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Abstract

We provide a complete binary implicational axiomatization of the pos-
itive fragment of Propositional Dynamic Logic. The intended application
of this result are completeness proofs for non-classical extensions of pos-
itive PDL. Two examples are discussed in this article, namely, a para-
consistent extension with modal De Morgan negation and a substructural
extension with the residuated operators of the Non-associative Lambek
calculus. Informal interpretations of these two extensions are outlined.

1 Introduction

Propositional Dynamic Logic PDL, introduced in [15] following the ideas of
[34], is a well known modal logic with applications in formal verification of
programs [17], dynamic epistemic logic [2] and deontic logic [28], for example.
PDL can be seen more generally as a logic for reasoning about structured actions
modifying various types of objects; for instance, programs modifying states of
the computer, information state updates or actions of agents changing the world
around them.

The study of PDL and its variants—propositional dynamic logics, PDLs—is
a research quite active until today. The bulk of this research, however, con-
centrates on logics extending the classical propositional calculus; the study of
non-classical PDLs is largely underdeveloped so far. Among the first contri-
butions to the study of non-classical PDLs were the articles by Leivant [24]
and Nishimura [31], studying intuitionistic PDLs. Intuitionistic PDLs were
also studied later in [9, 44].1 Other work in the area concentrates mainly on
many-valued PDLs. Liau [25] defines a general framework for fuzzy PDL and

∗Corresponding author.
1See also [19], where an intuitionistic epistemic logic with common knowledge is studied.

This logic can be seen as a {; ,∪, ?}-free fragment of intuitionistic PDL.
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shows that the  Lukasiewicz version has potential applications in decision the-
ory. Hughes et al. [18] introduce a Gödel-style fuzzy PDL for reasoning about
reliability of actions as means to achieve goals. Běhounek [8] sketches a gen-
eral framework for PDL with fuzzy actions and outlines its applications in rea-
soning about costs of program runs. Completeness results are not established
in these application-oriented papers. Teheux [41] formulates a finitely-valued
 Lukasiewicz PDL, provides a complete axiomatization, and applies the logic to
modelling the Rényi–Ulam searching game with errors. Madeira et al. [26, 27]
take a more general approach by considering PDL using residuated Kleene alge-
bras (axiomatization is not provided). Sedlár [37, 38] provides an axiomatization
of paraconsistent four-valued PDLs for reasoning about algorithmic modifica-
tions of database-like bodies of information that may be incomplete but also
inconsistent.2

In this article we take first steps towards a general study of non-classical
PDLs. We are ultimately interested in variants of PDL over non-classical ex-
tensions of the Distributive Lattice Logic DLL. Instead of studying such ex-
tensions individually, we focus first on positive PDL, a negation-free PDL-style
extension of DLL.3 The completeness result for positive PDL can then be
used as a building block in completeness proofs for combinations of positive
PDL with various non-classical extensions of DLL (including paraconsistent
logics, but also many distributive substructural logics [35, 33, 16]). Two exam-
ples are discussed in this article, namely, a paraconsistent extension of positive
PDL with modal De Morgan negation and a substructural extension with the
residuated operators of the Non-associative Lambek calculus.

The article is structured as follows. In Section 2, the positive fragment
PDL+ of PDL is defined alongside with the binary implicational proof system
PDL+. Section 3 introduces the canonical PDL+-structure. In Section 4 the
filtration of the canonical structure is defined and the Filtration Theorem is
established. The proof contains one of the main technical novelties of the ar-
ticle, namely, a modification of the standard proof of the Filtration Theorem
for PDL that relies heavily on the presence of Boolean negation in the lan-
guage. Filtration is then used to prove completeness of PDL+ with respect to
PDL+. Section 5 introduces an extension of PDL+ with De Morgan negation.
Completeness is established and an informal interpretation of the framework
is outlined. (We study a version of positive PDL with De Morgan negation
suitable for reasoning about updates of so-called Belnapian databases, thereby
showing that this version of PDL connects naturally with some of the central
ideas of Belnap’s classic papers [3, 4].) Section 6 studies extensions of PDL+

with the residuated operators (product, left division and right division) of the
Non-associative Lambek calculus. Completeness of four versions of Lambek
PDL is established. Three informal interpretations of the framework are out-
lined, namely, a linguistic interpretation (actions modify linguistic resources),

2A related contribution is Wansing’s [42] where a version of concurrent PDL with ‘negation’
of actions—distinct from Boolean complement—is studied.

3Our results on positive PDL extend the work of Dunn [11] who provides a binary impli-
cational axiomatization of DLL extended with � and ♦.
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an informational interpretation (actions modify bodies of information) and an
epistemic interpretation (actions modify information states of agents). Our re-
sults are summarized and some limitations of our approach are discussed in
Section 7.

2 Positive PDL

The language L contains two classes of expressions, namely, actions and formu-
las, defined by mutual induction:

Act A := a | A;A | A ∪A | A∗ | X?

Form X := p | X ∧X | X ∨X | [A]X | 〈A〉X

where a ∈ AAct (a countable set of ‘atomic actions’) and p ∈ Prop (a count-
able set of propositional variables). We assume familiarity with the informal
interpretation of the language; the reader is referred to [17, 164–167].

A consequence L-pair (here we use the terminology of Dunn [11]) is an
ordered pair of formulas, written as X ` Y . Logics defined in this article
are sets of consequence pairs (not sets of formulas or consequence relations).
This approach is standard in positive modal logic [11], general investigations of
non-Boolean negations [12] and some of the literature on the Lambek calculus
[10, 30].

A dynamic model is a couple M = 〈WM , J KM 〉 where W is a non-empty set
(of ‘states’) and J KM is a function such that

JAKM is a binary relation on W and

JXKM is a subset of W .

