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Abstract. Building on our previous work in non-classical dynamic epis-
temic logic, we add common knowledge operators to a version of public
announcement logic based on the relevant logic R. We prove a complete-
ness result with respect to a relational semantics, and we show that an
alternative semantics based on information states is dual to the rela-
tional one. We add a question-forming inquisitive disjunction operator
to the language and prove a completeness result with respect to the in-
formation semantics. It is argued that relevant public announcements are
particularly suitable for modelling public argumentation.

1 Introduction

Various problematic closure properties of epistemic operators in classical epis-
temic logic led to the exploration of a number of alternatives to the classical
framework; see [9]. One approach to avoiding closure under classical consequence
is to represent epistemic states of agents as sets of abstract situations, roughly
in the sense of Barwise and Perry [2], instead of representing them as sets of
possible worlds. This approach leads naturally to epistemic logics based on para-
consistent and substructural propositional logics; see [3,10,19,21,22] for example.
Combining these logics with an account of information dynamics is a topic of re-
cent interest: [1,11] explore versions of intuitionistic public announcement logic,
[18,20] study paraconsistent bilattice public announcement logic, and [4] outlines
a fuzzy version of public announcement logic. Authors of the present paper ex-
plored versions of public announcement logic based on relevant and substructural
logics in [14] and [25]. The latter paper focuses on modelling epistemic updates
in the standard relational semantics for relevant modal logic and the former pa-
per used a more general information-state semantics. All papers mentioned so
far use languages without common knowledge, a concept linked to information
dynamics in a number of important ways.

The aim of this paper is to (i) extend the frameworks presented in [14] and
[25] with common knowledge and provide a complete axiomatization, and (ii)
explore the relationship between these frameworks. In Section 2 we add com-
mon knowledge to the relational semantics introduced in [25]. We argue that the
notion of update embodied in the semantics has a natural link to the notion of
public argumentation. In Section 3 we prove a completeness result for the rela-
tional semantics. Then, in Section 4, we introduce an informational semantics



following the approach of [14]. The main result here is that informational and
relational models are dual, implying that the sound and complete axiomatiza-
tion of Section 3 is sound and complete with respect to information models as
well. In Section 5 we add questions to our object language in the style of in-
quisitive semantics [7] and show that the completeness proof of Section 3 can be
extended to completeness of this enriched language with respect to informational
semantics.

2 Relational semantics

Definition 1. Fix a countable set of propositional variables Pr and a finite set
of agent indices G. The language L contains operators t (zero-ary), ∧,→,⊗,[ ]
(binary), ¬ and Ba, CA for all a ∈ G and non-empty A ⊆ G (unary). The set of
formulas of L, denoted as FmL, is generated by Pr using the operators of L in
the usual way.

We define ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), BAϕ :=∧
a∈ABaϕ, B+

Aϕ := BACAϕ, and Kaϕ := C{a}ϕ. Operators t,¬,∧,⊗,→ are
propositional, all Ba and CA are epistemic operators and [ ] is the dynamic op-
erator. We use r to range over propositional operators, ri over i-ary propositional
operators and r>0 over propositional operators of non-zero arity.

We read “Baϕ” as “Agent a believes that ϕ”, although what we mean is,
more generally, that a has information that supports (or allows a to conclude
that) ϕ. BAϕ means that all agents in the group A ⊆ G believe that ϕ. We
read “CAϕ” as “ϕ is common knowledge in the group of agents A”. Kaϕ is read
“Agent a knows that ϕ” and B+

Aϕ as “it is common belief in group A that ϕ”.
Our choice of primitive epistemic operators may seem a bit odd, but it can be
shown that belief, knowledge, common belief and common knowledge interact in
expected ways. In particular, B+

Aϕ holds in s iff BAϕ holds in s, BABAϕ holds
in s, and so on, which corresponds to the usual semantics of common belief. Ka

is an “S4-type” knowledge operator, that is, Kaϕ→ ϕ and Kaϕ→ KaKaϕ are
valid, as we will see below.

The dynamic operator[ ] expresses effects of public announcement of a piece
of information: we read[ϕ]ψ as “ψ is the case after ϕ is publicly announced to all
agents”. Our notion of public announcement differs somewhat from the notion
embodied in Public Announcement Logic [12,26]: we do not assume that the
announced piece of information is truthful, nor is it implied that the information
is accepted by the agents upon the announcement; we also allow the possibility
that the announcement may cause some agents to drop some of the previously
accepted information.1

1 We note that while “announcement” seem to us to best express the notion we have
in mind, we have hesitated because of its technical connotations. Another term
that may be used is “reception” – upon an announcement agents receive a piece of
information, but nothing is implied about the nature of the information nor about
what the agents make of it.



A natural informal interpretation of such a general notion of public announce-
ment is in terms of public argumentation. Imagine a group of agents, engaged in
a public discussion. Public announcements can be seen as acts of putting forward
arguments for or against claims in the discussion. These arguments do not have
to be truthful and they do not have to be persuasive, meaning that the agents
do not always accept the arguments. Moreover, arguments can cause agents to
reject some of the information they accepted before. All of these features are
characteristic aspects of our general rendering of public announcement. We will
return to these aspects after introducing the semantics.

We note that our semantics extends the semantic framework of relevant logic
introduced by Routley and Meyer in the 1970s. Our axiomatization extends the
axiomatization of the relevant logic R, introduced by Anderson and Belnap in
the 1960s. We do not have the space to review relevant logic in detail. The reader
is referred to [8] or [17], for example.

Definition 2. A relevant epistemic model for G is M = (S,v, L,R,C,E, V )
where (S,v, L,R,C, V ) is a Routley–Meyer model for the relevant logic R, i.e.

– (S,v) is a partially ordered set;

– L is an up-set in (S,v)

– R is a ternary relation on (S,v) that is anti-monotonic in the first two
coordinates and monotonic in the third coordinate, and satisfies the follow-
ing frame conditions (we use the standard notation Rstuw := ∃x(Rstx &
Rxuw) and Rs(tu)w := ∃x(Rtux & Rsxw))

Rstuw =⇒ Rs(tu)w (1)

Rstuw =⇒ Rt(su)w (2)

Rstu =⇒ Rsttu (3)

Rstu =⇒ Rtsu (4)

– s v t iff there is x ∈ L such that Rsxt;

– C is a symmetric binary relation on (S,v) that is anti-monotonic in both
coordinates such that for all s there is a unique maximal element s̄ of the set
C(s) = {t | Cst} and

¯̄s = s (5) Rstu =⇒ Rsūt̄ (6)

– V is a function from Pr to up-sets in (S,v);

and E is a function from G to binary relations on (S,v) that are anti-monotonic
in the first coordinate and monotonic in the second coordinate.

Informally, E(a) represents the information about the epistemic state of a
provided by situations in the model as follows. For each s ∈ S there is a body
of information, denote it as s(a), such that s provides information that s(a) is
the epistemic state of a (s(a) may be empty). E(a)st represents the assumption
that s(a) is contained in t. Hence, E(a)(s) = {t | E(a)st} can be seen as the
representation of s(a).



We define E(A) :=
⋃
a∈AE(a) and E∗(A) as the reflexive transitive closure

of (v ∪ E(A)).2 E+(A) is the transitive closure of E(A). We will usually write
the agent (group) indices in a subscript.

