disjunction is a question-forming operator. The formula p

>

q is in-
terpreted as the question whether p or q. Moreover, using this connective one can
define the following question mark operator that allows us to express yes-no questions:
?ϕ =def ϕ

> ¬ϕ. For example, the formula ?p expresses the question whether p. In-
quisitive disjunction can be arbitrarily embedded under other operators, which allows
us to express, for example, conditional questions like p→?q (i.e. the question whether
q, if p), and hybrids of statements and questions, like p∧?q (i.e. it is the case that p
but is it also the case that q? ).

When applied to statements, Ka is meant to be the standard knowledge operator
familiar from epistemic logic (see, e.g. [10]). For example, Kap is interpreted as the
agent a knows that p. It is one of the crucial insights of inquisitive epistemic logic
that it makes a perfect sense to apply this operator also to questions. For example,
Ka?p is interpreted as the agent a knows whether p, which is a statement involving a
question as its part. In general, for any question ϕ, the statement Kaϕ means that
the agent a is equipped with a reliable piece of information that resolves the question.
The operator Ea is supposed to behave just like Ka when applied to statements but
in combination with questions, it behaves differently. It does not have an exact coun-
terpart in natural language but its meaning could be clarified in the following way:
For any question ϕ, Eaϕ is the statement that if the agent extends her knowledge to
a state in which she has enough information to resolve her issue, then she will also
have enough information to resolve the question ϕ.1 In other words, having resolved
ϕ is for the agent a necessary, though maybe not sufficient, condition for resolving her
issue. The entertaining modality is introduced mainly as a tool by means of which
one can define a complex wondering modality: Waϕ =def Eaϕ ∧ ¬Kaϕ. For example,
Wa?p represents the claim the agent a wonders whether p, since it says that having
resolved the question whether p is for the agent a necessary condition for resolving her
issue but she does not know yet whether p.

Note that even if ϕ is a question, both Kaϕ and Eaϕ always represent statements.
The set of declarative LBE-formulas (i.e. formulas that represent statements) is defined
as the least set that contains all atomic formulas, the constant ⊥, is closed under ∧
and →, and contains Kaϕ and Eaϕ for any (not necessarily declarative) LBE-formula
ϕ. So, a declarative LBE-formula may contain the inquisitive disjunction only in the
scope of an epistemic modality.

To deal with questions inquisitive semantics replaces the notion of truth with the
notion of support. Unlike truth, which is a relation between possible worlds and
formulas, support is a relation between information states and formulas.

Possible worlds can be defined simply as functions assigning truth values to atomic
formulas. Information states are defined as sets of possible worlds. We will call in-
formation states defined in this way concrete states to distinguish them from abstract
states that will be introduced in the next section as primitive entities of our general
framework. Assume that s ⊆ t, for two concrete states s and t. This means that the
state s excludes every possibility excluded by t and in this sense s is informationally
at least as strong as t. In that case we say that s is a refinement of t.

In IEL, sets of possible worlds are not only the objects with respect to which formu-
las are evaluated, they also explicitly encode information states of agents. Moreover,

1A more detailed discussion of issues and their representation can be found below.

3



the peculiar feature of IEL is that besides information states, agents are also equipped
with issues. An issue is identified with the set of those information states that resolve
the issue. So, while an information state is represented as a set of possible worlds, an
issue is modelled as a non-empty downward closed set of information states, i.e. as a
set of states that contains the empty set and is closed under subsets.

More formally, given a set of agents A, a concrete inquisitive epistemic model is a
triple 〈W,ΣA, V 〉, where W is a non-empty set (of possible worlds), V is a valuation
specifying which atoms are true in which worlds, more precisely, it is defined as a
function assigning to each atomic formula a subset of W , and ΣA = {Σa | a ∈ A}
is a set of inquisitive state maps. For each agent a ∈ A there is a map Σa that
assigns to each world from W an issue in the model, i.e. a non-empty downward
closed set of subsets of W . Σa(w) represents the issue of the agent a in the world w.
The information state of the agent a in the world w is defined as σa(w) =

⋃
Σa(w).

Inquisitive state maps are required to satisfy the following conditions:

Factivity: for any w ∈ W , w ∈ σa(w).

Introspection: for any w, v ∈ W , if v ∈ σa(w), then Σa(v) = Σa(w).

Intuitively, factivity requires that the actual world is regarded as possible by the state
of the agent, and introspection means that the agent is aware of her own inquisitive
state, so if the world v is regarded as possible by the agent’s state, then the agent’s
issue in v must be the same as her issue in the actual world.

Given a concrete inquisitive epistemic model, the support relation (�) between
subsets of W and LBE-formulas of LBE can be defined by the following recursive
semantic clauses:

• s � p iff s ⊆ V (p),

• s � ⊥ iff s = ∅,

• s � ϕ→ ψ iff for any t ∈ P(W ), if t � ϕ then s ∩ t � ψ,

• s � ϕ ∧ ψ iff s � ϕ and s � ψ,

• s � ϕ > ψ iff s � ϕ or s � ψ.

• s � Kaϕ iff for any w ∈ s, σa(w) � ϕ.

• s � Eaϕ iff for any w ∈ s and for any t ∈ Σa(w), t � ϕ.

Our formulation of the semantic clause for implication differs from the one that is
usually used in inquisitive semantics, e.g. in [3, 4]:

• s � ϕ→ ψ iff for any u ⊆ s, if u � ϕ then u � ψ.

Nevertheless, the alternative formulation is equivalent to the standard clause and we
prefer this particular formulation because, unlike the standard one, it can be smoothly
generalized to the substructural setting introduced in the next section. Let us show
that the clauses are indeed equivalent. First, assume that for any t ∈ P(W ), if t � ϕ
then s ∩ t � ψ. Let u ⊆ s such that u � ϕ. Then, according to our assumption,
s ∩ u � ψ, i.e. u � ψ (since s ∩ u = u). Second, assume that for any u ⊆ s, if u � ϕ
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then u � ψ. Take any t ∈ P(W ) such that t � ϕ. Now we have to use the persistence
property (see Theorem 1-b below) to conclude that also s∩ t � ϕ. Since s∩ t ⊆ s, our
assumption implies s ∩ t � ψ.

An LBE-formula is IEL-valid if it is supported by every state of every concrete
inquisitive epistemic model. Two LBE-formulas, ϕ and ψ, are IEL-equivalent if ϕ↔ ψ
is IEL-valid, i.e. if in every concrete inquisitive epistemic model, ϕ and ψ are supported
by the same states.

It follows from the above clauses that the support condition for the defined symbol
of negation can be specified as follows:

• s � ¬ϕ iff for any t ∈ P(W ), if t ∩ s 6= ∅ then t 1 ϕ.

For a motivation of the semantic clauses for the operators of LB, especially of the
clause for inquisitive disjunction, see [4] or [7]. As regards the epistemic operators,
consider the following examples. Intuitively, an information state s supports the infor-
mation that the agent a knows that p (i.e. s � Kap) iff the information in s excludes
every possible world in which a’s information state does not support p. The informa-
tion state s supports the information that the agent a knows whether p (i.e. s � Ka?p)
iff from the perspective of s only such worlds are possible in which the information
state of a resolves the question whether p, i.e. it either supports p, or ¬p. Moreover,
the information state s supports the information that the agent is wondering whether
p (i.e. s � Ea?p ∧ ¬Ka?p) iff from the perspective of s only such worlds are possible
in which the information state of a does not resolve the question whether p but the
question whether p is resolved by any refinement of a’s state in which a’s issue is
resolved.

The difference between the two modalities, Ka and Ea, is illustrated in Figure 1.
The picture represents a part of a concrete inquisitive epistemic model and depicts a
possible world w in which both p and q are true and two information states, s and t.
Assume that the issue of the agent a in w, i.e. Σa(w), consists of all subsets of the
states s and t.

p, q
w

p,¬q

¬p, q ¬p,¬q
s

t

Figure 1: The issue of an agent in a world w

Take the state u = {w}. According to this state, the agent a entertains the question
whether p or q (u � Ea(p

>

q)) because every state from her issue supports p

>

q.
However, she does not know whether p or q, i.e. u � ¬Ka(p

>

q), for her information
state, that is the state s∪ t, does not support p

>

q, since it supports neither p, nor q.
As a consequence, the agent wonders whether p or q, i.e. u � Wa(p

>

q). The following
theorem states the crucial features of the support relation (see [6]).

Theorem 1. In every concrete inquisitive epistemic model:
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(a) Empty set property: for every LBE-formula ϕ, ∅ � ϕ.

(b) Persistence property: for every LBE-formula ϕ and all states s, t, if s � ϕ and
t ⊆ s then t � ϕ.

(c) Union closure property: for every declarative LBE-formula α and any set of states
X, if s � α, for each s ∈ X, then

⋃
X � α.

Note that for declarative formulas the persistence property and the union closure
property are together equivalent to the following characterisation of support for declar-
ative LBE-formulas:

Truth-conditionality of declaratives: s � α iff {w} � α for all w ∈ s.

For the basic propositional connectives ¬,∧,∨,→ the support conditions at singleton
states boil down to the standard truth-conditions. For example, {w} � ¬ϕ iff {w} 2 ϕ.
Thus, truth-conditionality of declaratives ensures that the set of IEL-valid formulas
in the language restricted to these connectives is identical with the set of classical
tautologies.

Every LBE-formula ϕ can be associated with a finite set of declarative formulas
R(ϕ) called resolutions of ϕ. The function R is defined by the following recursive
clauses:

• R(p) = {p}, R(⊥) = {⊥},

• R(Kaϕ) = {Kaϕ}, R(Eaϕ) = {Eaϕ},

• R(ϕ→ ψ) = {
∧
α∈R(ϕ) α→ f(α) | f : R(ϕ)→ R(ψ)},

• R(ϕ ∧ ψ) = {α ∧ β | α ∈ R(ϕ), β ∈ R(ψ)},

• R(ϕ

>

ψ) = R(ϕ) ∪R(ψ).

It holds for any declarative α that R(α) = {α}. If R(ϕ) has more than one element
then ϕ represents a question and the elements of R(ϕ) can be viewed as possible
direct answers to the question ϕ. The connection between ϕ and R(ϕ) is stated in the
following theorem together with disjunction property and its strengthened variant, the
so-called splitting property (for more details see [3], [6] or [4]).

Theorem 2. For any LBE-formulas ϕ, ψ:

(a) Disjunctive normal form: if R(ϕ) = {α1, . . . , αn} then ϕ is IEL-equivalent to
α1

>

. . .