It is assumed that JA;BKM is the composition of JAKM and JBKM (in that order);
JA ∪ BKM is the union of JAKM and JBKM ; JA∗KM is the reflexive transitive
closure JAK∗M of JAKM and JX?KM is the identity relation on JXKM . JX ∧ Y KM
(JX ∨ Y KM ) is the intersection (union) of JXKM and JY KM . Moreover,

J[A]XKM = {w ; ∀v : wJAKMv implies v ∈ JXKM} and

J〈A〉XKM = {w ; ∃v : wJAKMv and v ∈ JXKM}.

where wJAKMv means that 〈w, v〉 ∈ JAKM . We sometimes write u �M X instead
of u ∈ JXKM . The subscript is omitted whenever possible.

A consequence pair X ` Y is valid in a model M iff JXKM ⊆ JY KM (notation
X `M Y ). Positive PDL, PDL+, is the set of all consequence L-pairs valid in
all dynamic models. The subset of PDL+ comprising only consequence pairs
without occurrences of modal operators is the Distributive Lattice Logic, DLL.

The binary implicational proof system (the terminology derives from [13])
PDL+ contains the following axioms and inference rules (X a` Y is shorthand
for ‘X ` Y and Y ` X’):
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Axioms

(1) X ` X

(2) X ∧ Y ` X and X ∧ Y ` Y

(3) X ` X ∨ Y and Y ` X ∨ Y

(4) X ∧ (Y ∨ Z) ` (X ∧ Y ) ∨ (X ∧ Z)

(5) [A]X ∧ [A]Y ` [A](X ∧ Y ) and 〈A〉(X ∨ Y ) ` 〈A〉X ∨ 〈A〉Y

(6) [A](X ∨ Y ) ` [A]X ∨ 〈A〉Y and 〈A〉X ∧ [A]Y ` 〈A〉(X ∧ Y )

(7) [A;B]X a` [A][B]X and 〈A;B〉X a` 〈A〉〈B〉X

(8) [A ∪B]X a` [A]X ∧ [B]X and 〈A ∪B〉X a` 〈A〉X ∨ 〈B〉X

(9) [A∗]X a` X ∧ [A][A∗]X and X ∨ 〈A〉〈A∗〉X a` 〈A∗〉X

(10) [Y ?]X ∧ Y ` X and Y ∧X ` 〈Y ?〉X

(11) [X?]X ` [A][X?]X

(12) Z ` X ∨ [X?]Y

Rules

(1)
X ` Y Y ` Z

X ` Z

(2)
X ` Y X ` Z

X ` Y ∧ Z
and

Y ` X Z ` X

Y ∨ Z ` X

(3)
X ` Y

[A]X ` [A]Y
and

X ` Y

〈A〉X ` 〈A〉Y

(4)
X ` [A]X

X ` [A∗]X
and

〈A〉X ` X

〈A∗〉X ` X

(5)
X ∧ Y ` Z

X ` [Y ?]Z

The notion of a provable consequence pair (or theorem; notation: X `PDL+

Y ) is defined as usual.
Dunn’s positive modal logic studied in [11] corresponds to a fragment of

PDL+ where the set of actions is {a} for some atomic action a, i.e. [a] and 〈a〉 are
the only modal operators in the language (Dunn’s proof system is obtained from
PDL+ by means of the obvious omissions). The fragment of PDL+ without
the modal axioms and rules is denoted DLL.

Theorem 2.1 (Soundness). Every consequence pair provable in PDL+ is in
PDL+.

Proof. Most of the cases are straightforward. We show only the fact that the
rule (4♦) preserves validity in each model (the rule is essential in the proof of
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the Filtration Theorem below). Assume that 〈A〉X `M X and w � 〈A∗〉X. The
latter means that there is a sequence of states w1, . . . , wn such that w1 = w,
wmJAKwm+1 for each m < n and wn � X. We prove that wm � X for each
m < n as well. It is clear that wn−1 � 〈A〉X, so by the first assumption,
wn−1 � X. We continue in a similar fashion until w1.

3 Prime theories and the canonical structure

A prime PDL+-theory is a set of formulas Γ such that i) X ∈ Γ and X `PDL+ Y
imply Y ∈ Γ; ii) X,Y ∈ Γ implies X ∧ Y ∈ Γ; and iii) X ∨ Y ∈ Γ implies that
X ∈ Γ or Y ∈ Γ. We will use variables t, s etc. for prime theories. A prime
theory t is non-trivial iff t 6= ∅ and if there is X 6∈ t. An independent PDL+-pair
is an ordered pair of sets of formulas 〈Γ,∆〉 such that there are no finite Γ′ ⊆ Γ
and ∆′ ⊆ ∆ such that ∧

Γ′ `PDL+

∨
∆′

Lemma 3.1 (Belnap’s Lemma). If 〈Γ,∆〉 is an independent PDL+-pair, then
there is a prime PDL+-theory t ⊇ Γ disjoint from ∆.

Proof. This holds thanks to the distributive lattice axioms and rules of PDL+;
see [35, 92–95].

The canonical structure is C = 〈P, J KC〉 where P is the set of all non-empty
prime theories and J KC is a function such that

JXKC = {t ; X ∈ t} and

JAKC is a binary relation on P such that tJAKCt′ iff

1. for all X, [A]X ∈ t only if X ∈ t′ and

2. for all X, X ∈ t′ only if 〈A〉X ∈ t.

We use notation similar to the one used for dynamic models but, importantly,
the canonical structure is not a dynamic model—although JAK∗C ⊆ JA∗KC , the
converse inclusion cannot be established (this is a standard fact about PDL,
see [17]). However, C is similar to dynamic models in most of the important
aspects. For instance, it is easy to show that JX ∧ Y KC = JXKC ∩ JY KC and
JX ∨ Y KC = JXKC ∪ JY KC . The following lemma implies that J[A]XKC and
J〈A〉XKC satisfy the standard conditions as well.

Lemma 3.2 (Witness Lemma).