Remark 1. We note that each relevant epistemic model is fully associative:

Rstuw ⇐⇒ Rs(tu)w (7)

The full associativity condition will be required in our completeness proof, in
particular in the steps for[ϕ][ψ]χ. Without common knowledge in the language,
these cases are dealt with implicitly using the monotonicity rule R5; however,
in the present context they have to be dealt with explicitly. This means that
our present approach is limited to logics based on fully associative frames, for
example R-based logic we focus on here. An extension of our results to weaker
logics is an open problem.

Definition 3. The satisfaction relation between pointed models (that is, pairs
of the form (M, s) where s is in M) and L-formulas is induced by V of M as
follows:

– (M, s) |= p iff s ∈ V (p);

– (M, s) |= t iff s ∈ L;

– (M, s) |= ¬ϕ iff ∀t, Cst implies (M, t) 6|= ϕ;

– (M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ;

– (M, s) |= ϕ→ ψ iff, ∀tu, if Rstu and (M, t) |= ϕ, then (M, u) |= ψ;

– (M, s) |= ϕ⊗ ψ iff ∃tu such that Rtus and (M, t) |= ϕ and (M, u) |= ψ;

– (M, s) |= Baϕ iff ∀t, East only if (M, t) |= ϕ;

– (M, s) |= CAϕ iff ∀t, E∗Ast only if (M, t) |= ψ;

– (M, s) |= [ϕ]ψ iff (M[ϕ], s) |= ψ, where M[ϕ] differs from M only in that
E[ϕ]
a st iff there are u, v such that Easu, Ruvt and (M, v) |= ϕ.

A formula ϕ is valid in M iff (M, s) |= ϕ for all s ∈ L. We define M(ϕ) := {s |
(M, s) |= ϕ}.

M[ϕ] is the model that results from M after the public announcement of ϕ.
Intuitively, M[ϕ] results from M by extending all situations in M with the infor-
mation that ϕ has been publicly announced. This transformation of the model
M does not affect the “non-epistemic” structure consisting of the underlying
Routley–Meyer model, but it does affect the epistemic accessibility relations
since, intuitively, s(a) for each s and a is modified by the announcement. Our
semantics reflects the idea that this modification can be represented using the
ternary relation R. We take R to represent the effects of “merging” situations:
Rstu iff the result of “merging” the information in s with the information in t

2 Note that this notation is somewhat misleading as E∗(A) does not denote the re-
flexive transitive closure of E(A).



is contained in u. Crucially, “merging” is not necessarily monotonic.3 Merging
is lifted to sets of situations X,Y (representing arbitrary pieces of information)
using the standard construction

X ⊗ Y = {u | ∃st(s ∈ X & t ∈ Y & Rstu} . (8)

After the information that ϕ has been announced to a is added to s, the epis-
temic state s(a) is transformed into a new epistemic state s(a)[ϕ]. Intuitively,
announcing ϕ triggers a “merge” of the epistemic state of the given agent with
the information expressed by ϕ. Using (8), we obtain

E[ϕ]
a (s) = Ea(s)⊗ M(ϕ) = {u | ∃tv(East & (M, v) |= ϕ & Rtvu} (9)

Hence, s(a)[ϕ] is contained in u iff u contains the result of merging s(a) with the
information that ϕ. This is exactly how M[ϕ] is defined.

Proposition 1. Formulas of the following forms are not valid: 1. ¬ϕ→[ϕ]ψ;
2. [ϕ]Baϕ; 3. Baϕ→[ψ]Baϕ.

We leave the construction of counterexamples to the reader. The fact that
¬ϕ→[ϕ]ψ is not valid means that announcements are not necessarily truthful:
announcing a false formula does not lead to “explosion”. The failure of [ϕ]Baϕ
means that announced information is not necessarily accepted by agents. This
feature is related in spirit to well-known unsuccessful updates of classical public
announcement logic, but the mechanism underlying the feature is more general
than the so-called Moorean phenomena at work in the classical case. The failure
of Baϕ→[ψ]Baϕ shows that announcements in our setting are non-monotonic:
after an announcement of ψ, agents may abandon previously held beliefs. As
mentioned above, all three aspects are typical features of public argumentation.

Definition 4. For any M, ϕ and non-empty A ⊆ G:

– an A-path in M is a finite sequence 〈si | i < n〉 of situations in M, for some
n ≥ 0, such that for all j < n− 1, either sj v sj+1 or EAsjsj+1;

– an A[ϕ]-path in M is a finite sequence 〈si | i < n〉 of situations in M, for

some n ≥ 0, such that for all j < n− 1, either sj v sj+1 or E[ϕ]
A sjsj+1.

A path (A-path or an A[ϕ]-path) is a path from s iff it is non empty and its first
element is s; it is a path ending in t iff it is non-empty and its last element is t.

Note that (M, s) |= CAϕ iff (M, t) |= ϕ for all t such that there is an A-path in
M starting with s and ending in t; similarly (M, s) |=[ψ]CAϕ iff (M, t) |=[ψ]ϕ
for all t such that there is an A[ψ]-path in M starting with s and ending in t.

3 This reading is related to a number of interpretations of R popular in the relevant
logic literature. For instance, Dunn and Restall point out that “perhaps the best
reading [of Rstu] is to say that the combination of the pieces of information s and
t (not necessarily the union) is a piece of information in u” [8, p. 67]. Restall adds
that “a body of information warrants ϕ → ψ if and only if whenever you update
that information with new information which warrants ϕ, the resulting (perhaps
new) body of information warrants ψ” [17, p. 362] (notation adjusted).



3 A relational completeness result

In this section we provide a complete axiomatization of the set of formulas valid
in all relevant epistemic models. The axiom system RPAC, shown in Figure 1,
is a combination of the proof system for the relevant logic R, axioms and rules
specifying that Ba are regular and monotonic modalities, the usual axioms and
rules for the common knowledge operator, and the so-called reduction axioms
for the update operator.

The completeness proof will combine the method of “partial filtration”, used
to prove completeness for versions of Propositional Dynamic Logic based on
relevant logics [23,24], the standard canonical model argument for R, and the
completeness argument for Public Announcement Logic using reduction axioms.
Our proof follows the usual strategy of proving completeness for Public An-
nouncement Logic with common knowledge, but we use a different notion of
filtration (the “filtrated model” is infinite, only epistemic accessibility relations
are defined in terms of a finite set of formulas) and our models are more general.
We note that, unlike in [23,24], our proof does not require the presence of “ex-
tensional truth constants” >,⊥. (We will specify the reason for this in Remark
2 below.)

(A1) An axiomatization of R
(A2) Baϕ ∧Baψ → Ba(ϕ ∧ ψ)
(A3) CAϕ↔ (ϕ ∧BaCAϕ)
(A4) [ϕ]p↔ p
(A5) [ϕ]t↔ t

(A6) [ϕ]r>0(ψ1, . . . , ψn)
↔ r>0 ([ϕ]ψ1, . . . ,[ϕ]ψn)

(A7) [ϕ]Baψ ↔ Ba(ϕ→[ϕ]ψ)

(A8) [ϕ][ψ]χ↔[ϕ⊗[ϕ]ψ]χ

(R1)
ϕ ϕ→ ψ

ψ

(R2)
ϕ ψ

ϕ ∧ ψ

(R3)
ϕ→ ψ

Baϕ→ Baψ

(R4)
ϕ→ ψ

CAϕ→ CAψ

(R5)
ϕ→ ψ

[χ]ϕ→[χ]ψ

(R6)
ϕ→ (ψ ∧BAϕ)

ϕ→ CAψ

(R7)
χ→ BA(ϕ→ χ) χ→[ϕ]ψ

χ→[ϕ]CAψ

Fig. 1. The axiom system RPAC.