>

αn.

(b) Disjunction property: if ϕ

>

ψ is IEL-valid then ϕ is IEL-valid or ψ is IEL-valid.

(c) Splitting property: for any declarative LBE-formula α, if α→ (ϕ

>

ψ) is IEL-valid
then α→ ϕ is IEL-valid or α→ ψ is IEL-valid.
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Table 1: Axiomatization of inquisitive epistemic logic IEL

Axioms of Basic Inquisitive Logic

INT Axioms of intuitionistic logic, with

>

in the role of disjunction
Split (α→ (ϕ

>

ψ))→ ((α→ ϕ)

>

(α→ ψ)), for declarative α
DN ¬¬α→ α, for declarative α

Modal axioms:

E1 Ea(ϕ→ ψ)→ (Eaϕ→ Eaψ) E2 Eaϕ→ EaEaϕ
E3 Eaα→ α, for declarative α E4 ¬Eaϕ→ Ea¬Eaϕ
K1 Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) KD Ka(ϕ

>

ψ)↔ (Kaϕ ∨Kaψ)
KE Eaα↔ Kaα, for declarative α

Rules:

MP ϕ, ϕ→ ψ/ψ
NecE ϕ/Eaϕ
NecK ϕ/Kaϕ

The set of IEL-valid LBE-formulas is axiomatized by the Hilbert system presented
in Table 1. For a completeness proof, see also [3]. The axioms INT, Split, DN plus
the rule MP, when formulated in the language LB, axiomatize what is known as Basic
Inquisitive Logic (InqB). The most distinguishing feature of InqB is the Split axiom
that plays a key role in the proof of the syntactic counterpart of the disjunctive normal
form theorem. Notice that in the presence of the Split axiom disjunction property is
equivalent to splitting property. We will formulate this claim more precisely in Section
4 (Lemma 5).

The axioms E1-E4 plus K1, and the rules NecE, NecK are standard principles of
epistemic logic extrapolated to the language with questions. The axioms KD and KE
are specific principles of inquisitive epistemic logic. The axiom KD has a very intuitive
meaning. For example, the agent a knows whether p or q, i.e. Ka(p

>

q), iff either the
agent knows that p, or she knows that q, i.e. Kap∨Kaq. The axiom KE says that the
modalities Ea and Ka can differ only if they are applied to questions.

A peculiar feature of all versions of inquisitive logic proposed in the literature is
that they are closed under substitutions of declarative formulas but not under uniform
substitution. This holds also for IEL. The fact that IEL is closed under substitutions
of declarative LBE-formulas is evident from the formulation of the axiomatic system
since every axiom and every rule allows this type of substitution. All the restrictions
to declarative formulas are necessary. For example, we have illustrated above that
Ea(p

>

q) and Ka(p

>

q) are not IEL-equivalent which shows that the axiom schema
KE cannot be strengthen to the full language LBE.
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3 Non-Classical Inquisitive Epistemic Semantics

In this section, we generalize the semantics of IEL in a way that allows the background
logic of declaratives to be non-classical. The reasons for such a generalization are
mathematical as well as philosophical. The mathematical reasons are that we want
to isolate the general mathematical features of the semantics of IEL that are respon-
sible for the characteristic properties of inquisitive semantics such as those expressed
in Theorems 1 and 2. We will show that if we extract such features and define the
semantic structures through these features (see Definition 3 below) we will obtain a
class of semantic models that is much broader than the class of concrete inquisitive
epistemic models, and that nevertheless preserves all the essential mathematical prop-
erties of inquisitive semantics expressed in Theorems 1 and 2. On the syntactic side
we will see that this class of models corresponds to a logic of declaratives that is much
weaker than classical logic. This shows that only a fragment of classical logic is needed
for the inquisitive disjunction to behave properly and interact in a suitable way with
the other operators, including the epistemic modalities. Such a fragment of classical
logic is embodied in our basic logic InqSE that will be introduced in the next section.

The philosophical reasons for this generalization concern the well-known problems
of classical logic that have been discussed over more than one hundred years, especially
since the work of C.I. Lewis (e.g. [12]). There is a widespread intuition that some
features of classical logic are problematic, as for example the validity of the following
formulas:

(p ∧ ¬p)→ q, p→ (q → p), ¬(p→ q)→ p, (p→ q) ∨ (q → r).

It seems that, at least in a sense, these forms are invalid and the aim of non-classical
logics is to avoid them. If one admits that such forms are problematic, one can notice
that these problems project to the inquisitive and epistemic layer of IEL. For a simple
example, consider the formula ¬(p→ q)→ p. In words: if p does not imply q then p is
true. This is classically valid, and thus Ka¬(p→ q)→ Kap, i.e. if a knows that p does
not imply q, then a knows that p, is IEL-valid. As a consequence, Ka¬(p→ q)→ Ka?p,
i.e. if a knows that p does not imply q, then a knows whether p, is also IEL-valid.

The aim of this paper is neither to analyse the exact nature of such problems, nor
to find an optimal logic that avoids them. Instead, we just acknowledge that there
are some well-known questionable features of classical logic that affect also IEL and
that in general motivate the investigation of its non-classical variants. Our aim is to
propose a general semantic framework that is as flexible as possible, so that it is not
dependent on the questionable features of classical logic, but, at the same time, it still
preserves the essential properties of IEL, and thus it allows us to analyze questions
and their interaction with the epistemic operators in the style of inquisitive semantics.
Though we will discuss in the next section a concrete logic InqSE, which is the weakest
logic determined by our framework, we do not claim that this is the optimal inquisitive
epistemic logic. Our framework is designed for a very large class of logical systems,
including the system IEL itself, and InqSE is just a lower bound of these systems.

A similar project, but focused on the language of inquisitive logic without the
epistemic modalities, was pursued in [15]. However, it turns out that the seman-
tics proposed in [15] is not suitable for our present purpose. The reason is that the
mentioned semantics does not have the means to simulate, on a more general level,
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the interaction between the layer of worlds and the layer of states that is crucially
exploited in IEL in the semantic clauses for the modal operators. To be able to han-
dle the modalities we need to preserve this feature of the basic inquisitive semantics,
namely the presence of the two distinct layers. Instead of following the strategy of
[15], we will rather generalize the approach of [16], where a semantics for the inquisi-
tive extension of one particular logic, namely the relevant logic R, was developed, and
where the two-layered character of the basic framework was preserved. This approach
is also akin to Fine’s relational-operational semantics for relevant logic [11].

To allow the weakening of classical logic we will have to replace possible worlds
with something more general. For this purpose, we will use the key notion of situation
semantics [1], namely the notion of a situation. A crucial feature of situations is that
they are (typically) partial. A situation represents only a part of a bigger reality.
In this respect, situations contrast with possible worlds, which are complete in the
sense that every sentence of a given language is true or false in them. Unlike worlds,
situations may be related one to another in a variety of ways: they can overlap, one
situation can be a part of another situation and so on. Hence, a space of situations has
much more fine-grained and richer structure than a space of possible worlds. Barwise
and Perry demonstrated in [1] that this extra structure can be effectively exploited
when one wants to analyse the meaning of various kinds of utterances.

In the semantics of IEL, information states are represented as sets of possible worlds.
If w /∈ s, for a world w and state s, then the world w is not compatible with the
information represented by s and thus, in this sense, it is not an open possibility from
the perspective of s. The role of information states is to determine which possible
worlds are excluded and which are not. In our framework, information states will play
the same role with respect to situations. Hence, the role of an information state is to
determine, in an analogous way, which situations are excluded and which are not. For
technical reasons we will need to require a persistence property that can be vaguely
stated in the following way:

P If a situation t is not excluded by the information state s, then no possible
extension of t is excluded by s.

This requirement can be accepted if we understand situations in a modal way: A
situation t does not determine only what is true and what is false in it but it determines
also what are its possible extensions, that is, what are the situations that have t as one
of their parts. Then if an information state s is not compatible with a situation u which
is, from the perspective of t, a possible extension of t then s is also not compatible
with t itself. This is just an equivalent formulation of the persistence property P.

In the semantics of IEL singletons are special information states that characterize
completely a single possible world. Algebraically speaking singletons are completely
join-irreducible elements in the Boolean algebra of information states, i.e. exactly
those states that are different from the bottom element and cannot be expressed as
non-empty unions (joins) of other states. In our generalized framework we will allow
for algebras of information states that are not Boolean. In the abstract framework
we will identify a situation with the information state that characterizes the situation
completely. The specific algebraic feature of such a completely characterizing state
will be the same as in the semantics of IEL: it is a completely join-irreducible element
in the algebra of information states.
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Definition 1. Let L = 〈S,v〉 be a complete lattice (of information states) where, for
any X ⊆ S,

⊔
X denotes the join of X w.r.t. v. An element s ∈ S is called a

situation in L iff it is completely join-irreducible, i.e., for any X ⊆ S, if s =
⊔
X then

s = t, for some t ∈ X.

Given a lattice of information states, s v t can be understood in accordance with
the semantics of IEL as meaning that the state s is a refinement of the state t. Moreover,
if s is a situation, we regard s as a possibility that is not excluded by the state t. In
the semantics that we will propose, it will be assumed that every state s is completely
determined by the set of situations that are not excluded by s, in particular, s is
determined as the join of this set. If s v t for two situations, s and t, we may also say
that the situation t is a part of the situation s.

We will also need the notion of an issue. Intuitively, an issue can be viewed as
a demand of an agent to possess knowledge concerning some matter, i.e. to reach a
sufficiently rich information state. Formally, an issue is represented by the set of those
information states that resolve the issue, i.e. those that satisfy the demand. As in the
semantics of IEL, we will assume that if a state resolves an issue then any refinement
of the state resolves the issue as well. In other words, the set of states resolving the
issue is downward closed. Moreover, we will assume that there is an inconsistent state
that trivially resolves every issue. This determines the defining conditions of an issue.

Definition 2. Let L = 〈S,v〉 be a complete lattice (of information states). An issue
in L is any non-empty subset of S that is downward closed w.r.t. v.

Now we can define the semantic structures of our general framework.