(a) If [A]X 6∈ t, then tJAKCs for some s such that X 6∈ s

(b) If 〈A〉X ∈ t, then tJAKCs for some s such that X ∈ s

Proof. Similar to Dunn’s proof of Lemma 5.1 in [11]; axiom [X?]X ` [A][X?]X
is necessary in (a) to show that s is non-empty.
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It is also easy to show that JA∪BKC (JA;BKC) is the union (composition) of
JAKC and JBKC and that JX?KC is the identity relation on JXKC . In what follows
we use t �C X, t ∈ JXKC and X ∈ t (for prime theories t) interchangeably (and
we often omit the subscript).

Lemma 3.3. JXKC ⊆ JY KC only if X `PDL+ Y .

Proof. This follows from Belnap’s Lemma.

4 Filtration and completeness

F ⊆ Form is Fisher–Ladner closed iff it is closed under subformulas and

• if [X?]Y ∈ F , then X ∈ F

• if [A ∪B]X ∈ F , then [A]X ∈ F and [B]X ∈ F

• if [A;B]X ∈ F , then [A][B]X ∈ F

• if [A∗]X ∈ F , then [A][A∗]X ∈ F

• variants of the above with 〈 〉 instead of [ ]

The Fisher–Ladner closure FL(F ) of F is the least Fisher–Ladner closed su-
perset of F ; the Fisher-Ladner closure of X ` Y is FL({X,Y }). It is clear that
F is Fisher–Ladner closed iff F = FL(F ).

Fact 4.1. If F is finite, then FL(F ) is finite. FL(X ` Y ) is bounded by the
number of symbols occurring in X,Y (excluding parentheses).

Proof. See [17], Lemma 6.3.

Let F = FL(F ). We define an equivalence relation ≡F on the set of non-
empty prime theories as follows:

t ≡F t′ ⇐⇒ t ∩ F = t′ ∩ F

Let tF be the ≡F -equivalence class containing t.
The filtration of C through F is MF = 〈WF , J KF 〉 where

• WF = {tF ; t ∈ P}

• JpKF = {tF ; p ∈ t} for p ∈ F ; for p 6∈ F we set JpKF = ∅

• tF JaKF sF iff there are t′ ∈ tF and s′ ∈ sF such that t′JaKs′

(Note that JpKF is well-defined as JpK is closed under ≡F for p ∈ F .) Relations
JAKF for complex A and sets JXKF for complex X are defined as in dynamic
models. Hence, MF is a dynamic model by definition.

In what follows, we write tJAKFs instead of tF JAKF sF and t ∈ JXKF or
t �F X instead of tF ∈ JXKF . Sometimes we also write ≡ instead of ≡F .

6



We now turn to the proof of the Filtration Theorem, saying that for all
X ∈ F , X is true in a theory t within the canonical structure iff X is true
in the F -equivalence class of t in the F -filtration of the canonical structure.
Our proof follows the strategy of the standard proof for the full PDL [17] with
one important exception—the standard proof uses the fact that a finite set of
equivalence classes in the filtration can be defined by a formula (meaning, in the
context of a filtration of the canonical structure, that the formula holds precisely
in those t such that tF belongs to the set) and the definition of such a formula
uses Boolean negation. This approach is of course not available in the case of
PDL+. However, as shown in the following lemma, we can define complements
of sets satisfying certain requirements even without Boolean negation in the
language. The lemma, and the subsequent proof of the Filtration Theorem may
be considered as the main technical novelties of the article.

Lemma 4.2 (Defining Formula Lemma). Take the canonical PDL+-structure
and a finite set F = FL(F ). Assume that D ⊆ P

• is non-empty

• is closed under ≡F

• ¬∃t ∈ D : F ⊆ t

Then there is a formula Out(D) such that u � Out(D) iff u 6∈ D.

Proof. Fix a p 6∈ F . Define for all v ∈ D

v+ =

{∧
{X ∈ F ; v � X} if F ∩ v 6= ∅

[p?]p otherwise

v− =
∨
{X ∈ F ; v 6� X}

Out(D) =
∧
{[v+?]v− ; v ∈ D}

Note that even though D is not necessarily finite, there are only finitely many
formulas of the form [v+?]v− for v ∈ D since F is finite.

Claim 4.3. u � [v+?]v− iff u 6≡ v.

Proof of the Claim. It is clear that u � [X?]Y iff u 6� X or u � Y (If u 6� X,
then u � [X?]Y by axiom Z ` X ∨ [X?]Y and the assumption that u is a non-
empty prime theory). If u 6� v+, then u 6≡ v (if v does not contain any formulas
from F , then this implication is vacuously true); and similarly, if u � v−, then
u 6≡ v. This proves the left-to-right implication of the claim. Conversely, if
u 6≡ v, then either v ∩ F 6⊆ u or u ∩ F 6⊆ v. In the first case u 6� v+, in the
second case u � v−. In both cases u � [v+?]v−. This proves the Claim.

We can now complete the proof of the lemma. It is clear that u � Out(D)
iff u 6≡ v for all v ∈ D (Claim 4.3) iff u 6∈ D. (If u ∈ D then ∃v ∈ D : u ≡ v by
reflexivity of ≡; if ∃v ∈ D : u ≡ v then u ∈ D by closure of D under ≡).

7



It would be desirable to prove Lemma 4.2 without using the test modality
(e.g. for the sake of applicability of the result to test-free fragments of the
language), but we were unable to provide such a proof.

We now state and prove the Filtration Theorem for PDL+. Because for-
mulas are defined inductively using programs ([A]X and 〈A〉X) and vice versa
(X?), the proof is by induction on subexpressions. A subexpression of X is
either a subformula of X or an action A if X has a subformula of the form [A]Y
or 〈A〉Y ; a subexpression of A is either a subaction of A or a formula Y if A
contains a subaction of the form Y ?.

Theorem 4.4 (Filtration Theorem). Let F be a Fisher–Ladner closed set.