Lemma 1. All theorems of RPAC are valid in all relevant epistemic models.

Proof. We prove only the cases for A7 and R7 explicitly. First, (M, s) 6|=[ϕ]Baψ
iff there is t such that E[ϕ]

a st and (M[ϕ], t) 6|= ψ iff there are t, u, v such that
Easu and Ruvt and (M, v) |= ϕ and (M, t) 6|=[ϕ]ψ iff (M, s) 6|= Ba(ϕ→[ϕ]ψ).

Second, to show that R7 preserves validity, assume that M(χ) ⊆M(Ba(ϕ→
χ)) and M(χ) ⊆M([ϕ]ψ). Let (M, s) |= χ. To prove that (M, s) |=[ϕ]CAψ, we



prove that for all A[ϕ]-paths from s ending in t, (M, t) |=[ϕ]ψ; using the second
assumption of the rule, this can be established by showing that (M, t) |= χ for
each such t. We show this by induction on the length of A[ϕ]-paths from s ending
in t. The base case s = t follows directly from our assumptions. Now assume
that we have a path (t1, . . . , tm, t) such that t1 = s and that (M, tm) |= χ. If

tm v t, then we are done. If E[ϕ]
A tmt, then we reason as follows. (M, tm) |= χ

entails that (M, tm) |= BA(ϕ→ χ) and E[ϕ]
A tmt entails that there are u, v such

that EAtmu, Ruvt and (M, v) |= ϕ. Hence, (M, t) |= χ. ut

Definition 5. A set of formulas Γ is closed iff ϕ ∈ Γ implies ψ ∈ Γ for all
subformulas ψ of ϕ, and

– CAϕ ∈ Γ only if {BACAϕ,BAϕ} ⊆ Γ ;
– [ϕ]r>0(ψ1, . . . , ψn) ∈ Γ only if {[ϕ]ψi | i ≤ n} ⊆ Γ ;
– [ϕ]BAψ ∈ Γ only if BA(ϕ→[ϕ]ψ) ∈ Γ ;
– [ϕ]CAψ ∈ Γ only if [ϕ]BACAψ ∈ Γ and [ϕ]ψ ∈ Γ ;
– [ϕ][ψ]χ ∈ Γ only if [ϕ⊗[ϕ]ψ]χ ∈ Γ ;

A set of formulas is a prime RPAC-theory iff it is closed under forming con-
junctions, closed under RPAC-provable implications, and satisfies the property
that if ϕ ∨ ψ is in the set, then ϕ or ψ is in the set.

Definition 6. Let Φ be a finite closed set. The canonical model for Φ is a struc-
ture MΦ = (S,v, L,R,C,E, V ) where

– S is the set of all prime RPAC-theories;
– v is set inclusion;
– Γ ∈ L iff Γ contains all theorems of L;
– RΓ∆Σ iff, for all ϕ→ ψ ∈ Γ , if ϕ ∈ ∆, then ψ ∈ Σ;
– CΓ∆ iff, for all ¬ϕ ∈ Γ , ϕ 6∈ ∆;
– E(a)Γ∆ iff, for all Baϕ ∈ Φ ∩ Γ , ϕ ∈ ∆;
– V (p) = {Γ | p ∈ Γ}.

We define F (a)Γ∆ iff, ϕ ∈ ∆ for all Baϕ ∈ Γ . The satisfaction relation is
defined just as for epistemic models.

Note that the canonical epistemic accessibility relations E(a) are defined
using Baϕ ∈ Φ, not arbitrary Baϕ; the latter defines the auxiliary relations F (a).
As in epistemic models, EA denotes the union of E(a) for a ∈ A. E∗(A) is the
reflexive transitive closure of the union of ⊆ with E(A). Note that F (a) ⊆ E(a)
for all a, but the converse inclusion does not hold.

The notation `RPAC ϕ means that ϕ is a theorem of RPAC; we will use only
` ϕ in this paper. We call a pair of sets of formulas (Γ,∆) independent iff there
are no finite non-empty Γ ′ ⊆ Γ and ∆′ ⊆ ∆ such that `

∧
Γ ′ →

∨
∆′.

Lemma 2 (Pair Extension). If (Γ,∆) is independent, then there is a prime
theory Σ ⊇ Γ disjoint from ∆.



Proof. This is a corollary of the well-known fact that each non-overlapping filter-
ideal pair in a distributive lattice is extended by a non-overlapping prime filter-
ideal pair. This result is usually stated for non-empty filters and ideals. However,
if Γ is empty, then we can set Σ := ∅ and if Γ is non-empty but ∆ is empty,
then we set Σ := Fm. It is clear that both Fm and ∅ are prime theories. ut

Lemma 3. For all Φ, MΦ is a relevant epistemic model.

Definition 7. For all finite Φ, we define the following:

– If Γ is a prime theory not disjoint from Φ, then ΓΦ :=
∧

(Γ ∩ Φ);
– if X is a non-empty set of prime theories, then XΦ :=

∨
Γ∈X ΓΦ.

If Φ is clear from the context, then we write just Γ and X.

Note that X is well-defined even for infinite X since Φ is finite. Note also
that Γ ∈ X implies X ∈ Γ (since if the assumption holds then Γ → X is a
theorem and obviously Γ ∈ Γ ).

Remark 2. Formulas of the form ΓΦ and XΦ will be used in the proof of the
Truth Lemma, in the cases for CAϕ and [ϕ]CAψ. In that particular context,
each Γ we will need to “characterize” by ΓΦ will have a non-empty intersection
with Φ and each X considered will be non-empty. For this reason, we do not need
to account for empty conjunctions and disjunctions and so, unlike in [23,24], we
do not need the presence of the “extensional” truth constant > and ⊥ in the
language.

Definition 8 (Complexity). We define the following complexity function c :
Fm→ N:

1. c(p) = 1 for all p ∈ Pr;
2. c(t) = 1;
3. c(f(ϕ1, . . . , ϕn)) = (

∑n
i=1 c(ϕi)) + 1 for all f ∈ {¬,∧,→,⊗, Ba, CA};

4. c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ).

The closure of Γ is the smallest closed superset of Γ .

It can be shown that the closure of any finite set is finite. Our definition of
the complexity function is virtually the same as the definition used in [26], for
example.

Lemma 4. For all ϕ,ψ and χ:

1. c(ϕ) > c(ψ) if ψ is a proper subformula of ϕ;
2. c([ϕ]r>0(ψ1, . . . , ψn) > r>0([ϕ]ψ1, . . . ,[ϕ]ψn);
3. c([ϕ]Baψ) > c(ϕ→[ϕ]ψ) + 1;
4. c([ϕ]CAψ) > c([ϕ]ψ);
5. c([ϕ][ψ]χ) > c([ϕ⊗[ϕ]ψ]χ).