Definition 3. An abstract epistemic information model (AEI-model, for short) is a
structure M = 〈S,v, C, ·, 1,ΣA, V 〉 such that

(a) 〈S,v〉 is a complete lattice (of information states),

(b) every state from S is identical to the join of a set of situations,

(c) · is a binary operation on S with respect to which 1 is a left-identity: 1 · s = s,

(d) u, i.e. the meet w.r.t. v, and · distribute over arbitrary joins from both direc-
tions, that is, for any s ∈ S, and any X ⊆ S:

s ·
⊔
X =

⊔
{s · t | t ∈ X} and

⊔
X · s =

⊔
{t · s | t ∈ X},

s u
⊔
X =

⊔
{s u t | t ∈ X} and

⊔
X u s =

⊔
{t u s | t ∈ X},

(e) C is a symmetric relation among the states of S,

(f) sC(
⊔
X) iff there is t ∈ X such that sCt,

(g) ΣA = {Σa | a ∈ A}, where each Σa is a function assigning issues to situations
and satisfying for any situations s, t: if s v t then Σa(s) ⊆ Σa(t),

(h) V (p) ∈ S.
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As in the semantics proposed in [15], C represents a compatibility relation among
states. Intuitively, compatibility between two states means that the two states do not
support mutually incompatible pieces of information. The left-to-right implication of
the condition (f), when combined with the condition (b), boils down to the requirement
that if a state is compatible with another state, then the former has to be compatible
with a situation that is not excluded by the latter. The right-to-left implication of
(f) amounts to saying that if a state is compatible with another state then it must
be compatible with any weaker state. The operation · represents fusion of two states,
the state 1 represents the logical state with respect to which the “logic” of the model
will be defined. However, note that the state 1 does not have to be the top element
in the structure. A more detailed discussion of how the compatibility relation, fusion
and the logical state may be interpreted can be found in [16].

For each agent a, Σa represents an inquisitive state map assigning to each situation
an issue interpreted as the issue of the agent in that situation. The monotonicity
condition expressed in (g) for the inquisitive state maps intuitively says that if a
situation s is a refinement of a situation t, that is, if t is a part of s, then any state
that resolves the agent’s issue in the stronger situation s resolves the agent’s issue
also in the weaker situation t. A valuation is a function that assigns to every atomic
formula an informational content. It is assumed in (h) that this informational content
forms a single information state that is present in the lattice of information states.

Given an AEI-model M = 〈S,v, C, ·, 1,ΣA, V 〉, the set of situations in M will be
denoted as Sit(M). For any s ∈ S, Sit(s) denotes the set of situations that refine s,
i.e. Sit(s) = {t ∈ Sit(M) | t v s}. One can easily verify that (b) from Definition 3 is
equivalent to s =

⊔
Sit(s), for every state s.

Note also that since the lattice is complete, it has the least element that can be
denoted as 0. The state 0, which can be conceived of as representing the trivially
inconsistent state, is not a situation. Nevertheless, it can be expressed as a join of a
set of situations, namely the join of the empty set, for it is the case that 0 =

⊔
∅.

Since · distributes over arbitrary joins from both direction, it holds for any state that
s ·

⊔
∅ =

⊔
∅ =

⊔
∅ · s, i.e. s · 0 = 0 = s · 0. Distributivity of fusion with respect to

joins also implies monotonicity of fusion, i.e.:

• if s v t and u v v then s · u v t · v

Moreover, since situations are completely join-irreducible, and the meet distributes
over arbitrary joins, the following holds for every situation s and every set of states
X:

• if s v
⊔
X then for some t ∈ X, s v t.

AEI-models can serve as semantic structures for a language of substructural logics
enriched with inquisitive disjunction and the epistemic modalities. We will denote it
as LSE and define it as follows:2

ϕ := p | ⊥ | t | ¬ϕ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ⊗ ϕ | ϕ ∨ ϕ | ϕ > ϕ | Kaϕ | Eaϕ
2For the sake of simplicity, we will have only one implication in the language, even though we

do not generally require that fusion is commutative. If needed the second implication may be easily
added into the language.
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In contrast to LBE, negation ¬ and the non-inquisitive disjunction ∨ are not regarded
as defined symbols in LSE. Equivalence ↔ will be still regarded as defined by means
of conjunction ∧ and implication →. The constant t is a constant for logical truth
and ⊗ is intensional conjunction known from substructural logics. In general, it is
still not completely clear how exactly this connective relates to natural language but
it plays an important role for example in fuzzy logic, linear logic, or relevant logic. Its
significance for the analysis of reasoning in the context of relevant logic was discussed
in great detail, for example, in [17].

We intend to interpret the modal operators similarly to how they are interpreted
in IEL. However, in the basic general setting we do not impose such restrictions as
factivity and introspection that are assumed in IEL. As a consequence, Kaα can be
hardly read as “the agent a knows that α” because on the syntactic side we will
not have the characteristic principle of knowledge Kaα → α. For a declarative LSE-
formula α, the formula Kaα should be rather read as “α holds according to the a’s
information” (without implying that the information is correct). Correspondingly, for
a question ϕ, the formula Kaα should be read as “ϕ is resolved by a’s information”.

In accordance with the semantics of IEL we will denote the information state of the
agent a in the situation s as σa(s) and we define:

σa(s) =
⊔

Σa(s).

Then the support conditions are defined as follows:

• s  p iff s v V (p),

• s  ⊥ iff s = 0,

• s  t iff s v 1,

• s  ¬ϕ iff for any t ∈ S, if tCs then t 1 ϕ,

• s  ϕ→ ψ iff for any t ∈ S, if t  ϕ, then s · t  ψ,

• s  ϕ ∧ ψ iff s  ϕ and s  ψ,

• s  ϕ⊗ ψ iff for some t, u ∈ S, s v t · u, t  ϕ and u  ψ,

• s  ϕ ∨ ψ iff for some t, u ∈ S, s v t t u, t  ϕ and u  ψ,

• s  ϕ > ψ iff s  ϕ or s  ψ,

• s  Kaϕ iff for any t ∈ Sit(s), σa(t)  ϕ,

• s  Eaϕ iff for any t ∈ Sit(s) and for any u ∈ Σa(t), u  ϕ.

We define Th(M) as the set of LSE-formulas supported by the state 1 in M. If
ϕ ∈ Th(M), we say that ϕ is valid inM. We say that ϕ is InqSE-valid if it is valid in
every AEI-model. ϕ and ψ are InqSE-equivalent if ϕ↔ ψ is InqSE-valid. Moreover, we
say that a set of LSE-formulas Γ InqSE-entails an LSE-formula ϕ if for any AEI-model
M and any state s in M, if s supports every formula from Γ then s supports ϕ.

Lemma 1. For any AEI-model M and for any LSE-formulas ϕ, ϕ1, . . . , ϕn, ψ:

12



(a) ϕ→ ψ is valid in M iff for any state s in M, if s  ϕ then s  ψ,

(b) {ϕ1, . . . , ϕn} InqSE-entails ψ iff (ϕ1 ∧ . . . ∧ ϕn)→ ψ is InqSE-valid.

Proof. (a) 1  ϕ→ ψ iff for any state s, if s  ϕ then 1 · s  ψ iff (since 1 · s = s) for
any state s, if s  ϕ then s  ψ.

(b) {ϕ1, . . . , ϕn} InqSE-entails ψ iff for any AEI-model M and any state s in M,
if s supports ϕ1 ∧ . . . ∧ ϕn then s supports ϕ iff (using (a)) for any AEI-model M,
(ϕ1 ∧ . . . ∧ ϕn)→ ψ is valid in M iff (ϕ1 ∧ . . . ∧ ϕn)→ ψ is InqSE-valid.

Lemma 1-b cannot be extended to the standard semantic version of the deduction
theorem. For example {p, q} InqSE-entails p but {p} does not InqSE-entail q → p.

It is useful to observe that at situations, the support conditions for the modalities
Ka and Ea may be significantly simplified.

Lemma 2. For any situation s of any AEI-model, and any LSE-formula ϕ:

(a) s  Kaϕ iff σa(s)  ϕ,

(b) s  Eaϕ iff for any t ∈ Σa(s), t  ϕ.

Any concrete inquisitive epistemic model can be viewed as a particular example
of an AEI-model where S is the powerset of the set of possible worlds W , v is the
subset relation, sCt is defined as s ∩ t 6= ∅, fusion · coincides with intersection, and
1 is identical to the set W . Situations in these models are singletons. To build
an intuition concerning our abstract framework it might be illuminating to view the
conditions defining AEI-models in Definition 3 as a collection of some abstract features
of concrete inquisitive epistemic models. The support conditions for atomic formulas,
and connectives of the language LBE also directly generalize corresponding semantic
clauses of IEL. An important fact that we will now explain in more detail is that the
crucial semantic features of IEL are preserved in this generalization.

Definition 4. The set of declarative formulas of the language LSE is defined as the
least set that contains every atomic formula, the constants ⊥ and t, is closed under ¬,
→, ∧, ⊗, ∨, and contains Kaϕ and Eaϕ for every LSE-formula ϕ.

We will usually use α, β, γ as variables for declarative LSE-formulas and ϕ, ψ, χ
as variables for arbitrary LSE-formulas. As in LBE, declarative LSE-formulas may
involve inquisitive disjunction but only in the scope of the modalities Ka and Ea.
The following result is a generalization of Theorem 1. Just instead of the empty set,
inclusion and union, we have now respectively the more general 0, v and

⊔
.

Theorem 3. In every AEI-model:

(a) Zero state property: for every LSE-formula ϕ, 0  ϕ.

(b) Persistence property: for every LSE-formula ϕ and any states s, t, if s  ϕ and
t v s then t  ϕ.

(c) Join closure property: for every declarative LSE-formula α and any set of states
X, if s  α, for each s ∈ X, then

⊔
X  α.
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Proof. Each of these claims can be proved by induction. We will not go through all
the cases but we will illustrate every property with several selected examples of the
inductive steps.

(a) First, we consider the inductive step for ⊗. Our inductive assumption is that
0  ϕ and 0  ψ. Since 0 = 0 · 0 we immediately obtain 0  ϕ ⊗ ψ. Second, we
consider the inductive step for →. For any t, it holds that t · 0 = 0. So, by the
inductive assumption, if t  ϕ, then t · 0  ψ, i.e. 0  ϕ → ψ. For Ka and Ea, (a) is
simply a consequence of the fact that Sit(0) is empty.