(a) For all X ∈ F , t � X iff t �F X

(b) If tJAKs, then tJAKF s

(c) For all [A]X ∈ F , if tJAKFs and t � [A]X, then s � X

(d) For all 〈A〉X ∈ F , if tJAKFs and s � X, then t � 〈A〉X

Proof. The main claim of the Filtration Theorem is (a). The other claims are
lemmas that help to establish (a) for modal formulas. In proving each claim of
the theorem for a particular complex X or A, the induction hypothesis is that
all the claims (a) – (d) hold for all proper subexpressions of X and A.

Claim (a). If X = p, then the claim holds by definition. The cases for ∧,∨
are straightforward. Assume that X = [A]Y . If t 6� [A]Y , then tJAKCs and
s 6� Y for some s (by the Witness Lemma 3.2). A is a subexpression of [A]Y ,
so we may use Claim (b) to infer that tJAKF s. Since Y ∈ F by the definition of
a Fisher–Ladner closed set, we may use the induction hypothesis to infer that
s 6�F Y . But this means that t 6�F [A]Y . Conversely, if t 6�F [A]Y , then tJAKF s
and s 6�F Y for some s. By IH, s 6� Y . Claim (c) entails that t 6� [A]Y . The
claim in case X = 〈A〉Y is established similarly (here Claim (d) is used).

Claim (b). In case of a the claim holds by definition. The cases for A;B
and A ∪ B are established by simple application of the IH. Now take the case
where the program in question is in the form A∗ and assume tJA∗Ks. We need
to show that s ∈ {v ; t

(
JAKF

)∗
v}; call this set E.

Claim 4.5. E is closed under JAK.
Proof of claim. If there is a sequence tJAKF · · · JAKF v and vJAKu, then

vJAKFu by the induction hypothesis and so tJAKF · · · JAKFu. This proves the
claim.

Now we prove that s ∈ E. If E = P , then of course s ∈ E. Also, obviously,
t ∈ E. Hence, we may assume that both E and its complement are non-empty.
Furthermore, there is some t ∈ P such that F ⊆ t (By Belnap’s Lemma, every
set of formulas is included in a prime theory.) Call this set tF . Now tF is
contained either in E or in its complement Ē. Call these cases (E1) and (E2),
respectively. Both E and Ē are clearly closed under ≡. We reason as follows.

(E1) In this case Ē satisfies the assumptions of the Defining Formula Lemma
4.2, so there is Out(Ē) = In(E) ‘defining’ E in the sense that JIn(E)KC = E.
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By Claim 4.5 and Lemma 3.3, In(E) ` [A]In(E) is provable in PDL+. Using
rule (4�) we conclude that In(E) ` [A∗]In(E) is provable in PDL+. Now, since
t ∈ E we have In(E) ∈ t. Hence, [A∗]In(E) ∈ t and, by the definition of JA∗K
in the canonical structure, In(E) ∈ s. This means that s ∈ E.

(E2) In this case E satisfies the assumptions of the Defining Formula Lemma
4.2, so there is Out(E) ‘defining’ Ē in the sense that JOut(E)KC = Ē. By Claim
4.5 and Lemma 3.3, 〈A〉Out(E) `PDL+ Out(E). Using rule (4♦) we conclude
that 〈A∗〉Out(E) `PDL+ Out(E). Now if s 6∈ E, then Out(E) ∈ s and, by the
definition of JA∗K in the canonical structure, 〈A∗〉Out(E) ∈ t. This means that
Out(E) ∈ t, so t 6∈ E. Hence, we have a contradiction from which we conclude
that s ∈ E. This concludes the proof for the case A∗.

To conclude the proof of Claim (b), assume that A is of the form X?. If
tJX?Ks, then t ≡F s and X ∈ t. Since X is a subexpression of X?, we may use
Claim (a) to infer that t �F X. Hence, tJX?KF s.

Claims (c) and (d). The proof is virtually the same as in the case of full
PDL, see [17].

Remark 4.6. The notion of filtration introduced above derives from the notion
of smallest filtration in modal logic. It is easy to show that we also could have
used the notion of greatest filtration, where everything is defined as before, with
the exception of defining tJaKF s as

• for all [a]X ∈ F , [a]X ∈ t only if X ∈ s, and

• for all 〈a〉X ∈ F , X ∈ s only if 〈a〉X ∈ t.

An inspection of the proof of the Filtration Theorem 4.4 (and the corresponding
parts of [17]) shows that the argument works also if greatest filtration is used.

We will use these facts in Section 5.3 where we study a logic for which
smallest filtration is not suitable.

Remark 4.7. If the falsum constant ⊥ is added to the positive language, the
proof of the Filtration Theorem becomes easier. The reason is that formulas
[X?]⊥ can be used to define Boolean negation and, thus, the Filtration Theorem
is established using the same argument as in the case of full PDL. However, one
of our main goals in this article is to explore the situation where the standard
approach is not available.

Theorem 4.8. If X ` Y is in PDL+, then it is provable in PDL+.

Proof. Standard argument. If X 6`PDL+ Y , then there is a non-empty prime
theory t such that X ∈ t and Y 6∈ t by Belnap’s Lemma 3.1. Now filter the
canonical structure through F = FL(X ` Y ). By the Filtration Theorem,
t �F X and t 6�F Y . But MF is a dynamic model, so X ` Y 6∈ PDL+.

Theorem 4.9. PDL+ is a decidable set.

Proof. The theorem follows from decidability of PDL, but we may argue also
as follows. The size of MF is bounded by the size of F (for the exact bound,
see [17]). Hence, it is sufficient to check all the models of size within the bound
given by the size of FL(X ` Y ) for a counterexample to X ` Y .

9



5 Non-classical extensions I: Adding De Morgan
negation

Extensions of DLL with non-Boolean negation often treat negation semantically
as a negative modal operator in Kripke models. Our results concerning PDL+

can be extended to PDLs over some of these logics straightforwardly.
We focus on one example here, namely, First Degree Entailment, the logic

extending DLL with a De Morgan negation ∼. Firstly, we sketch the semantics
and proof theory for the (non-modal) logic FDE (Sect. 5.1). Then we add
the De Morgan negation of FDE to PDL+ and we establish the corresponding
completeness and decidability results (Sect. 5.2). Finally, we discuss a special
case of a PDL over FDE suitable for reasoning about the dynamics of ‘Belnapian
databases’ (Sect. 5.3) and establish completeness and decidability of the logic.