Lemma 5 (Truth Lemma). For all M, all finite closed Φ, all formulas ϕ ∈ Φ
and all prime theories Γ :

ϕ ∈ Γ ⇐⇒ (MΦ, Γ ) |= ϕ . (10)

Proof. Induction on c(ϕ). The base case is trivial. The rest of the cases are
established as follows. Our induction hypothesis is that (10) holds for all ϕ such
that c(ϕ) < c(θ) for some fixed θ. We prove that (10) holds for θ. We reason by
cases.

The cases where the main connective of θ is r>0 are established as usual in
completeness proofs for R (these cases use the assumption that Φ is closed under
subformulas), and the case for θ = Baϕ is established as usual in modal logic.

If θ = CAϕ, then we reason as follows. To prove the left-to-right implication,
we will use the following facts:

(i) if CAϕ ∈ Γ ∩ Φ and EAΓ∆, then CAϕ ∈ ∆; and
(ii) if CAϕ ∈ Γ ∩Φ, then each A-path from Γ ends with ∆ such that CAϕ ∈ ∆.

Fact (i) is established as follows: If CAϕ ∈ Φ, then BACAϕ ∈ Φ and so BaCAϕ ∈
Φ for all a ∈ A. If EAΓ∆, then EaΓ∆ for some a ∈ A. Hence, if CAϕ ∈ Γ , then
BaCAϕ ∈ Γ using A3 and R3. Hence, CAϕ ∈ ∆ by the definition of Ea and
properties of prime theories.

Fact (ii) is established by induction on the length of A paths from Γ . The
base case of the one-element path is trivial: CAϕ ∈ Γ by assumption and ϕ ∈ Γ
by A3. Now assume that we have a path (∆1, . . . ,∆m, ∆) such that ∆1 = Γ
and that the claim holds for (∆1, . . . ,∆m). Then CAϕ ∈ ∆m. If ∆m ⊆ ∆, then
clearly CAϕ ∈ ∆ and so ϕ ∈ ∆ by A3. If EA∆m∆, then CAϕ ∧ ϕ ∈ ∆ by (i).

Now assume that CAϕ ∈ Γ ∩Φ and EC(A)Γ∆. The latter means that there is
an A-path from Γ ending with ∆. Hence, ϕ ∈ ∆ by (ii). Since ∆ was arbitrary,
we obtain (M, Γ ) |= CAϕ.

Conversely, let X be the set of ∆ such that there is an A-path (Γ, . . . ,∆).
Assume that (M, ∆) |= ϕ for all ∆ ∈ X. By the induction hypothesis, ϕ ∈ ∆ for
all ∆ ∈ X. Since ϕ ∈ Φ, Γ and indeed ∆ for all ∆ ∈ X and X are defined. (We
know that at least Γ ∈ X.) We prove that

(iii) ` Γ → X;
(iv) ` X → ϕ;
(v) ` X → BAX.

Using R6, (iv) and (v) entail ` X → CAϕ, which together with (iii) gives
` Γ → CAϕ. Hence, CAϕ ∈ Γ .

Claims (iii) and (iv) are obvious. Claim (v) is established as follows. If 6`
X → BAX, then there are ∆ ∈ X and Θ such that ∆ ∈ Θ and BAX 6∈ Θ. Using
the Pair Extension Lemma, there is Σ such that FAΘΣ and X 6∈ Σ. But since
∆ ∈ Θ, FAΘΣ implies that EA∆Σ. (FAΘΣ entails that EaΘΣ for some a ∈ A.
Assume that Baχ ∈ ∆∩Φ. Then ` ∆→ Baχ and so Baχ ∈ Θ. This means that
χ ∈ Σ.) Hence, ∆ ∈ X implies Σ ∈ X, contradicting X 6∈ Σ.

Now we consider the case θ = [ϕ]ψ. We reason by cases, depending on the
form of ψ:



Case 1. θ = [ϕ]p. Then θ ∈ Γ iff p ∈ Γ (using A4) iff (M, Γ ) |= p (using
the induction hypothesis) iff (M[ϕ], Γ ) |= p (using the definition of M[ϕ]) iff
(M, Γ ) |=[ϕ]p (using the definition of |=).

Case 2. θ = [ϕ]r(ψ1, . . . , ψn). All sub-cases of this form are established using
the definition of a closed set (closure under subformulas), Lemma 4, and the
fact that update with ϕ does not modify the underlying Routley–Meyer model
(S,v, L,R,C, V ), just the epistemic accessibility relations Ea.

Case 3. θ =[ϕ]Baψ. Then θ ∈ Γ iff Ba(ϕ→[ϕ]ψ) ∈ Γ (using A7) iff (M, Γ ) |=
Ba(ϕ → [ϕ]ψ) (using the induction hypothesis, relying on the definition of a
closed set and item 3 of Lemma 4) iff for all Σ,Σ′ and ∆, EAΓΣ & RΣΣ′∆

and (M, Σ′) |= ϕ only if (M[ϕ], ∆) |= ψ (definition of |=) iff, for all ∆, E[ϕ]
A Γ∆

only if (M[ϕ], ∆) |= ψ (definition of E[ϕ]
A ) iff (M[ϕ], Γ ) |= Baψ (definition of |=)

iff (M, Γ ) |=[ϕ]Baψ (definition of |=).

Case 4. θ =[ϕ]CAψ. We will use the following two facts:

(vi) If [ϕ]CAψ ∈ Φ ∩ Γ and E[ϕ]
A Γ∆, then [ϕ]CAψ ∈ ∆ and [ϕ]ψ ∈ ∆; and

(vii) if [ϕ]CAψ ∈ Φ ∩ Γ , then each A[ϕ]-path from Γ ends with ∆ such that
[ϕ]CAψ ∈ ∆ and [ϕ]ψ ∈ ∆.

Fact (vi) is established as follows. If E[ϕ]
A Γ∆, then there is a ∈ A such that

E[ϕ]
a Γ∆, which means that there are Σ1, Σ2 such that EaΓΣ1, RΣ1Σ2∆ and

(M, Σ2) |= ϕ (note that E[ϕ]
a is defined using |=). Using the induction hypothesis

(ϕ is a subformula of θ), we get ϕ ∈ Σ2. Now[ϕ]CAψ ∈ Γ entails[ϕ]BaCAψ ∈ Γ
and [ϕ]Baψ ∈ Γ (using A3 and R5) and this entails Ba(ϕ → [ϕ]CAψ) ∈ Γ
and Ba(ϕ → [ϕ]ψ) ∈ Γ (using A7). It follows from the definition of a closed
set that {Ba(ϕ → [ϕ]CAψ), Ba(ϕ → [ϕ]ψ)} ⊆ Φ, and so we can infer that
ϕ → [ϕ]CAψ ∈ Σ1 and ϕ → [ϕ]ψ ∈ Σ1, which also means that [ϕ]CAψ ∈ ∆
and [ϕ]ψ ∈ ∆.

Fact (vii) is established by induction on the length of A[ϕ]-paths from Γ .
The base case of a one-element path is trivial: [ϕ]CAψ is assumed to be in
Γ and [ϕ]ψ ∈ Γ by A3. Now assume that (vii) holds for all A[ϕ]-paths of
length m, where 2 ≤ 1 < n and take (∆1, . . . ,∆n), where ∆1 = Γ . We know

that CAϕ ∈ ∆n−1. If ∆n ⊆ ∆n−1, then we are done. If E[ϕ]
A ∆n−1∆n, then

[ϕ]CAϕ ∈ ∆n thanks to (vi).