(b) First, we consider the inductive step for ¬. Assume that s  ¬ϕ and t v s.
Let uCt. Then, due to the right-to-left implication of (f) in Definition 3, uCs, and
so u 1 ϕ. Hence t  ¬ϕ. Second, we consider the inductive step for →. Assume
s  ϕ → ψ and t v s. Let u  ϕ. Then s · u  ψ. Since t · u v s · u, the inductive
assumption implies t · u  ψ, and thus t  ϕ → ψ. The inductive step for modalities
follows from the fact that s v t implies Sit(s) ⊆ Sit(t).

(c) First, we consider the inductive step for ∨. Assume that s  α ∨ β, for any
s ∈ X. Then for any s ∈ X, there are ts and us such that ts  α, us  β and
s v ts t us. Then, by the induction hypothesis,

⊔
s∈X ts  α,

⊔
s∈X us  β. Since also⊔

X v
⊔
s∈X ts t

⊔
s∈X us, we obtain

⊔
X  α ∨ β. Second, we consider the inductive

step for implication. Assume that s  α → β, for any s ∈ X. Let t ∈ S such that
t  α. Then, s · t  β, for any s ∈ X. By the inductive assumption

⊔
s∈X(s · t)  β.

Then due to distributivity of fusion over join (Definition 3-d)
⊔
X · t  β. Hence⊔

X  α → β. The case of Ka can be proved as follows: Let X be a set of states
such that for any s ∈ X, s  Kaϕ. Let t ∈ Sit(

⊔
X). Since t is completely join-

irreducible, it follows that t ∈ Sit(s), for some s ∈ X. Hence σa(t)  ϕ. It follows
that

⊔
X  Kaϕ. The case of Ea is analogous.

Since we assume s =
⊔
Sit(s), we obtain also a version of truth-conditionality for

declarative LSE-formulas, as a consequence of the persistence property and the join
closure property.

Truth-conditionality of declaratives: s  α iff t  α for all t ∈ Sit(s).

The generalization of Theorem 2 also holds but we will leave its proof to the next
section.

4 Non-Classical Inquisitive Epistemic Logics

In this section, we will provide a syntactic characterization of the weakest inquisi-
tive epistemic logic and its extensions. An axiomatic system for which we will prove
completeness with respect to the class of all AEI-models is presented in Table 2. If
ϕ is provable in this system we say that it is InqSE-provable. The non-inquisitive
and non-modal part of this system corresponds to distributive, non-associative, non-
commutative Full Lambek Logic with a paraconsistent negation, and with only one
implication. To be more precise, the underlying substructural logic corresponds to
Došen’s basic system E+ from [9] enriched with the axiom A2 for ⊥, the distributive
axiom D1 and the rules R7, R8, R9 for t and ¬. The non-modal part also corre-
sponds to the basic substructural inquisitive logic introduced in [15] extended with
the distributive axiom D1. Note that the modal rules present a weak modal basis
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and the specific principles of inquisitive epistemic logic, i.e. the axioms KD and KE,
are preserved in our generalization. The formulation of the system makes it obvious
that the set of InqSE-provable formulas is closed under substitution of declarative LSE-
formulas but, like IEL, it is not closed under uniform substitution. This is clear form
the fact that, for example, the formula Kap ↔ Eap is an axiom of the system (as an
admissible instance of the schema KE) but since the system is weaker than IEL not all
substitutional instances of this formula are provable in the system.

For the language LSE we introduce the notion of resolution defined by the following
equations, which extend the definition of resolution for the language LBE in a natural
way:

• R(p) = {p}, R(⊥) = {⊥}, R(t) = {t},

• R(Kaϕ) = {Kaϕ}, R(Eaϕ) = {Eaϕ},

• R(¬ϕ) = {
∧
α∈R(ϕ) ¬α},

• R(ϕ→ ψ) = {
∧
α∈R(ϕ) α→ f(α) | f : R(ϕ)→ R(ψ)},

• R(ϕ ◦ ψ) = {α ◦ β | α ∈ R(ϕ), β ∈ R(ψ)}, for any ◦ ∈ {∧,⊗,∨},

• R(ϕ

>

ψ) = R(ϕ) ∪R(ψ).

A crucial feature of the logic InqSE is that it is sufficient for the disjunctive normal form
result, i.e. every LSE-formula ϕ is provably equivalent to the inquisitive disjunction
of the declarative LSE-formulas from R(ϕ).

Lemma 3. Let ϕ be an LSE-formula and R(ϕ) = {α1, . . . , αn}. Then the formula
ϕ↔ (α1

>
. . .

>
αn) is InqSE-provable.

Proof. This can be proved by induction on the complexity of the formula ϕ. The
distributive axioms D2-D6 are used in the proof. The most complex case is the in-
ductive step for implication which is handled by the axiom D6. The inductive steps
for ¬,→,∧,⊗,∨, > can be proved as in [15] where a parallel claim was formulated
for a language without the epistemic modalities and logic without the distributive
axiom D1. The inductive steps for modalities follow directly from the definition of
resolutions.

The following result expresses soundness of the system.

Lemma 4. Every axiom in Table 2 is valid in every AEI-model and every rule in
Table 2 preserves validity in every AEI-model.

Proof. We will not go through all the axioms and rules. Instead we will select only
several interesting cases as an illustration. Let us fix any AEI-model M with a set of
states S. We will often use Lemma 1 without reference. As examples of non-modal
axioms, we will prove validity of A5 and A8.

A5: Assume s  ϕ in M. Due to the zero state property (Lemma 3-a) 0  ψ, for
any LSE-formula ψ. Moreover, s v s t 0 and thus s  ϕ ∨ ψ.

A8: Let s  α ∨ α, for a declarative α. So, there are t, u ∈ S such that s v t t u,
t  α and u  α. Due to the join closure property (Lemma 3-c), t t u  α, and
consequently, due to the persistence property (Lemma 3-b), s  α.
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Table 2: Axiomatization of the weakest substructural inquisitive epistemic logic InqSE

Non-modal axioms:

A1 ϕ→ ϕ A2 ⊥ → ϕ
A3 (ϕ ∧ ψ)→ ϕ A4 (ϕ ∧ ψ)→ ψ
A5 ϕ→ (ϕ ∨ ψ) A6 ψ → (ϕ ∨ ψ)
A7 (ϕ ∨ ψ)→ (ψ ∨ ϕ) A8 (α ∨ α)→ α (for declarative α)
A9 ϕ→ (ϕ

>

ψ) A10 ψ → (ϕ
>

ψ)

Modal axioms:

KD Ka(ϕ

>

ψ)↔ (Kaϕ ∨Kaψ)
KE Kaα↔ Eaα (for declarative α)

Distributive axioms:

D1 (ϕ ∧ (ψ ∨ χ))→ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
D2 (ϕ⊗ (ψ ∨ χ))→ ((ϕ⊗ ψ) ∨ (ϕ⊗ χ))
D3 (ϕ ∧ (ψ

>

χ))→ ((ϕ ∧ ψ)

>

(ϕ ∧ χ))
D4 (ϕ⊗ (ψ

>

χ))→ ((ϕ⊗ ψ)

>

(ϕ⊗ χ))
D5 (ϕ ∨ (ψ

>

χ))→ ((ϕ ∨ ψ)

>

(ϕ ∨ χ))
D6 (α→ (ψ

>

χ))→ ((α→ ψ)

>

(α→ χ)) (for declarative α)

Non-modal rules:

R1 ϕ, ϕ→ ψ/ψ R2 ϕ→ ψ/(ψ → χ)→ (ϕ→ χ)
R3 χ→ ϕ, χ→ ψ/χ→ (ϕ ∧ ψ) R4 ϕ→ χ, ψ → ϑ/(ϕ ∨ ψ)→ (χ ∨ ϑ)
R5 ϕ→ (ψ → χ)/(ϕ⊗ ψ)→ χ R6 (ϕ⊗ ψ)→ χ/ϕ→ (ψ → χ)
R7 t→ ϕ/ϕ R8 ϕ/t→ ϕ
R9 ϕ→ ¬ψ/ψ → ¬ϕ R10 ϕ→ χ, ψ → χ/(ϕ

>

ψ)→ χ

Modal rules:

MR1 ϕ→ ψ/Eaϕ→ Eaψ MR2 Eaϕ ∧ Eaψ/Ea(ϕ ∧ ψ)
MR3 ϕ→ ψ/Kaϕ→ Kaψ MR4 Kaϕ ∧Kaψ/Ka(ϕ ∧ ψ)
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We will prove soundness of the modal axioms. Since σa(s) =
⊔

Σa(s), soundness of
KE holds due to the join closure property and the persistence property. Let us prove
KD.

KD(→): First, assume that s  Ka(ϕ

>

ψ). That means that for any t ∈ Sit(s),
σa(t) supports ϕ or σa(t) supports ψ. Let Sitϕa (s) = {t ∈ Sit(s) | σa(t)  ϕ} and
Sitψa (s) = {t ∈ Sit(s) | σa(t)  ψ}. It holds that for every t ∈ Sitϕa (s), t  Kaϕ
and for every t ∈ Sitψa (s), t  Kaψ. Since support of declarative formulas is closed
under arbitrary joins, it holds that

⊔
Sitϕa (s)  Kaϕ and

⊔
Sitψa (s)  Kaψ. Moreover,

(
⊔
Sitϕa (s))t (

⊔
Sitψa (s)) =

⊔
(Sitϕa (s)∪Sitψa (s)) =

⊔
Sit(s) = s. So, s  Kaϕ∨Kaψ.

KD(←): Second, assume that s  Kaϕ ∨ Kaψ. Then there are states s1, s2 such
that s v s1 t s2 and s1  Kaϕ and s2  Kaψ. Take any t ∈ Sit(s). Then t v s1 t s2

and thus t v s1 or t v s2. So, t ∈ Sit(s1) or t ∈ Sit(s2). It follows that σa(t)  ϕ or
σa(t)  ψ. Hence, σa(t)  ϕ

>

ψ and consequently (since t is an arbitrary element of
Sit(s)) s  Ka(ϕ

>

ψ).
As examples of distributive axioms, we prove D2 and D6. D2: Assume s  ϕ ⊗

(ψ∨χ). So, there are t, u ∈ S such that t  ϕ, u  ψ∨χ, and s v t ·u. Then, there are
u1, u2 ∈ S such that u1  ψ, u2  χ and u v u1 tu2. It follows that t ·u1  ϕ⊗ψ and
t · u2  ϕ⊗χ. Moreover, due to monotonicity of fusion and its distributivity over join
(Definition 3-d) s v t ·u v t · (u1 tu2) = (t ·u1)t (t ·u2). Thus, s  (ϕ⊗ψ)∨ (ϕ⊗χ).