5.1 First Degree Entailment

A De Morgan model is M = 〈W,∼, J K〉 where ∼ : W →W such that w∼∼ = w
(∼ is a function of period two) and J K satisfies the conditions for ∧,∨ and

J∼XK = {w ; w∼ 6� X}

Validity of consequence pairs in models is defined as before; FDE is the set of
all consequence pairs valid in all De Morgan models.

The proof system FDE extends DLL with the following axioms and rule:

Axioms

(1) X ` ∼∼X and ∼∼X ` X

(2) ∼X ∧ ∼Y ` ∼(X ∨ Y ) and ∼(X ∧ Y ) ` ∼X ∨ ∼Y

Rule
X ` Y

∼Y ` ∼X
Theorem 5.1. X ` Y ∈ FDE iff X ` Y is provable in FDE.

Proof. We show the part of the completeness proof establishing that the canoni-
cal FDE-model is a De Morgan model. The canonical model is MC = 〈P,∼C , JKC〉
where P is the set of all prime theories (note that we do not require t ∈ P to
be non-empty—the reason is that t∼C below cannot be shown to be non-empty
without using propositional constants for truth and falsity); JXKC = {t ∈ P ;
X ∈ t} and

t∼C = {X ; ∼X 6∈ t}

It is sufficient to demonstrate here that t∼C is a prime theory for all t and that
t = t∼C∼C . We omit the subscript ‘C’ in the rest of the proof.

(i) t∼ is closed under `FDE . If X ` Y is provable, then so is ∼Y ` ∼X. So
if Y 6∈ t∼ then ∼Y ∈ t and hence ∼X ∈ t. But then X 6∈ t∼.
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(ii) t∼ is closed under conjunction introduction. If X ∧ Y 6∈ t∼, then ∼(X ∧
Y ) ∈ t. But then ∼X ∨ ∼Y ∈ t. This means that X 6∈ t∼ or Y 6∈ t∼.

(iii) t∼ is prime. If X,Y 6∈ t∼, then ∼X∧∼Y ∈ t. Consequently, ∼(X∨Y ) ∈ t
and X ∨ Y 6∈ t∼.

Finally, t = t∼∼ since X ∈ t∼∼ iff ∼X 6∈ t∼ iff ∼∼X ∈ t iff X ∈ t (by the
double negation axioms).

5.2 PDL over FDE

The language L∼ extends L with ∼. A dynamic De Morgan model is M =
〈W,∼, J K〉 where 〈W, J K〉 is a dynamic model, ∼ is a function of period two and
J∼XK = {w ; w∼ 6� X}. Validity of consequence pairs in models is defined as
before; PDL∼ is the set of all consequence pairs valid in all dynamic De Morgan
models. The proof system PDL∼ is the union of PDL+ and FDE .

In the context of PDL∼, we need to re-define the notion of a Fisher–Ladner
closed set; we require that if X ∈ F and X 6= ∼Y (for all Y ∈ L∼), then
∼X ∈ F .4 It is clear that if F is finite, then so is FL(F ).

Lemma 5.2. t ≡F u implies t∼ ≡F u∼.

Proof. X ∈ t∼ iff ∼X 6∈ t. If X 6= ∼Y (for all Y ), then ∼X ∈ F and we may
infer that ∼X 6∈ t iff ∼X 6∈ u iff X ∈ u∼. If X = ∼Y (for some Y ), then ∼X 6∈ t
iff ∼∼Y 6∈ t iff Y 6∈ t iff Y 6∈ u iff ∼∼Y 6∈ u iff ∼X 6∈ u iff X ∈ u∼.

Theorem 5.3. X ` Y belongs to PDL∼ iff it is provable in PDL∼.

Proof. The canonical PDL∼-structure is defined just as the canonical PDL+-
structure where ∼C is defined as in the proof of Theorem 5.1, with the exception
that t ∈ P are non-trivial prime theories.5

Claim 5.4. If t is a non-trivial prime theory, then so is t∼C = {X ; ∼X 6∈ t}.
Proof of the claim. It suffices to show that t∼C is non-empty and not identical

to the set of all formulas. If t∼C = ∅, then ∼[p?]p ∈ t. Applying the rule (5) of
PDL+ and the theorem ∼X ∧ p ` p we get the consequence that ∼X ` [p?]p
(for all X). But then, using the contraposition rule and the double negation
elimination axiom, X ∈ t for all X. This contradicts the assumption that t is
non-trivial. If t∼C were the set of all formulas, then ∼∼[p?]p 6∈ t. But then,
using the double negation introduction axiom, [p?]p 6∈ t. This contradicts the
assumption that t 6= ∅. This proves the Claim.

It remains to show that the filtration of the canonical structure is a dynamic
De Morgan model such that t � X iff t �F X for all X ∈ F . We define

(tF )∼
F

:= (t∼)
F

4The reason is that otherwise Lemma 5.2 would fail. Note that we cannot simply require
that F be closed under prefixing ∼ since this would make F infinite.

5For the proof of the Filtration Theorem to go through, we need to assume that every
t ∈ P in the canonical structure is non-empty. However, in order to be able to show that t∼C

is non-empty, we need to assume that t is not the set of all formulas.

11



The filtration is well defined since t ≡F u implies t∼
F

= u∼
F

by Lemma 5.2. If
∼X ∈ F , then t � ∼X iff t∼ 6� X (by the definition of ∼C) iff (t∼)

F 6� X (by

the induction hypothesis) iff t∼
F 6� X iff t �F ∼X. Moreover:

(tF )∼
F∼F

=
(

(t∼)
F
)∼F

= (t∼∼)
F

= tF

Theorem 5.5. PDL∼ is decidable.