Now assume that[ϕ]CAψ ∈ Γ and that E[ϕ]
A Γ∆. The latter means that there

is a A[ϕ]-path (Γ1, . . . , Γn) such that Γ1 = Γ and Γn = ∆. By (vii), [ϕ]ψ ∈ ∆.
By the induction hypothesis, (M, ∆) |= [ϕ]ψ (see item 5 of Lemma 4) and so
(M[ϕ], ∆) |= ψ. Since ∆ was arbitrary, we obtain (M[ϕ], Γ ) |= CAϕ. This means
that (M, Γ ) |=[ϕ]CAψ.

Conversely, let X be the set of ∆ such that there is an A[ϕ]-path (Γ, . . . ,∆).
Assume that (M, Γ ) |=[ϕ]CAψ, which means that (M[ϕ], ∆) |= ψ for all ∆ ∈ X.
By the induction hypothesis, [ϕ]ψ ∈ ∆ for all ∆ ∈ X. Since [ϕ]ψ ∈ Φ, Γ and
indeed ∆ for all ∆ ∈ X and X are defined. (We know that at least Γ ∈ X.) We
prove that



(viii) ` Γ → X;

(ix) ` X →[ϕ]ψ;

(x) ` X → BA(ϕ→ X).

Using R7, (ix) and (x) entail that ` X → [ϕ]CAψ, which together with (viii)
entails ` Γ →[ϕ]CAψ. This means that [ϕ]CAψ ∈ Γ .

Claim (viii) follows from Γ ∈ X. Claim (ix) follows from the assumption that
[ϕ]ψ ∈

⋂
X. Claim (x) is established as follows. If 6` X → BA(ϕ → X), then

there is ∆ ∈ X such that 6` ∆ → BA(ϕ → X). Hence, by the Pair Extension
Lemma, there is Θ such that ∆ ∈ Θ and BA(ϕ → X) 6∈ Θ. The latter means
that there is a ∈ A and Σ such that FaΘΣ and ϕ → X 6∈ Σ. The latter here
means that there are Π,Ω such that RΣΠΩ, ϕ ∈ Π and X 6∈ Ω. Using the
induction hypothesis, we obtain (M, Π) |= ϕ, and so E[ϕ]

A ∆Ω (since FAΘΣ and
∆ ∈ Θ imply that EA∆Σ). Since ∆ ∈ X, it follows that Ω ∈ X, contradicting
X 6∈ Ω.

Case 5. θ =[ϕ][ψ]χ. We will use the following fact:

(xi) For a ∈ G and all formulas α, β: E[α][β]
a = E[α⊗[α]β]

a .

(xi) needs the assumption of full associativity (7):

E[α][β]
a ∆Σ ⇐⇒ ∃Σ1Σ2(E[α]

a ∆Σ1 & RΣ1Σ2Σ & (M[α], Σ2) |= β)

⇐⇒ ∃Θ1Θ2Σ2(Ea∆Θ1 & RΘ1Θ2Σ2Σ &

(M, Θ2) |= α & (M, Σ2) |=[α]β)

⇐⇒ ∃Θ1Θ2Σ2(Ea∆Θ1 & RΘ1(Θ2Σ2)Σ &

(M, Θ2) |= α & (M, Σ2) |=[α]β)

⇐⇒ ∃Θ1Θ3(Ea∆Θ1 & RΘ1Θ3Σ & (M, Θ3) |= α⊗[α]β)

⇐⇒ E[α⊗[α]β]
a ∆Σ

Now we reason as follows: θ ∈ Γ iff[ϕ⊗[ϕ]ψ]χ ∈ Γ (using A8) iff (M, Γ ) |=
[ϕ ⊗[ϕ]ψ]χ (induction hypothesis, relying on item 6 of Lemma 4 and the
definition of a closed set) iff (M[ϕ⊗[ϕ]ψ], Γ ) |= χ iff (M[ϕ][ψ], Γ ) |= χ (since
M[ϕ⊗[ϕ]ψ] = M[ϕ][ψ] by (xi)) iff (M, Γ ) |=[ϕ][ψ]χ.

ut

Theorem 1. ϕ is a theorem of RPAC iff ϕ is valid in all relevant epistemic
models.

Proof. Soundness follows from Lemma 1. Completeness is established using the
Pair Extension Lemma, the Truth Lemma and Lemma 3: If ϕ is not a theorem,
then neither is t→ ϕ. Take Φ the closure of {t→ ϕ} and consider MΦ, which is
a relevant epistemic model by Lemma 3. By the Pair Extension Lemma, there
is a Γ ∈ L such that ϕ 6∈ Γ . By the Truth Lemma, ϕ is not valid in MΦ. ut



4 Information models

The semantics used in the previous sections builds on the framework introduced
in [25], which has been in this paper adjusted to the background logic R and
extended with common knowledge. Another approach to a public announcement
logic with a substructural basis was developed in [14]. It turns out that these two
approaches are closely related, which will be discussed in detail in this section.
The merit of the alternative perspective that we will now describe is that it will
allow us in the next section to enrich our logic with a further dimension that
forms a crucial ingredient of informational dynamics. In particular, this perspec-
tive will allow us to express in the object language not only statements but also
questions. For definition of the semantic models of this alternative framework
we will need the following notion of a situation.

Definition 9. Let (P,≤) be a complete lattice, where for any X ⊆ P ,
⊔
X

denotes the join of X. An element s ∈ P is called a situation in (P,≤) iff it is
completely join-irreducible, i.e. iff for every X ⊆ P , s =

⊔
X only if s = x, for

some x ∈ X. The set of situations in (P,≤) will be denoted as Sit(P ). For any
x ∈ P , the set of situations below x, i.e. the set {s ∈ Sit(P ) | s ≤ x}, will be
denoted as Sit(x).

Note that if meet distributes over arbitrary joins in a complete lattice (P,≤)
then for every situation s ∈ Sit(P ) and every X ⊆ P , if s ≤

⊔
X then s ≤ x for

some x ∈ X.

Definition 10. An information model for G is N = (P,≤, 1, ·, C, σ, V ) such
that (a) 〈P,≤〉 is a complete lattice; (b) every state from P is identical to the
join of a set of situations, that is, for any x ∈ P , x =

⊔
Sit(x); (c) 1 is an

identity with respect to the binary operation · on P , i.e. 1 ·x = x; (d) u (i.e. the
finite meet) and · distribute over arbitrary joins from both directions; (e) C is
symmetric binary relation on P , and Cx

⊔
Y iff there is y ∈ Y such that Cxy;

(f) σ is a map that assigns to each agent a ∈ G a function σ(a) (we will often
write σa) from situations to states; (g) if s, t are situations such that s ≤ t then
σa(s) ≤ σa(t); (h) V (p) ∈ S, for every atomic formula p.

P represents a set of information states, x ≤ y expresses that the state x is an
informational refinement of the state y (i.e. x is informationally stronger than
y), 1 is called a logical state, x · y is called fusion of the states x and y, Cxy says
that x is compatible with y, σ is called an information state map, V is a valuation
that assigns to every atomic formula an informational content, represented as a
state in P .