D6: Assume s 1 α → ψ and s 1 α → χ, where α is declarative. Then there are
t, u ∈ S such that t  α but s · t 1 ψ, and u  α but s · u 1 χ. Due to the join closure
property, tt u  α, and due to the persistence property (s · t)t (s · u) 1 ψ

>

χ. Since
join distributes over fusion (Definition 3-d), it holds that s · (t t u) = (s · t) t (s · u),
and we obtain s 1 α→ (ψ

>

χ).
As an example of a non-modal rule, let us consider R6: Assume 1  (ϕ⊗ ψ)→ χ.

We will prove 1  ϕ → (ψ → χ). Assume s  ϕ. We need to show that s  ψ → χ.
Let t  ψ. Then s · t  ϕ⊗ ψ, and hence s · t  χ, which is what we needed to show.

As an example of a modal rule, we will prove that MR1 preserves validity. Let
1  ϕ → ψ. Assume that s  Eaϕ, i.e. for any t ∈ Sit(s) and any u ∈ Σa(t), u  ϕ.
Then for any t ∈ Sit(s) and any u ∈ Σa(t), u  ψ, and thus s  Eaψ. We have shown
that 1  Eaϕ→ Eaψ.

Lemmas 3 and 4 together directly lead to a generalization of Theorem 2-a, that is,
to the semantic version of the disjunctive normal form. We will now describe a general
construction of canonical models that can be used to obtain completeness results. This
construction can be carried out for any axiomatic extension of InqSE. Such extensions
will be called inquistive epistemic logics.

Definition 5. A set of LSE-formulas Λ is called an inquisitive epistemic logic if it
satisfies the following three conditions: (a) Λ contains all the instances of the axioms
of InqSE (from Table 2); (b) Λ is closed under the rules of InqSE (from Table 2); (c) Λ
is closed under substitutions of declarative formulas (i.e. if ϕ ∈ Λ and ψ is obtained
from ϕ by the substitution of a declarative formula for every occurrence of some atomic
formula, then ψ ∈ Λ). We say that Λ is a constructive inquisitive epistemic logic, if, in
addition, inquisitive disjunction has the disjunction property w.r.t. Λ, i.e. ϕ

>

ψ ∈ Λ
only if ϕ ∈ Λ or ψ ∈ Λ. We say that Λ has the splitting property if for any declarative
LSE-formula α, if α→ (ϕ

>

ψ) ∈ Λ then α→ ϕ ∈ Λ or α→ ψ ∈ Λ.

17



It turns out that in the presence of D6, disjunction property and splitting property
are equivalent.

Lemma 5. Let Λ be an inquisitive epistemic logic. Λ is constructive iff Λ has the
splitting property.

Proof. First, assume that Λ is constructive. Assume α→ (ϕ

>

ψ) ∈ Λ. Then, applying
D6, we obtain (α → ϕ)

>

(α → ψ) ∈ Λ, and disjunction property implies α → ϕ ∈ Λ
or α → ψ ∈ Λ. Second, assume that Λ has the splitting property. Assume that
ϕ

>

ψ ∈ Λ. Using R8, we obtain t → (ϕ

>

ψ) ∈ Λ. By splitting property, t → ϕ ∈ Λ
or t→ ψ ∈ Λ. Applying R7, we obtain ϕ ∈ Λ or ψ ∈ Λ.

For any inquisitive epistemic logic Λ we define the notion of a declarative prime
Λ-theory.

Definition 6. Let Λ be an inquisitive epistemic logic and ∆ a set of declarative LSE-
formulas. ∆ is called a (declarative) Λ-theory if it is non-empty and the following
two conditions are satisfied for any declarative LSE-formulas α, β: (a) if α ∈ ∆ and
β ∈ ∆, then α ∧ β ∈ ∆; (b) if α ∈ ∆ and α → β ∈ Λ then β ∈ ∆. ∆ is prime if, in
addition, α ∨ β ∈ ∆ implies α ∈ ∆ or β ∈ ∆.

It is worth mentioning that if Λ contains all the instances of the schema α→ (β →
(α ∧ β)), as for example classical and intuitionistic logic do, the condition (a) in the
previous definition becomes redundant. However, this schema is not InqSE-provable
so we need to retain the condition in the definition.

Let Λ be an inquisitive epistemic logic and ∆ a set of LSE-formulas. We will write
∆ `Λ ϕ if there are ψ1, . . . , ψn ∈ ∆ such that (ψ1 ∧ . . . ∧ ψn)→ ϕ ∈ Λ. In the special
case when ∆ is a Λ-theory, and so is closed under ∧, the condition simplifies: ∆ `Λ ϕ
iff there is α ∈ ∆ such that α → ϕ ∈ Λ. Note that Λ has the splitting property
iff the following condition hodls: For any Λ-theory ∆ and any LSE-formulas ϕ, ψ, if
∆ `Λ ϕ

>
ψ then ∆ `Λ ϕ or ∆ `Λ ψ.

We have remarked in the previous section that the deduction theorem for InqSE-
entailment does not hold. Correspondingly, the syntactic version of the deduction
theorem for `Λ does not generally hold: ∆ ∪ {ϕ} `Λ ψ is not generally equivalent to
∆ `Λ ϕ → ψ, since (χ ∧ ϕ) → ψ is not provably equivalent to χ → (ϕ → ψ) in the
basic logic.

Unlike in [15], we assume in this paper that our basic logic InqSE contains the
distributive axiom D1. This assumption is crucial for our approach since it allows us
to prove the following lemmas that will be needed in the construction of the canonical
model.

Lemma 6. For any set of LSE-formulas ∆, any LSE-formulas ϕ, ψ and any declarative
LSE-formula α:

∆ ∪ {ϕ ∨ ψ} `Λ α iff ∆ ∪ {ϕ} `Λ α and ∆ ∪ {ψ} `Λ α.

Proof. We prove only the right-to-left implication. Assume ∆ ∪ {ϕ} `Λ α and ∆ ∪
{ψ} `Λ α. So, there are η1, . . . ηn ∈ ∆ such that (η1∧. . .∧ηn∧ϕ)→ α ∈ Λ and there are
µ1, . . . µm ∈ ∆ such that (µ1∧. . .∧µm∧ψ)→ α ∈ Λ. Let ξ = η1∧. . .∧ηn∧µ1∧. . .∧µm.
Then (ξ ∧ ϕ) → α ∈ Λ and (ξ ∧ ψ) → α ∈ Λ. Due to A8, R4 and transitivity of
implication, ((ξ ∧ ϕ) ∨ (ξ ∧ ψ)) → α ∈ Λ. Due to D1 and transitivity of implication,
it follows that (ξ ∧ (ϕ ∨ ψ))→ α ∈ Λ, and thus ∆ ∪ {ϕ ∨ ψ} `Λ α.
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Lemma 7. For any inquisitive epistemic logic Λ and any Λ-theory Γ, it holds that
Γ =

⋂
{∆ prime Λ-theory | Γ ⊆ ∆}, that is, every Λ-theory Γ is identical to the

intersection of the prime Λ-theories that extend Γ.

Proof. Let X = {∆ prime Λ-theory | Γ ⊆ ∆}. It is obvious that Γ ⊆
⋂
X. To prove

that also
⋂
X ⊆ Γ, we need to show that for any declarative LSE-formula β /∈ Γ there

is a prime Λ-theory ∆ ∈ X such that β /∈ ∆. This amounts to the usual Lindenbaum-
style lemma. The construction of ∆ is standard. We will recapitulate how it is done
to illustrate how the construction depends on Lemma 6 and thus, in turn, on the
distributive axiom D1. First, we enumerate the declarative LSE-formulas α1, α2, . . .
Next, we define infinite sequence of sets of declarative LSE-formulas ∆0,∆1, . . . where
∆0 = Γ and

∆n+1 =

{
∆n ∪ {αn} if ∆n ∪ {αn} 0Λ β,

∆n otherwise.

Finally, we define ∆ =
⋃∞
i=0 ∆i. It can be easily shown that ∆ is a Λ-theory which does

not contain β. To show that ∆ is prime, assume αi /∈ ∆ and αj /∈ ∆, i.e. ∆∪{αi} `Λ β
and ∆∪{αj} `Λ β. Now, Lemma 6 implies ∆∪{αi∨αj} `Λ β, and so αi∨αj /∈ ∆.

Every inquisitive epistemic logic will be associated with a canonical structure.
Prime Λ-theories will be used in the definition of the canonical structure but a specific
feature of this construction is that a point in the canonical structure is not a single
prime Λ-theory but rather a set of prime Λ-theories. In the definition of the canonical
structure, we will use the following notation: For any inquisitive epistemic logic Λ
let Λd denote the set of all declarative LSE-formulas in Λ. Moreover, for any sets of
LSE-formulas ∆,Ω let ∆⊗ Ω = {ϕ⊗ ψ | ϕ ∈ ∆, ψ ∈ Γ}.

Definition 7. Let Λ be an inquisitive epistemic logic. The canonical structure of Λ is
the structure MΛ = 〈SΛ,vΛ, CΛ, ·Λ, 1Λ,ΣΛ

A, V
Λ〉, where

• X ∈ SΛ iff X is a non-empty upward closed (under set inclusion) set of prime
Λ-theories, that is, X is a non-empty set of prime Λ-theories such that for any
prime Λ-theories ∆,Γ, if Γ ∈ X and Γ ⊆ ∆ then ∆ ∈ X,

• X vΛ Y iff X ⊆ Y ,

• XCΛY iff there are Γ ∈ X and ∆ ∈ Y such that for any declarative LSE-formula
α, if ¬α ∈ Γ then α /∈ ∆,

• X ·Λ Y = {Γ prime Λ-theory | ∆⊗ Ω ⊆ Γ, for some ∆ ∈ X, Ω ∈ Y },

• 1Λ = {Γ prime Λ-theory | Λd ⊆ Γ},

• X ∈ ΣΛ
a (Y ) iff for any LSE-formula ϕ, if Eaϕ ∈

⋂
Y then there is α ∈ R(ϕ)

such that α ∈
⋂
X (assuming that Y is completely join-irreducible),

• Γ ∈ V Λ(p) iff p ∈ Γ.

Note that in every canonical structure there is the least element, namely the state
{Ξ}, where Ξ is the set of all declarative LSE-formulas, which is the strongest prime
Λ-theory. Let us prove a few lemmas concerning the canonical structure.
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Lemma 8. Λd =
⋂

1Λ, for any inquisitive epistemic logic Λ.