5.3 Updating Belnapian databases

According to the informal interpretation of FDE discussed by Belnap [3, 4],
states in De Morgan models correspond to bodies of information that might be
incomplete or inconsistent. We may call such bodies of information Belnapian
databases. A Belnapian database can be seen as an ordered pair d of sets
of statements (represented by propositional atoms); the first set d+ comprising
statements that are considered true and the second set d− comprising statements
that are considered false. Importantly, d+ ∩ d− may be non-empty and d+ ∪ d−
may not be Prop.

PDL∼ can be seen as a formalization of reasoning about structured ac-
tions that modify Belnapian databases. A natural example of such an action,
discussed at length by Belnap himself, is addition of new information to the
database.

Example 5.6 (Belnap [3, 4]). Take a database comprising information about
the World Series winners in the 1970s, with no entry concerning 1971 yet. Eliz-
abeth enters the information that the Pittsburgh Pirates won the Series in 1971
and that the Baltimore Orioles did not.6 Let p stand for ‘Pittsburgh Pirates
won in 1971’, q for ‘Baltimore Orioles won in 1971’ and r for ‘Oakland Athletics
won in 1971’. Let 〈d+0 , d

−
0 〉 be the database before Elizabeth’s action. Her entry

modifies the database as follows:

d+1 d−1

d+0 ∪ {p} d−0 ∪ {q}

Hence, p is considered true in database d1, q is considered false and there is no
information about r.

Suppose, however, that Sam, not knowing about the addition by Elizabeth,
enters the information that Orioles won in 1971 (and the Pirates did not). The
database now looks as follows:

d+2 d−2

d+0 ∪ {p, q} d−0 ∪ {p, q}
6We may see the latter either as being explicitly added by Elizabeth or as being auto-

matically supplied by the database on the basis of the information about the Pirates. The
distinction does not matter for the purposes of our example.
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Hence, p is considered both true and false in d2 as is q. Yet, there is still no
information about r.

In this section we take a look at an extension of PDL∼ suitable for formal-
izing such additions.7 (A related logic, with Boolean negation instead of ∼ is
studied in [40].)

Let L± be a variant of L∼ where the set of atomic actions is replaced by

{+p ; p ∈ Prop} ∪ {−p ; p ∈ Prop}

Intuitively, the action +p represents adding the information that p is true to a
database; the action −p represents adding the information that p is false.

Belnap thought of +p as a function such that (+p)(d) = d+p where d++p =

d+ ∪ {p} and d−+p = d− (and similarly for −p—d−−p = d− ∪ {p} and d+−p = d+),
but we shall represent the action more generally as a relation. Interestingly
enough, Belnap’s definition of updates by complex formulas invokes some of the
action operators present in L; see [4, 22–24]. The Belnapian fragment of L± is
defined as follows:

P ::= p | ∼P | P ∧ P | P ∨ P

(P,Q are used as metavariables ranging over formulas of the Belnapian frag-
ment). Based on Belnap’s discussion of complex updates, we define

• +(∼P ) := −P and −(∼P ) := +P

• +(P ∧Q) := (+P ); (+Q) and −(P ∧Q) := (−P ) ∪ (−Q)

• +(P ∨Q) := (+P ) ∪ (+Q) and −(P ∨Q) := (−P ); (−Q)

We define ±P := (+P ) ∪ (−P ).
A dynamic Belnapian model is a dynamic De Morgan model for L± satisfying

the following conditions:

(B1) wJ+pKv =⇒ v ∈ JpK

(B2) wJ+pKvJ±qKu =⇒ wJ+pKu

(B3) wJ−pKv =⇒ v∼ 6∈ JpK

(B4) wJ−pKvJ±qKu =⇒ wJ−pKu

(for all p, q ∈ Prop).

Example 5.7. A dynamic Belnapian model related to Example 5.6 is shown
in Figure 1. The states displayed on the bottom of the picture are w0, . . . , w4

(from left to right), the states displayed on the top are u0, . . . , u4. The variable
p is displayed on the left of the comma next to a state x iff x ∈ JpK and similarly

7Other examples are briefly discussed in [37] where axiomatization and decidability of an
extension of PDL∼ with an implication connective and the falsum constant is established.
This logic corresponds to a PDL-style extension of the Belnapian modal logic BK introduced
by Odintsov and Wansing [32].
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• •
p

•
p, q

•
pq, q

•
pq, pq

+p −q +q −p

•
pqr, pqr

•
pqr, qr

•
pr, r

•
pr, r

•
r, r

∼ ∼ ∼ ∼ ∼

Figure 1: A dynamic Belnapian model.

for the other variables. For the sake of presentation, we display p on the right of
the comma iff ∼p holds in the given state and similarly for the other variables.
(For the sake of simplicity, we state only the assumptions concerning p, q and r
explicitly.)

Now w1 results from adding p to w0 and so, using (B1), p holds in w1.
Similarly, w2 results from adding the information that q is false to w1 and so,
using (B3), q is considered false in w2 (i.e. q is not considered true in (w2)∼ =
u2). The step from w0 to w1 was concerned with p and the step from w1 to w2

was concerning q; therefore, the information about p provided by w2 should, by
(B2) and (B1), be the same as the information provided by w0. Therefore, p
holds in w2. Note also that, by the same reasoning, p holds in all the remaining
states. Once information is added, it remains in the database.

By the definitions of the complex update arrows we have that, for example,
w1 is related via +(∼q) to w2 and that w0 is related via +(p∧∼q) to w2. Hence,
going back to Example 5.6, we may see w2 informally as representing a database
resulting from w0 by adding the information that the Pirates won and that the
Orioles did not.

Theorem 5.8. In dynamic Belnapian models, variants of (B1) – (B4) with p, q
replaced by P,Q hold as well.

Proof. A simple proof by induction which is omitted here.