Note that distributivity of fusion over joins implies its monotonicity, i.e.
x1 ≤ x2 and y1 ≤ y2 only if x1 · y1 ≤ x2 · y2. Moreover, there is the least element
0 in N that can be defined as

⊔
∅.

Definition 11. A relevant information model for G is an information model
N = (P,≤, 1, ·, C, σ, V ) for G where (i) fusion is associative, commutative, and
x ≤ x ·x, (ii) for every situation s ∈ Sit(P ) there is a state x ∈ P such that Cxy
if and only if s ≤ y, (iii) for all states x, y, z ∈ S, if Cx(y · z) then C(x · y)z.



Let σ be an inquisitive state map, A ⊆ G a set of agents, and s a situation.
We define σA(s) =

⊔
a∈A σa(s). Moreover, we define:

σ∗A(s) =
⊔
{t ∈ S | ∃t1, . . . , tn ∈ Sit(S): t1 = s, ti+1 ≤ σA(ti), tn = t }.

The support relation between pointed relevant information models and for-
mulas from L is defined as follows:

– (N, x) 
 p iff x ≤ V (p),
– (N, x) 
 t iff x ≤ 1,
– (N, x) 
 ¬ϕ iff, ∀y, if Cxy, then (N, y) 1 ϕ
– (N, x) 
 ϕ ∧ ψ iff (N, x) 
 ϕ and (N, x) 
 ψ,
– (N, x) 
 ϕ→ ψ iff, ∀y, if (N, y) 
 ϕ, then (N, x · y) 
 ψ,
– (N, x) 
 ϕ⊗ ψ iff, ∃yz, (N, y) 
 ϕ, (N, z) 
 ψ, and x ≤ y · z,
– (N, x) 
 Baϕ iff, for all s ∈ Sit(x), (N, σa(s)) 
 ϕ;
– (N, x) 
 CAϕ iff, for all s ∈ Sit(x), (N, σ∗A(s)) 
 ϕ;
– (N, x) 
 [ϕ]ψ iff (N[ϕ], x) 
 ψ, where N[ϕ] differs from N only in that
σ[ϕ]a (s) =

⊔
{σa(s) · y | (N, y) 
 ϕ}.

A formula ϕ is valid in a relevant information model N if (N, 1) 
 ϕ. Note that
since 1 is an identity for fusion an implication ϕ → ψ is valid in N iff ψ is
supported by all states of N that support ϕ.

Lemma 6. For any relevant information model N and any formula ϕ from L,
there is a state infoN(ϕ) in N such that N, x 
 ϕ iff x ≤ infoN(ϕ).

Proof. The claim follows from the fact that for any ϕ from L the set of states
supporting ϕ contains 0, is downward closed and closed under

⊔
. This can be

shown by induction on ϕ. We will consider only the inductive steps for modal
operators. The inductive steps for ¬,∧,→ are discussed in [15]. Support by
0 and downward persistence for the operators Ba, CA,[ϕ] is straightforward.
Let us prove that the set of states supporting Baϕ is closed under

⊔
. Assume

(N, xi) 
 Baϕ, for each i ∈ I. Take any s ∈ Sit(
⊔
i∈I xi). Since s is a situation,

we obtain s ∈ Sit(xi), for some i ∈ I. It follows that (N, σa(s)) 
 ϕ. Hence
(N,

⊔
i∈I xi) 
 Baϕ. The inductive step for CA is analogous and the step for[ϕ]

is straightforward.

The state infoN(ϕ), the existence of which is guaranteed by the previous lemma,
represents the informational content of the formula ϕ in N. (If no confusion arises
the superscript will be omitted.) Its existence allows us to characterize update
of states in the following simplified way.

Lemma 7. σ[ϕ]a (s) = σa(s) · info(ϕ).

The semantics based on relevant information models is closely related to the
semantics based on relevant epistemic models. In order to spell out the exact
connection we will use the notion of duality of two semantic frameworks intro-
duced in [15]. Let S1 and S2 be two semantic frameworks based respectively on



some classes of models C1 and C2 and equipped with semantic clauses deter-
mining which formulas are valid in which models. We say that models M ∈ C1

and N ∈ C2 are L-equivalent if they validate exactly the same formulas from
L. We say that the semantic system S2 is a dual counterpart of S1 w.r.t. the
language L if there are two maps f : C1 → C2 and g : C2 → C1 such that (a)
every M ∈ C1 is L-equivalent to f(M), and (b) for every M ∈ C1 and N ∈ C2

it holds that g(f(M)) is isomorphic to M and f(g(N)) is isomorphic to N.
The main goal of this section is to show that the semantics based on relevant

information models is a dual counterpart of the semantics based on relevant epis-
temic models. (As already pointed out, the added value of this dual counterpart
is that it will allow us to capture not only statements but also questions.) This
result extends the results from [15] that established similar duality between in-
formation models and Routley–Meyer models for a basic propositional language
involving only the operators {∧,→,¬}.

We will now describe an operation that transforms relevant epistemic models
into relevant information models. We will use the following notation: Let (S,v)
be a partial order and s ∈ S. Then UpS denotes the set of all up-sets of S, and
s↑ denotes the set {t ∈ S | s v t}. Note that the sets of the form s↑ are exactly
the situations in the complete lattice (UpS,⊆).

Definition 12. Let M = (S,v, L,R,C,E, V ) be a relevant epistemic model.
We define a corresponding structure Mi = (P i,≤i, 1i, ·i, Ci, σi, V i), where P i =
UpS; ≤i=⊆; 1i = L; x ·i y = {s ∈ S | ∃t ∈ x, u ∈ y such that Rtus}; Cixy iff
there are s ∈ x and t ∈ y such that Cst; σia(s↑) = Ea(s); V i = V .

Lemma 8. If M is a relevant epistemic model then Mi is a relevant information
model.

Theorem 2. Mi is L-equivalent to M, for every relevant epistemic model M.

Proof. Let M = (S,v, L,R,C,E, V ) be a relevant epistemic model, and Mi =
(P i,≤i, 1i, ·i, Ci, σi, V i) the corresponding relevant information model. We have
to show that for any θ from L, (Mi, L) 
 θ iff for all s ∈ L, (M, s) |= θ. We
prove something more general:

(*) For any X ∈ UpS, (Mi, X) 
 θ iff, for all s ∈ X, (M, s) |= θ.

This can be proved by induction on θ. We will go only through the inductive
steps for the operators Ba, CA, and [ϕ]. Take any X ∈ UpS. As the induction
hypothesis, assume that the claim (*) holds for some given formulas ϕ,ψ.

Assume that θ = Baϕ. Then it holds: (Mi, X) 
 Baϕ iff, for all s ∈ X,
(Mi, σia(s↑)) 
 ϕ iff, for all s ∈ X, (Mi, Ea(s)) 
 ϕ iff (by induction hypothesis),
for all s ∈ X and for all t ∈ Ea(s), (M, t) |= ϕ iff, for all s ∈ X, (M, s) |= Baϕ.

Assume that θ = CAϕ. It holds that (σiA)∗(s↑) = E∗A(s) so we can proceed
in the same way as in the case of Baϕ.

Finally assume that θ =[ϕ]ψ. It can be shown that (Mi)[ϕ] = (M[ϕ])i. So,
we can proceed as follows: (Mi, X) 
[ϕ]ψ iff ((Mi)[ϕ], X) 
 ψ iff ((M[ϕ])i, X) 

ψ iff, for all s ∈ X, (M[ϕ], s) |= ψ iff, for all s ∈ X, (M, s) |=[ϕ]ψ.