Proof. First, observe that Λd is a Λ-theory. Λd is closed under modus ponens due to
R1. To see that it is also closed under conjunction, assume that α, β ∈ Λd. Then, due
to R8, t→ α, t→ β ∈ Λd. Using R3, we obtain t→ (α∧β) ∈ Λd, and hence, applying
R7, α ∧ β ∈ Λd.

Lemma 7 says that every Λ-theory is the intersection of the prime Λ-theories that
extend it. In particular, Λd =

⋂
1Λ.

Given any partially ordered set S, it holds for its lattice of upward closed sets
ordered by inclusion that the completely join irreducible elements in the lattice are
exactly the so-called principal upward closed sets, i.e. sets that are generated by a
single point of S. As a consequence, situations in a canonical structure have a simple
form. They are exactly those upward closed sets of prime Λ-theories that are generated
by a single prime Λ-theory.

Lemma 9. Situations in a canonical structure MΛ are exactly the sets of prime Λ-
theories of the form Γ↑ = {∆ prime Λ-theory | Γ ⊆ ∆}, where Γ is a prime Λ-theory.

Note that
⋂

Γ↑ = Γ. So, in the light of the previous lemma, the definition of the
inquisitive state maps in the canonical structure can be simplified as follows:

X ∈ ΣΛ
a (Γ↑) iff Eaϕ ∈ Γ implies that there is α ∈ R(ϕ) such that α ∈

⋂
X.

We will verify that every canonical structure satisfies the conditions (a)-(h) from Def-
inition 3.

Lemma 10. For any inquisitive epistemic logic Λ, its canonical structure MΛ is an
AEI-model.

Proof. (a) 〈SΛ,⊆〉 forms a complete lattice. Since there is the largest prime Λ-theory,
namely the set of all LSE-formulas Ξ, the intersection of any set M of non-empty
upward closed sets of prime Λ-theories is again a non-empty upward closed set, the
greatest lower bound of M in the canonical structure.

(b) Since X =
⋃
{Γ↑ | Γ ∈ X}, for any X ∈ SΛ, any state from the canonical

structure is identical to the join (i.e. union) of a set of situations.
(c) We need to show that 1Λ ·Λ X = X, for any X ∈ SΛ. First, we will prove that

1Λ ·Λ X ⊆ X. Assume that Γ ∈ 1Λ ·Λ X. So, there are ∆ ∈ 1Λ (i.e. Λd ⊆ ∆), and
Ω ∈ X such that ∆ ⊗ Ω ⊆ Γ. Let us observe that t ∈ Λd, due to A1 and R7. Thus,
t ∈ ∆, and it follows that t⊗ α ∈ Γ, for any α ∈ Ω. It holds, due to A1, R7, and R5,
that (t⊗ϕ)→ ϕ ∈ Λ, for any LSE-formula ϕ. It follows that Ω ⊆ Γ, and thus Γ ∈ X.

We will prove that also X ⊆ 1Λ ·Λ X. Assume that Γ ∈ X. We need to show that
Γ ∈ 1Λ ·ΛX. It will be sufficient if we prove that there is ∆ ∈ 1Λ such that ∆⊗Γ ⊆ Γ.
As in the proof of Lemma 7, we enumerate the declarative LSE-formulas α1, α2, . . .
Next, we define infinite sequence of sets of declarative LSE-formulas ∆0,∆1, . . . where
∆0 = Λ and

∆n+1 =

∆n ∪ {αn} if there are no declarative LSE-formulas γ ∈ Γ and
δ /∈ Γ such that ∆n ∪ {αn} `Λ γ → δ,

∆n otherwise.
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Finally, we define ∆ =
⋃∞
i=0 ∆i. There are no declarative LSE-formulas γ ∈ Γ and

δ /∈ Γ such that ∆ `Λ γ → δ, for this property holds for Λ and is preserved in the
steps from ∆n to ∆n+1 and by the union. Moreover, ∆ is a prime Λ-theory. For
instance, let us verify that α ∨ β ∈ ∆ implies α ∈ ∆ or β ∈ ∆. Assume α /∈ ∆
and β /∈ ∆. Then there are declarative LSE-formulas γ+

1 , γ
+
2 ∈ Γ and γ−1 , γ

−
2 /∈ Γ

such that ∆ ∪ {α} `Λ γ+
1 → γ−1 , and ∆ ∪ {β} `Λ γ+

2 → γ−2 . Let γ+ = γ+
1 ∧ γ+

2 and
γ− = γ−1 ∨ γ−2 . Then ∆ ∪ {α} `Λ γ

+ → γ− and ∆ ∪ {β} `Λ γ
+ → γ−. Due to Lemma

6, ∆ ∪ {α ∨ β} `Λ γ+ → γ−. Since γ+ ∈ Γ and γ− /∈ Γ, it follows that α ∨ β /∈ ∆.
Now, for any γ ∈ Γ and δ ∈ ∆ it holds that ∆ `Λ γ → (δ ⊗ γ), and hence δ ⊗ γ ∈ Γ.
Thus, we have shown that ∆⊗ Γ ⊆ Γ as required.

(d) Since meet and join coincide respectively with intersection and union in the
canonical structure, meet distributes over arbitrary joins from both directions. We
will show that also fusion distributes over arbitrary joins. Let M be a set of states
and X a state in the canonical structure. We will only show the case X ·Λ

⋃
M =⋃

{X ·Λ Y | Y ∈ M}. The following equivalences hold: Γ ∈ X ·Λ
⋃
M iff there are

∆ ∈ X, Ω ∈
⋃
M s.t. ∆⊗ Ω ⊆ Γ iff there is Y ∈M and there are ∆ ∈ X, Ω ∈ Y s.t.

∆⊗ Ω ⊆ Γ iff Γ ∈
⋃
{X ·Λ Y | Y ∈M}.

(e) Symmetry of CΛ is a consequence of the following observation. Due to A1
and R9, ϕ → ¬¬ϕ ∈ ∆, for any LSE-formula ϕ. Hence, for any Λ-theories Γ,∆ the
following two conditions are equivalent:

• for any declarative LSE-formula α, if ¬α ∈ Γ then α /∈ ∆,

• for any declarative LSE-formula α, if ¬α ∈ ∆ then α /∈ Γ.

The conditions (f) and (h) are straightforward. We will finish the proof with (g),
i.e. we will show that for all Λ-theories Γ,∆, if Γ↑ ⊆ ∆↑ then Σa(Γ

↑) ⊆ Σa(∆
↑). Let

Γ↑ ⊆ ∆↑, and hence ∆ ⊆ Γ. Assume X ∈ Σa(Γ
↑). We will verify that X ∈ Σa(∆

↑).
Let Eaϕ ∈ ∆. Then Eaϕ ∈ Γ and hence there is α ∈ R(ϕ) such that α ∈

⋂
X. This

finishes the proof.

The following lemma states a crucial feature of the inquisitive state maps in the
canonical structures.

Lemma 11. Let Λ be an inquisitive epistemic logic and Γ a prime Λ-theory. Assume
that Eaψ /∈ Γ. Then there is X ∈ ΣΛ

a (Γ↑) such that for every α ∈ R(ψ), α /∈
⋂
X.

Proof. Assume that Eaψ /∈ Γ. Let us define Ω = {χ | Eaχ ∈ Γ}. It holds that
Ω 0Λ ψ. (Assume the contrary: Ω `Λ ψ, i.e. there are χ1, . . . , χn ∈ Ω such that
(χ1 ∧ . . . ∧ χn) → ψ ∈ Λ. Then due to the rules MR1 and MR2 and transitivity
of implication available already in InqSE, (Eaχ1 ∧ . . . ∧ Eaχn) → Eaψ ∈ Λ. But
Eaχ1, . . . , Eaχn ∈ Γ, and so Γ `Λ Eaψ, i.e. Eaψ ∈ Γ, which is a contradiction.)

Let χ1, χ2, χ3, . . . be a list of all formulas from Ω. Let Ω≥n = {χn, χn+1, χn+2, . . .}.
Note that, due to A9, A10 and R10, for any LSE-formulas η, µ, ζ and any set of LSE-
formulas Ψ

{η > µ} ∪Ψ `Λ ζ iff {η} ∪Ψ `Λ ζ and {µ} ∪Ψ `Λ ζ.

Thus, since {χ1} ∪ Ω≥2 0 ψ, Lemma 3 implies that there is α1 ∈ R(χ1) such that
{α1} ∪Ω≥2 0 ψ. We set f(χ1) = α1. Now assume that f(χ1), . . . , f(χn−1) are already
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defined and it holds {f(χ1), . . . , f(χn−1), χn} ∪ Ω≥n+1 0Λ ψ. Then there must be
αn ∈ R(χn) such that {f(χ1), . . . , f(χn−1), αn} ∪ Ω≥n+1 0Λ ψ. We set f(χn) = αn.
In this stepwise manner we can define the value f(χ) for every χ ∈ Ω. Let Ωf =
{f(χ) | χ ∈ Ω}. It must be the case that Ωf 0Λ ψ. Otherwise there would be n such
that {f(χ1), . . . , f(χn)} `Λ ψ which would be a contradiction. Now let us define:

Xf = {∆ prime Λ-theory | Ωf ⊆ ∆},

Cl(Ωf ) = {α declarative LSE-formula | Ωf `Λ α}.

Cl(Ωf ) is the smallest Λ-theory extending Ωf and Xf is the set of all prime Λ-theories
extending Cl(Ωf ), so, due to Lemma 7, it holds that⋂

Xf = Cl(Ωf ).

Now we will prove that (a) Xf ∈ ΣΛ
a (Γ↑) and (b) for every α ∈ R(ψ), α /∈

⋂
Xf . To

prove the first part, assume Eaχ ∈
⋂

Γ↑, i.e. Eaχ ∈ Γ. So, χ ∈ Ω and f(χ) ∈ Ωf . It
follows that there is α ∈ R(χ), namely α = f(χ), such that α ∈

⋂
Xf . Hence, indeed,

Xf ∈ ΣΛ
a (Γ↑).

To prove the second part, assume, for the sake of contradiction, that for some
α ∈ R(ψ), α ∈

⋂
Xf . Then Ωf `Λ α. It follows that Ωf `Λ ψ, which is a contradiction.

This finishes the proof.

We will also need the following facts about prime Λ-theories that can be proved
using standard Lindenbaum-style constructions similar to those used in the proofs of
Lemmas 7 and 10.