Conditions (B1) – (B4) represent the minimal requirements necessary for
+p and −p to express adding p to the positive or negative part of a database,
respectively. If we add information that p is true to a database, then p ∈ d+

of any resultant database d (B1); p still belongs to the positive part after any
further additions (B1+B2). Similarly, if information that p is false is added, then
p ∈ d− of any resultant d (B3); p still belongs to the negative part after any
further additions (B3+B4). There are other conditions that might seem natural,
even necessary, on this interpretation. We provide a minimal formalization here
and leave a more comprehensive discussion of the topic for another occasion.

Let PDL± be the set of consequence L±-pairs valid in all dynamic Belnapian
models. Let PDL± be the extension of PDL∼ by the following axioms:

(±1) X ` [+P ]P and X ` [−P ]∼P

14



(±2) [+P ]X ` [+P ][±Q]X and [−P ]X ` [−P ][±Q]X

(±3) 〈+P 〉〈±Q〉X ` 〈+P 〉X and 〈−P 〉〈±Q〉X ` 〈−P 〉X

(Note that we do not use the Rule of Substitution.)
The canonical PDL±-structure is defined in the same way as the canonical

PDL∼-structure (for {+p,−p ; p ∈ Prop} as the set of atomic actions, of course).

Definition 5.9. We use the notion of a Fisher–Ladner closed set from Section
5.2, extended by the following clauses:

• If p, q ∈ F and [+p]X ∈ F , then [+p][±q]X ∈ F

• If p, q ∈ F and 〈+p〉X ∈ F , then 〈+p〉〈±q〉X ∈ F

• Same clauses for −p instead of +p

It is clear that FL(F ) is finite if F is.

Definition 5.10. The filtration of the canonical PDL±-structure through a
Fisher–Ladner closed set F is MF = 〈WF ,∼F , J KF 〉, where WF and ∼F are
defined as in Section 5.2 and J KF is defined as follows. For p ∈ F ,

• JpKF = {tF ; p ∈ t}

• tJ+pKF s iff (i) for all [+p]X ∈ F , [+p]X ∈ t only if X ∈ s; and (ii) for all
〈+p〉X ∈ F , X ∈ s only if 〈+p〉X ∈ t

• tJ−pKF s iff (i) for all [−p]X ∈ F , [−p]X ∈ t only if X ∈ s; and (ii) for all
〈−p〉X ∈ F , X ∈ s only if 〈−p〉X ∈ t

For p 6∈ F , JpKF = J+pKF = J−pKF = ∅.

This is the largest filtration of the canonical PDL±-structure; a variant of
the Filtration Theorem 4.4 holds for this kind of filtration (see Remark 4.6). It
is easily seen that the arguments in Section 5.2 remain sound if largest filtration
is used.

Theorem 5.11. MF is a finite dynamic Belnapian model.

Proof. (B1) If tJ+pKF s, then p ∈ F . It is clear that [+p]p ∈ t (t 6= ∅, use axiom
(±1)) and so, by the definition of J+pKF , p ∈ s.

(B2) If tJ+pKFuJ±qKF s, then p, q ∈ F . Assume that [+p]X ∈ t for some
[+p]X ∈ F ; we prove X ∈ s. Using (±2) we obtain [+p][±q]X ∈ t and so
[±q]X ∈ u ([+p][±q]X ∈ F by Def. 5.9). Since also [±q]X ∈ F , X ∈ s by the
definition of J+qKF and J−qKF .

Next, assume that 〈+p〉X ∈ F and X ∈ s. We have to show that 〈+p〉X ∈ t.
By Def. 5.9, 〈+p〉〈±q〉X ∈ F , so 〈±q〉X ∈ u and 〈+p〉〈±q〉X ∈ t. Using axiom
(±3), we get 〈+p〉X ∈ t. (B4) is established similarly.

(B3) If tJ−pKF s, then p ∈ F and ∼p ∈ F . But [−p]∼p ∈ t by axiom (±1),
so ∼p ∈ t. The rest is established as in Theorem 5.3.
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Theorem 5.12. X ` Y is provable in PDL± iff it belongs to PDL±.

Proof. Soundness of PDL± with respect to dynamic Belnapian models is estab-
lished by a standard argument that is omitted here. If X ` Y is not provable,
then it is not valid in the canonical structure and so, by the Filtration Theorem
and Theorem 5.11, X ` Y is invalid in a dynamic Belnapian model.

Theorem 5.13. PDL± is decidable.

6 Non-classical extensions II: Lambek PDL

Another non-classical extension of PDL+ to which our results on PDL+ apply
is related to the Full Distributive Non-associative Lambek calculus, DFNL.
In Sect. 6.1 we outline the semantics and proof theory of DFNL and some of
its extensions. Then we discuss combinations of PDL+ with DFNL and its
extensions (Sect. 6.2); in Sect. 6.3 we outline some of the informal interpretations
of these logics.

6.1 DFNL and extensions

The Full Non-associative Lambek calculus FNL [20, 16, 7] is an extension of
Lambek’s non-associative NL [23] with lattice connectives ∧,∨.8 The distribu-
tive version, DFNL, assumes that ∧,∨ distribute over each other.

The language of DFNL contains operators ∧,∨, \, /, · and the set of propo-
sitional atoms Prop; formulas and consequence pairs are defined in the usual
way.

A Lambek model (see [10] and [21, 22], for example) is M = 〈W,R, J KM 〉
where W 6= ∅, R is a ternary relation on W and J KM is a function from the
set of formulas to subsets of W satisfying the usual conditions for ∧,∨ and, in
addition,

JX·Y KM = {w ; ∃u1u2 : Ru1u2w and u1 ∈ JXKM and u2 ∈ JY KM}

JX\Y KM = {w ; ∀u1u2 : if Ru1wu2 and u1 ∈ JXKM , then u2 ∈ JY KM}

JY/XKM = {w ; ∀u1u2 : if Rwu1u2 and u1 ∈ JXKM , then u2 ∈ JY KM}

Validity of consequence pairs is defined as before; DFNL is the set of all conse-
quence pairs valid in all Lambek models.