Now we will define an inverse operation that transforms relevant information
models into relevant epistemic models.

Definition 13. Let N = (P,≤, 1, ·, C, σ, V ) be a relevant information model.
We define a corresponding structure Ne = (Se,ve, Le, Re, Ce, Ee, V e), where
Se = Sit(P ); s ve t iff t ≤ s; Le = Sit(1); Restu iff u ≤ s · t; Cest iff Cst;
Eea(s) = Sit(σa(s)); V e(p) = Sit(V (p)).

Lemma 9. If N is a relevant information model then Ne is a relevant epistemic
model.

Lemma 10. Let M = (S,v, L,R,C,E, V ) be a relevant epistemic model and let
Mie = (Sie,vie, Lie, Rie, Cie, Eie, V ie). Then the map assigning to any s ∈ S the
set s↑ is a bijection between S and Sie. Moreover, the following holds: (a) s v t
iff s↑ vie t↑, (b) s ∈ L iff s↑ ∈ Lie, (c) Rstu iff Ries↑t↑u↑, (d) Cst iff Cies↑t↑,
(e) East iff Eiea s

↑t↑, (f) s ∈ V (p) iff s↑ ∈ V ie(p).

Proof. For an illustration, we will just show how to prove (c) and (e). The proof
of (c) goes as follows: Ries↑t↑u↑ iff u↑ ≤i s↑ ·i t↑ iff u↑ ⊆ s↑ ·i t↑ iff u ∈ s↑ ·i t↑ iff
∃v ∈ s↑∃w ∈ t↑: Rvwu iff Rstu. (e) can be proved in the following way: East iff
t ∈ σia(s↑) iff t↑ ≤i σia(s↑) iff Eiea s

↑t↑.

Lemma 11. Let N = (P,≤, 1, ·, C, σ, V ) be a relevant information model and let
Nei = (P ei,≤ei, 1ei, ·ei, Cei, σei, V ei). The map assigning to any x ∈ P the set
Sit(x) is a bijection between P and P ei. Moreover, the following holds: (a) x ≤ y
iff Sit(x) ≤ei Sit(y), (b) Sit(1) = 1ei, (c) Sit(x · y) = Sit(x) ·ei Sit(y), (d) Cxy
iff CeiSit(x)Sit(y), (e) Sit(σa(s)) = σeia (Sit(s)), (f) Sit(V (p)) = V ei(p).

Lemmas 10 and 11 lead directly to the following theorem.

Theorem 3. M is isomorphic to Mie, for every relevant epistemic model M,
and N is isomorphic to Nei, for every relevant information model N.

Theorems 3 and 2 together show that the the semantics based on relevant
information models is indeed a dual counterpart of the semantics based on rel-
evant epistemic models. As a consequence, RPAC is also complete with respect
to relevant information models.

5 Questions

In this section we will extend the language L so that it will be possible to express
not only statements but also questions. To this end, we will borrow some tech-
niques from inquisitive semantics (see, e.g., [7,5]). Let Linq denote the language
L enriched with a binary connective

>

called inquisitive disjunction. The oper-
ator

>

can be embedded arbitrarily under any operator with the exception of
the public announcement modality. We will assume that[ϕ]ν is in the language
Linq only if ϕ is a formula of the language L (but ν may contain inquisitive
disjunction).



The formulas of the language L will be called declarative. The connective
>

produces questions from declarative formulas. Given declarative formulas ϕ,ψ,
the formula ϕ

>

ψ expresses the question whether ϕ or ψ. This can be contrasted
with ϕ ∨ ψ which expresses the statement that ϕ or ψ. (Recall that ϕ ∨ ψ is
defined as ¬(¬ϕ ∧ ¬ψ)). The support condition for this additional connective is
defined as follows:

(N, x) 
 ν

>

µ iff (N, x) 
 ν or (N, x) 
 µ.

This captures the idea that an information state resolves a question if it provides
some answer to the question. Compare the clause to the support condition for
the declarative disjunction ∨ spelled out in the following lemma.

Lemma 12. (N, x) 
 ν ∨ µ iff for all s ∈ Sit(x), (N, s) 
 ν or (N, s) 
 µ.

In the language Linq we can express directly, for example, that the agent’s in-
formation state resolves the question ν (Baν), that the question is resolved by
the common knowledge in a group (CAν), or that ν would be resolved after the
public announcement of ϕ ([ϕ]ν).

It is obvious from the semantic clause for inquisitive disjunction that the set
of states supporting ν

>

µ is the union of the set of states supporting ν and
the set of states supporting µ. As a consequence, Lemma 6 cannot be formu-
lated for the whole language Linq. Sets of states supporting formulas of Linq are
not in general closed under join, though they are always downward closed and
nonempty (contain always the least element).

Let InqRPAC be the logic consisting of all formulas from the language Linq
that are valid in all relevant information models. In formulation of an axiomatic
system for InqRPAC we have to be careful to specify which schemata of RPAC
are semantically valid for the whole language Linq and which must be restricted
to the declarative language L. In particular, we can take the axiomatization of
RPAC as specified in Fig. 1 and assume that we can substitute any formulas of
Linq for the variables in the axiom and rule schemata, with the exception of the
variables occurring in the scope of the public announcement modality and in the
double negation axiom (which is among the axioms of R), the reduction axiom
for the belief modality (A7), and the rules (R6) and (R7). That is, the exception
concerns the public announcement modality and the following axioms and rules:

(DN) ¬¬ϕ→ ϕ (A7) [ϕ]Baψ ↔ Ba(ϕ→[ϕ]ψ)

(R6)
ν → (ϕ ∧BAν)

ν → CAϕ
(R7)

ν → BA(ϕ→ ν) ν →[ϕ]ψ

ν →[ϕ]CAψ

To secure soundness we must assume that only declarative formulas can be
substituted for ϕ and ψ in these four schemata (but any formula of Linq can be
substituted for ν). Let us illustrate the reason behind this restriction on the rule
R6. Assume that ν → (ϕ∧BAν) is valid in a relevant information model N and
assume that N, x 
 ν. Then N, x 
 ϕ∧BAν. Let s ∈ Sit(x). Then ϕ is supported
by every state in {t ∈ P | ∃t1, . . . , tn ∈ Sit(P ): t1 = s, ti+1 ≤ σA(ti), tn = t }.



Since we assume that ϕ is in L, it is supported also by the join of this set, i.e. by
σ∗A(s). Since this holds for every s ∈ Sit(x), we obtain N, x 
 CAϕ as desired.
Hence, ν → CAϕ is valid in N.

The system for InqRPAC consists of the system for RPAC, adjusted to the
language Linq in the just described way, and extended with the axioms in Fig. 2
that characterize inquisitive disjunction. Note that while ν, µ, θ range over arbi-
trary formulas of Linq, ϕ (in the axioms Inq7 and Inq10) is again restricted to
formulas of L. The axioms Inq1-Inq3 are the standard (introduction and elim-
ination) axioms for disjunction. The axioms Inq4-Inq10 specify how the other
operators of the language distribute over inquisitive disjunction. Note that the
inverse implications of Inq4-Inq10 are provable from the other axioms.