Lemma 12. For any prime Λ-theory Γ, and all declarative LSE-formulas α, β:

(a) if ¬α /∈ Γ then there is a prime Λ-theory ∆ such that α ∈ ∆ and for any
declarative LSE-formula γ, if ¬γ ∈ Γ then γ /∈ ∆,

(b) if α→ β /∈ Γ then there are prime Λ-theories ∆,Ω such that Γ⊗∆ ⊆ Ω, α ∈ ∆,
and β /∈ Ω,

(c) if α⊗ β ∈ Γ then there are prime Λ-theories ∆,Ω such that ∆⊗Ω ⊆ Γ, α ∈ ∆,
and β ∈ Ω.

To prove the following version of a truth lemma, we will have to use double in-
duction: on the complexity of formula and on modal depth. The modal depth of an
LSE-formula ϕ is denoted as d(ϕ) and it is defined in the following way:

d(p) = d(⊥) = d(t) = 0,

d(¬ϕ) = d(ϕ),

d(ϕ ◦ ψ) = max{d(ϕ), d(ψ)}, for any ◦ ∈ {→,∧,⊗,∨, > },

d(Kaϕ) = d(Eaϕ) = d(ϕ) + 1.

One can observe that for any LSE-formula ϕ, if α ∈ R(ϕ) then d(α) ≤ d(ϕ).

Lemma 13. Let Λ be an inquisitive epistemic logic, X an upward closed set of prime
Λ-theories, and α a declarative LSE-formula. Then X  α in MΛ iff α ∈

⋂
X.
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Proof. One can proceed by double induction: The primary induction is on modal
depth, the secondary induction is on the complexity of declarative LSE-formulas of a
fixed modal depth. More specifically, in the first step, one can prove the lemma for
every declarative LSE-formula with modal depth 0. The induction hypothesis is that
our claim holds for every declarative LSE-formula with modal depth strictly smaller
than k (for a positive number k). In the inductive step, one proves that then the claim
also holds for any declarative LSE-formula with modal depth k, which is proved by
induction on the complexity of formulas of modal depth k. The inductive steps for the
operators on the level k are the same as the corresponding steps on the lower levels
with the exception that the steps for Ka, Ea appear for the first time on the level 1 of
the primary induction. Let us go through the particular cases.

Atomic formulas: X  p iff X ⊆ V (p) iff p ∈ Γ, for any Γ ∈ X iff p ∈
⋂
X.

The contradiction constant: X  ⊥ iff X = {Ξ}, where Ξ is the set of all declarative
LSE-formulas iff ⊥ ∈

⋂
X (due to A2).

The logical truth constant: X  t iff X ⊆ 1Λ iff Λd ⊆ Γ, for any Γ ∈ X iff Λd ⊆
⋂
X

iff t ∈
⋂
X (due to A1, R7, R8).

The inductive steps for ¬,→, ∧, ⊗, and ∨ can be proved by rather straightforward
arguments with the help of Lemma 12. In particular, (a) of Lemma 12 is used in the
left-to-right implication of the inductive step for ¬, (b) is needed in the left-to-right
implication of the inductive step for →, and (c) is used in the right-to-left implication
of the inductive step for ⊗. We will omit the details of these inductive steps and focus
instead on the modal cases. They generalize the corresponding inductive steps in [3].

Assume that our claim holds for every declarative LSE-formula of the modal depth
strictly smaller than k and ψ is an LSE-formula (not necessarily declarative) such that
d(ψ) = k − 1. We will show the inductive steps from ψ to Eaψ and Kaψ.

(a) The inductive step for Ea: First, assume that Eaψ ∈
⋂
X. Let Γ↑ ∈ Sit(X) in

MΛ. This means that Γ ∈ X and thus Eaψ ∈ Γ. Assume Y ∈ ΣΛ
a (Γ↑). Since Eaψ ∈ Γ,

it follows from the definition of ΣΛ
a that there is β ∈ R(ψ) such that β ∈

⋂
Y . Since

d(β) is strictly smaller than k, we can use the inductive hypothesis and conclude that
Y  β in MΛ. But then also Y  ψ in MΛ. It follows that X  Eaψ in MΛ.

Second, assume that Eaψ /∈
⋂
X. So, there is a prime Λ-theory Γ ∈ X such that

Eaψ /∈ Γ. Since Γ ∈ X, Γ↑ ∈ Sit(X). Due to Lemma 11 there is Y ∈ ΣΛ
a (Γ↑) such

that for each β ∈ R(ψ), β /∈
⋂
Y . Using the inductive assumption, we can conclude

that for each β ∈ R(ψ), Y 1 β, and thus Y 1 ψ. It follows that X 1 Eaψ.
(b) The inductive step for Ka: First, assume that Kaψ ∈

⋂
X. Then Kaψ ∈ Γ,

for every Γ↑ ∈ Sit(X) (i.e. for every Γ ∈ X). Let R(ψ) = {β1, . . . , βn}. Due to the
axioms KD and KE, Kaψ → (Eaβ1 ∨ . . . ∨ Eaβn) ∈ Λ. So, Eaβ1 ∨ . . . ∨ Eaβn ∈ Γ.
Since Γ is prime, for some i, Eaβi ∈ Γ. Thus, for each Y ∈ Σa(Γ

↑), βi ∈
⋂
Y . By

the induction hypothesis, Y  βi, for every Y ∈ Σa(Γ
↑). It follows that

⋃
Σa(Γ

↑), i.e.
σa(Γ

↑) supports βi, and hence also ψ. Therefore, X  Kaψ.
Second, assume Kaψ /∈

⋂
X. So, for some Γ↑ ∈ Sit(X) (i.e. for some Γ ∈ X),

Kaψ /∈ Γ. Due to the axioms KD and KE, (Eaβ1 ∨ . . .∨Eaβn)→ Kaψ ∈ Λ. It follows
that Eaβ1 ∨ . . . ∨ Eaβn /∈ Γ. Then for all i, Eaβi /∈ Γ and it follows from Lemma 11
that for each i there is Y ∈ Σa(Γ

↑) such that βi /∈
⋂
Y . By the induction hypothesis,

Y 1 βi, and hence
⋃

Σa(Γ
↑), i.e. σa(Γ

↑), does not support βi. Therefore, σa(Γ
↑) 1 ψ

and so X 1 Kaψ.

Theorem 4. Th(MΛ) ⊆ Λ, for any inquisitive epistemic logic Λ.
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Proof. Assume ϕ ∈ Th(MΛ), i.e. 1Λ  ϕ in MΛ. Then 1Λ  α, for some α ∈ R(ϕ).
Due to Lemma 13, α ∈

⋂
1Λ, and hence it follows from Lemma 8 that α ∈ Λ. But

then also ϕ ∈ Λ.

Theorem 5. For any inquisitive epistemic logic Λ, the following conditions are equiv-
alent:

(a) Λ ⊆ Th(MΛ),

(b) Λ is constructive,

Proof. (a) implies (b): Assume Λ ⊆ Th(MΛ). Let ϕ
>

ψ ∈ Λ. Then 1Λ  ϕ

>

ψ in
MΛ, and thus 1Λ  ϕ or 1Λ  ψ in MΛ. Hence, due to Theorem 4, ϕ ∈ Λ or ψ ∈ Λ.

(b) implies (a): Assume that Λ is constructive. Take any ϕ ∈ Λ. So, for some
α ∈ R(ϕ), α ∈ Λ, and thus α ∈

⋂
1Λ. Then, due to Lemma 13, 1Λ  α, and thus

1Λ  ϕ in MΛ. So, ϕ ∈ Th(MΛ).

Theorem 6. Let Λ be a constructive inquisitive epistemic logic. Then for any upward
closed set of prime Λ-theories X and any LSE-formula ϕ, X  ϕ inMΛ iff

⋂
X `Λ ϕ.

Proof. First, assume X  ϕ in MΛ. Then there is α ∈ R(ϕ) such that X  α. So,
due to Lemma 13, α ∈

⋂
X. It follows that

⋂
X `Λ ϕ. Second, assume

⋂
X `Λ ϕ.

Since
⋂
X is closed under ∧, there is β ∈

⋂
X such that β → ϕ ∈ Λ. So, applying

Lemma 13 and Theorem 5, we obtain X  β and 1Λ  β → ϕ. Hence X  ϕ in
MΛ.

Definition 8. Let Λ be an inquisitive epistemic logic and C a class of AEI-models. We
say that Λ is sound w.r.t. C if every LSE-formula from Λ is valid in every model from
C. We say that Λ is complete w.r.t. C if Λ contains every LSE-formula that is valid
in every model from C. Let M be an AEI-model. We say that Λ is sound (complete)
w.r.t. M if it is sound (complete) w.r.t. {M}.

Theorem 4 says that any inquisitive epistemic logic is complete with respect to its
canonical model but Theorem 5 adds to that that only constructive logics are sound.
Soundness w.r.t. the canonical model and constructivity coincide.

Corollary 1. If an inquisitive epistemic logic Λ is sound w.r.t. a class of AEI-models
C and MΛ ∈ C then Λ is constructive and complete w.r.t. C.

We can immediately apply this Corollary to the special case of the logic InqSE.
Since it is sound with respect to the class of all AEI-models and its canonical model
is in this class, we obtain a completeness result for this logic.

Corollary 2. The set of InqSE-provable LSE-formulas is sound and complete w.r.t.
the class of all AEI-models.

We also obtain analogues of (b) and (c) of Theorem 2 for the logic InqSE.

Corollary 3. The logic InqSE is constructive, i.e., it has disjunction property and
splitting property.
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The logic InqSE is very weak. For particular purposes, stronger inquisitive epistemic
logics might be more suitable. These logics can be obtained syntactically by adding
further axioms or rules, and semantically by imposing further semantic restrictions on
AIE-models. To show some examples of such extensions we introduce the following
terminology. An AEI-model without the valuation will be called an AEI-frame. An
LSE-formula is valid in an AEI-frame if it is valid in every AEI-model on that frame.
We have been using two sorts of variables for formulas: ϕ, ψ, χ, . . . as variables for
arbitrary LSE-formulas and α, β, γ, . . . as variables for declarative LSE-formulas. If we
take an LSE-formula and replace all atomic formulas with such variables we obtain
a “schema”. The concrete formulas of the given form will be called instances of the
schema. For example, Kaα → α is a schema but since it involves the variable α only
declarative LSE-formulas are allowed to be substituted for this variable. Hence, e.g.,
Ka(p ∧ q)→ (p ∧ q) is an instance of the schema but Ka(p

>

q)→ (p

>

q) is not. On
the other hand, Ka(p

>

q) → (p

>

q) is an instance of the schema Kaϕ → ϕ. In the
same sense, we will talk about schematic inference rules.