(Inq1) ν → ν

>

µ
(Inq2) µ→ ν

>

µ
(Inq3) ((ν → θ) ∧ (µ→ θ))→ ((ν

>

µ)→ θ)
(Inq4) ¬(ν

>

µ)→ (¬ν ∧ ¬µ)
(Inq5) (θ ∧ (ν

>

µ))→ ((θ ∧ ν)
>

(θ ∧ µ))
(Inq6) (θ ⊗ (ν

>

µ))→ ((θ ⊗ ν)
>

(θ ⊗ µ))
(Inq7) (ϕ→ (ν

>

µ))→ ((ϕ→ ν)

>

(ϕ→ µ)) (for declarative ϕ)
(Inq8) Ba(ν

>

µ)→ (Baν ∨Baµ)
(Inq9) CA(ν

>

µ)→ (CAν ∨ CAµ)
(Inq10) [ϕ](ν

>

µ)→ ([ϕ]ν

>

[ϕ]µ) (for declarative ϕ)

Fig. 2. The axioms for inquisitive disjunction in the system for InqRPAC.

Lemma 13. The system for InqRPAC is sound with respect to all relevant in-
formation models.

We can prove completeness of the system InqRPAC using a strategy that is
common in inquisitive logic (see, e.g., [15]). In our specific setting this strategy
amounts to the reduction of completeness for InqRPAC to completeness for RPAC
(which was proved in Section 3). Such a reduction is possible due to two char-
acteristic properties of the logic that needs to be proved: (1) disjunctive normal
form, and (2) disjunction property.

Lemma 14. For any formula ν of Linq there are formulas ϕ1, . . . , ϕn of L such
that ν ↔ (ϕ1

>

. . .

>

ϕn) is a theorem of InqRPAC.

Proof. This is a straightforward extension of a standard theorem in inquisitive
logic. (For more details, see, e.g., [13].) One can proceed by induction on the
complexity of ν using the distributive axioms Inq4-Inq10 and their converses.

Lemma 15. Let ν, µ be formulas of Linq. Then ν

>

µ is valid in every relevant
information model only if ν is valid in every relevant information model or µ is
valid in every relevant information model.



Proof. To prove this claim, we will adapt to our current setting a technique devel-
oped in [13]. For any relevant information models N1 = (P1,≤1, 11, ·1, C1, σ1, V1)
and N2 = (P2,≤2, 12, ·2, C2, σ2, V2) we can define their product N1 × N2 =
(P,≤, 1, ·, C, σ, V ) where P = P1 × P2 (the cartesian product of P1 and P2);
(x, y) ≤ (v, w) iff x ≤1 v and y ≤2 w; 1 = (11, 12); (x, y) · (v, w) = (x ·1 v, y ·2
w); C(x, y)(v, w) iff C1xv or C2yw; σa((s, t)) = (σ1(a)(s), σ2(a)(t)); V (p) =
(V1(p), V2(p)). It can be shown that N1 × N2 is again a relevant information
model. Assume that 01 is the least element of N1 and 02 is the least element of
N2. The following holds for any formula ν of Linq:

(a) (N1 ×N2, (x, 02)) 
 ν iff (N1, x) 
 ν,
(b) (N1 ×N2, (01, y)) 
 ν iff (N2, y) 
 ν.

These claims can be proved by induction on the complexity of ν. For an illustra-
tion, let us consider the inductive step for[ϕ]. Assume that (a) and (b) hold for
some ϕ from L and µ from Linq. Using the induction hypothesis it can be shown
that (N1 × N2)[ϕ] = N[ϕ]

1 × N[ϕ]
2 . Using this fact we can prove the inductive

step for [ϕ] as follows: (N1 ×N2, (x, 02)) 
[ϕ]µ iff ((N1 ×N2)[ϕ], (x, 02)) 
 µ
iff (N[ϕ]

1 ×N[ϕ]
2 , (x, 02)) 
 µ iff (N[ϕ]

1 , x) 
 µ iff (N1, x) 
[ϕ]µ. The step for (b)
is analogous.

Assuming that we have proved (a) and (b) we can prove disjunction prop-
erty as follows. Assume that there is a relevant information model N1 in which
ν is not valid, and a relevant information model N2 in which µ is not valid.
Then (N1, 11) 1 ν and (N2, 12) 1 µ. If follows from (a) and (b) that (N1 ×
N2, (11, 02)) 1 ν and (N1×N2, (01, 12)) 1 µ. By persistence, (N1×N2, (11, 12)) 1
ν

>

µ and thus ν

>
µ is not valid in N1 ×N2.

Theorem 4. ν is a theorem of InqRPAC iff ν is valid in all relevant information
models.

Proof. The left-to-right direction amounts to Lemma 13. For the right-to-left
direction assume that ν is valid in all relevant information models. Then, by
disjunctive normal form (Lemma 14), there are ϕ1, . . . , ϕn in L such that ν ↔
(ϕ1

>

. . .

>

ϕn) is a theorem of InqRPAC. By soundness (Lemma 13), ϕ1

>

. . .

>

ϕn is
valid in all relevant information models. By disjunction property (Lemma 15), for
some i, ϕi is valid in all relevant information models. By duality between relevant
information models and relevant epistemic models for L (Theorems 3 and 2) we
obtain that ϕi is valid in every relevant epistemic model. By completeness of
RPAC w.r.t. relevant epistemic models (Theorem 1), ϕi is a theorem of RPAC.
Since InqRPAC is an extension of RPAC, ϕi is also a theorem of InqRPAC. It
follows that ϕ1

>

. . .

>

ϕn is a theorem of InqRPAC. Hence, ν is a theorem of
InqRPAC.

The semantics based on information models allows us to equip agents not
only with information states but also with issues.4 Then one can define also

4 In [6] issues were introduced in the context of standard inquisitive epistemic logic
based on classical logic. In [16] issues were introduced in the semantics of substruc-
tural inquisitive epistemic logic.



a public utterance of questions and the inquisitive analogues of the modalities
Ba and CA.5 This would be an interesting further extension of the language
Linq. However, the methods employed in this paper cannot be directly applied
to this extension. The reason is that completeness for such a language cannot
be straightforwardly reduced to completeness of its non-inquisitive fragment,
which was possible in the case of the language Linq. The inquisitive analogue
of Ba was studied in the context of substructural inquisitive logics in [16]. The
investigation of the inquisitive analogue of CA is left for future research.

6 Conclusion

This paper can be seen as a further expansion of our previous work on modal
and inquisitive substructural logics [13,14,15,16,24,25]. In particular, we have
extended the relevant logic R with various epistemic operators and studied their
interactions. The main novelty of the paper is the incorporation of common
knowledge into this rich context. The main result of the paper is a complete-
ness of R, extended with a belief modality, public announcement and common
knowledge, with respect to a suitable relational semantics (Theorem 1). We also
considered an alternative semantics that allowed us to express also questions in
the object language and we presented a completeness proof also for this enriched
language (Theorem 4).
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16. V. Punčochář and I. Sedlár. Epistemic extensions of substructural inquisitive logics.
Journal of Logic and Computation, First Online, 2020.

17. G. Restall. Relevant and substructural logics. In Hanbook of the History of Logic,
Volume 7, pages 289–398. Elsevier, 2006.

18. U. Rivieccio. Bilattice Public Announcement Logic. In R. Goré, B. Kooi, and
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