Definition 9. Let C be a class of AEI-frames, S a schema and R a schematic inference
rule. We say that S strongly characterizes C if (1) for every AEI-frame F , F ∈ C iff
every instance of S is valid in F ; and (2) if Λ is an inquisitive epistemic logic that
contains every instance of S, then the frame of MΛ is in C. We say that R strongly
characterizes C if (1) for every AEI-frame F , F ∈ C iff R preserves validity in every
model on F ; and (2) if Λ is an inquisitive epistemic logic that is closed under the rule
R, then the frame of MΛ is in C.

Assume that an inquisitive epistemic logic Λ is determined by a system that consists
of the axioms and rules of InqSE plus a (possibly infinite) set of additional schematic ax-
ioms {A1, A2, . . .} and rules {R1, R2, . . .}. Further assume that the schamata A1, A2, . . .
respectively strongly characterize the classes of AEI-frames C1, C2, . . . and the rules
R1, R2, . . . respectively strongly characterize the classes of AEI-frames D1,D2, . . . Then
it follows from Corollary 1 that Λ is constructive and it is sound and complete w.r.t.
the class of AEI-models based on frames from

⋂
Ci ∩

⋂
Dj. We will illustrate this

application of Corollary 1 with two simple examples.

Theorem 7. (a) For any agent a, the schematic rules ϕ/Eaϕ and ϕ/Kaϕ, where ϕ
ranges over arbitrary LSE-formulas, both strongly characterize the class of AEI-frames
satisfying the condition: for any state s ∈ Sit(1), σa(s) v 1.

(b) For any agent a, the schemata Eaα → α and Kaα → α, where α ranges over
declarative LSE-formulas, both strongly characterize the class of AEI-frames satisfying
the condition: for every situation s, s v σa(s).

Proof. (a) Let C1 be the class of all AEI-frames satisfying the condition: for every
state s, if s ∈ Sit(1) then σa(s) v 1. (1) First, assume that F ∈ C1. Then, due to the
persistence property (Theorem 3-(b)), for any AEI-model on F and any LSE-formula
ϕ, 1  ϕ implies both 1  Eaϕ and 1  Kaϕ. Second, assume that F /∈ C1. Let us
define the valuation V so that V (p) = 1. Then 1  p but 1 1 Eap and 1 1 Kap. (2)
Assume that Λ is an inquisitive epistemic logic closed under the rule ϕ/Eaϕ or under
the rule ϕ/Kaϕ. We show that the frame of the canonical model is in C1. Assume
Γ↑ ∈ Sit(1Λ), i.e. Λd ⊆ Γ. We have to show that

⋃
Σa(Γ

↑) ⊆ 1Λ. Take any X ∈ Σa(Γ
↑)

and ∆ ∈ X. We want to show that ∆ ∈ 1Λ, i.e. Λd ⊆ ∆. Let α ∈ Λd. We assume that
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Λ is closed under ϕ/Eaϕ or ϕ/Kaϕ. Since Eaα is provably equivalent to Kaα (due
to KE) we obtain in both cases Eaα ∈ Λd. Then also Eaα ∈ Γ. Since X ∈ Σa(Γ

↑),
α ∈

⋂
X. It follows that α ∈ ∆.

(b) First note that, due to KE, Eaα → α and Kaα → α are equivalent already in
InqSE, so it is sufficient to focus only on one of them. We will consider the case of
Eaα → α. The case of Kap → p is proved in the same way. Let C2 be the class of all
AEI-frames satisfying the condition: for every situation s, s v σa(s). (1) First, assume
that F ∈ C2. Take an arbitrary AEI-model on F . To show that Eaα→ α is valid in the
model we need to show that for any state s, if s  Eaα then s  α (see Lemma 1). Let
s  Eaα. Then, due to KE, also s  Kaα and for any t ∈ Sit(s), σa(t)  α. Applying
the join closure property (Theorem 3-(c)), we obtain

⊔
{σa(t) | t ∈ Sit(s)}  α. Since

for any t ∈ Sit(s), t v σa(t) and s =
⊔
Sit(s), we have s v

⊔
{σa(t) | t ∈ Sit(s)},

so, by persistence property, s  α. Second, assume that F /∈ C2. Then there is a
situation s that is not below σa(s). Take a valuation V such that V (p) = σa(s). Then
s  Eap but s 1 p. Hence, by Lemma 1, Eap → p is not valid in the frame. (2)
Assume that Λ is an inquisitive epistemic logic that contains the formula Eaα → α,
for every declarative LSE-formula α. We have to show that the frame of the canonical
model is in C2. Thus we are proving that for every prime Λ-theory Γ, Γ↑ ⊆

⋃
Σa(Γ

↑),
which is equivalent to Γ↑ ∈ Σa(Γ

↑). This, in turn, is equivalent to the following:

for any LSE-formula ϕ, if Eaϕ ∈ Γ then for some α ∈ R(ϕ), α ∈ Γ.

Assume Eaϕ ∈ Γ and let R(ϕ) = {α1, . . . , αn}. Then Ea(α1

>

. . .

>

αn) ∈ Γ. The
system for InqSE allows this derivation:

αi → (α1 ∨ . . . ∨ αn), for each 1 ≤ i ≤ n, by A5, A6

(α1
>

. . .

>

αn)→ (α1 ∨ . . . ∨ αn), by R10

Ea(α1

>

. . .

>

αn)→ Ea(α1 ∨ . . . ∨ αn), by MR1

Since Ea(α1

>

. . .

>

αn) ∈ Γ, we have also Ea(α1 ∨ . . .∨αn) ∈ Γ. Since α1 ∨ . . .∨αn is
declarative, we obtain α1 ∨ . . . ∨ αn ∈ Γ. Since Γ is prime, α ∈ Γ, for some α ∈ R(ϕ),
which is what we wanted to prove.

It follows from Corollary 1 and Theorem 7 that any combination of the rules and
axioms considered in the theorem gives us a constructive inquisitive epistemic logic
that is sound and complete with respect to the class of AEI-models obtained by adding
the respective restricting conditions to the definition of an AEI-model.

We will finish this section with some remarks regarding two possible concerns
related to our semantics. The first one is motivational while the second one is rather
technical.

The first concern can be formulated as follows. With respect to the interpretation
according to which situations are just fragments of bigger reality, it might seem un-
natural to require that every agent must have an information state and an issue in
every situation.
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This problem can be fixed by a slight technical adjustment. We can assume that
the inquisitive state maps are partial functions, so that agents have information states
and issues only in some situations.3

If the agent a has an information state and an issue in a situation s, it will mean that
the value of Σa(s) is defined and we will denote this as s ↓ a. Then the condition (g)
from the definition of an AEI-model (Definition 3) has to be modified in the following
way:

(g)’ if s, t are situations such that t ↓ a and s v t then s ↓ a and Σa(s) ⊆ Σa(t).

The semantic clauses for modalities also have to be adjusted:

• s  Kaϕ iff for any t ∈ Sit(s), t ↓ a and σa(t)  ϕ,

• s  Eaϕ iff for any t ∈ Sit(s), t ↓ a and for any u ∈ Σa(t): u  ϕ.

This modification leads to a broader class of models but one can verify that InqSE
is sound even with respect to this more general semantics. Since every AEI-model
of the original semantics is also a model of this modified semantics, completeness is
preserved. Thus, the adjustments do not have any impact on the resulting logic.

The second concern: In [15], a different framework for substructural inquisitive
logics (without the epistemic modalities) was proposed. In that framework the con-
struction of canonical models seems to be significantly simpler. The states in the
canonical models are just theories, not sets of prime theories. Would it be possible to
simplify the construction so that it would be similar to that of [15]? Since we restrict
ourselves to distributive logics for which it holds that every theory is the intersection
of prime theories that extend it, it seems that prime theories could play the role of
situations. In that perspective, intersection would play the role of join in the canonical
model so that it would hold that every state in the model is join of a set of situations.

This strategy leads to the following problem: prime theories are not completely
join-irreducible elements in the lattice of theories. They are only finite join-irreducible.4

So, we would have to modify the definition of a situation in the general formulation of
the semantics (Definition 1). Given a complete lattice, a situation in the lattice would
have to be defined as a finite join-irreducible element. But this modification has a
significant impact. Most importantly, if the defining conditions of an AEI-model are
left unaltered, the crucial modal axiom KE ceases to be sound.

It is possible to overcome this problem by several changes in the formulation of
the semantics so that it is possible to build the canonical structures directly out of
theories. However, while the completeness proof is simpler, the resulting framework is
significantly more complicated than the one we have presented, and we will not pursue
these modifications in this paper.

3Note that already in the semantics for IEL it can happen that the agent has, in some sense, no
issue in a given world. This happens if σa(w) ∈ Σa(w). Technically, the agent’s issue is defined in
such a case but it is trivial because it is already resolved by the agent’s knowledge. However, this is
different from what we are discussing here. We are considering the case when the agent’s knowledge
and issue are not defined at all for a given situation.

4An element s of a given lattice is finite join-irreducible if the following holds: s = t t u only if
s = t or s = u. If join is intersection, the prime theories are exactly the finite join-irreducible elements
in the lattice of theories.
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5 Conclusion

To sum up, in this paper we developed a semantic framework for substructural inquisi-
tive epistemic logics, which generalize the standard semantics for inquisitive epistemic
logic. A peculiar feature of the framework is that agents are equipped not only with
information states (which is common in epistemic logic) but also with issues. The
semantics allows us to evaluate not only statements but also questions and statements
with embedded questions like the agent knows whether A or the agent is wondering
whether A. Moreover, the general semantics allows us to base the inquisitive epistemic
logic on non-classical logics of declarative sentences so it is immune to many ques-
tionable features of classical logic. On the technical side, our main result is a general
construction of canonical models for inquisitive epistemic logics that can be used as
a crucial tool in completeness proofs. We applied this construction to the case of the
weakest inquisitive epistemic logic InqSE and showed with a few examples how it can
be used for its extensions. In future work we plan to extend the framework with further
group-epistemic and dynamic modalities. In particular, we intend to study distributed
and common knowledge, and a public announcement modality within this framework.
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