Informally, states in Lambek models represent linguistic resources and for-
mulas represent types of these resources (see [21, 29, 30]). The literature men-
tions several specific kinds of linguistic resources, including structured expres-
sions, signs or pieces of multidimensional linguistic information. The ternary R
represents (non-deterministic) merge of resources (specific readings of this de-
rive from the particular interpretation of states; examples include concatenation

8An extension of NL with ∧ was already considered by Lambek in [23] but he did not
investigate it in detail.
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of expressions or pooling of linguistic information). In the most general setting
R is arbitrary so, for example, merging u with v might not have the same result
as merging v with u. A resource is of type X·Y iff it is a result of merging a
resource of type X with a resource of type Y . We often write XY instead of
X·Y . A resource is of type X\Y iff whenever it is merged with a resource of type
X, the result is of type Y . A resource is of type Y/X iff whenever a resource
of type X is merged with it, the result is of type Y . (The distinction between
these two cases is clearer when R is interpreted in terms of concatenation of
expressions—X\Y is the type of expression that result in an expression of type
Y when concatenated from the left with an expression of type Y ; similarly for
Y/X and concatenation from the right.) Consequence pairs X ` Y say that
each resource of type X is of type Y .

The proof system DFNL is obtained from DLL by adding (see [10]):

Axioms

(1) X·(X\Y ) ` Y and (Y/X)·X ` Y

(2) Y ` X\(X·Y ) and Y ` (Y ·X)/X

Rules

(1)
X1 ` Y1 X2 ` Y2

X1·X2 ` Y1·Y2

(2)
X1 ` Y1 X2 ` Y2

Y1\X2 ` X1\Y2

(3)
X1 ` Y1 X2 ` Y2

X2/Y1 ` Y2/X1

Theorem 6.1. X ` Y is in DFNL iff it is provable in DFNL.

Proof. A straightforward adaptation of the argument in [35, 253–7].

DFNLe is the set of consequence pairs valid in every commutative Lambek
model, i.e. every model where

Ru1u2w =⇒ Ru2u1w (e)

DFNLe adds toDFNL the ‘commutativity axiom’ XY ` Y X. In commutative
models, merging u with v amounts to the same thing as merging v with u (so
commutative models are usually not interpreted in terms of expressions and
their concatenation). It is well known that \ and / turn out to be equivalent in
DFNLe; therefore only one connective → is used.

DFNLw is the set of consequence pairs valid in every weakly contractive
Lambek model, i.e. every model where

Rwww (w)

DFNLw extends DFNL with the ‘weak contraction axiom’ X ` XX. The
logic DFNLew and the proof system DFNLew are defined as expected.
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Theorem 6.2. X ` Y belongs to DFNLx iff it is provable in DFNLx for all
x ∈ {e, w, ew}.

Proof. A straightforward adaptation of the arguments used in [35].

6.2 PDL over DFNL and extensions

The dynamic Lambek language L\ adds \, ·, / to L. A dynamic Lambek model
is M = 〈W,R, J KM 〉 where 〈W, J KM 〉 is a dynamic model and R is a ternary
relation on W . It is assumed that JXY KM , JX\Y KM and JX/Y KM are defined
as in Lambek models. PDL\ is the set of consequence L\-pairs valid in all
dynamic Lambek models. PDL\ is the union of PDL+ and DFNL.

Theorem 6.3. X ` Y belongs to PDL\ iff it is provable in PDL\.

Proof. The canonical structure is defined as the canonical PDL+-structure with
RCt1t2s iff, for all X1 ∈ t1 and X2 ∈ t2, X1·X2 ∈ s (we will write R instead
of RC). We need to show that the filtration of the canonical structure is a
dynamic Lambek model such that t � X iff t �F X for all X ∈ F where the
main connective is in {\, ·, /}. We define

RF tuv ⇐⇒ ∃t′u′v′ : t′ ≡F t and u′ ≡F u and v′ ≡F v and Rt′u′v′

Let t � XY for XY ∈ F , i.e. ∃s1, s2 such that Rs1s2t and s1 � X and s2 � Y .
By IH and the definition of RF , RF s1s2t, s1 �F X and s2 �F Y . Hence,
t �F XY . Conversely, if t �F XY , then ∃s1, s2 such that RF s1s2t, s1 �F X
and s2 �F Y . Hence, Rs′1s

′
2t
′ where u′ ∈ uF for u ∈ {s1, s2, t}, s′1 � X and

s′2 � Y . Hence, t′ � XY . But XY ∈ F , so t � XY . The cases for \ and / are
established similarly.

Theorem 6.4. PDL\ is decidable.

L→ is obtained from L by replacing \ and / with a single binary →. PDLe

is the set of all consequence L→-pairs valid in all commutative dynamic Lambek
models, i.e. dynamic Lambek models satisfying (e) where JX → Y K is defined as

JX\Y K. PDLe is obtained from PDL\ by 1) erasing the axioms and rules with
/, 2) replacing \ with → and 3) adding the commutativity axiom XY ` Y X.

PDLw is the set of consequence L-pairs valid in every weakly contractive dy-
namic Lambek model, i.e. every dynamic Lambek model satisfying (w). PDLw

is obtained from PDL\ by adding the weak contraction axiom X ` XX.
PDLew is the set of all consequence L→-pairs valid in all commutative weakly

contractive dynamic Lambek models. PDLew is obtained by adding the weak
contraction axiom to PDLe.

Theorem 6.5. X ` Y is in PDLx iff it is provable in PDLx, for all x ∈
{e, w, ew}.
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Proof. It is sufficient to show that the filtration of the canonical structure sat-
isfies (e) and/or (w) in the corresponding cases. We show this for (e) only, the
case of (w) is analogous.

First, the canonical structure itself satisfies (e) as can be shown easily using
the fact that XY ` Y X is an axiom. If RF is defined in the smallest-filtration
way (RF tsu iff there are t′, s′, u′ from the respective equivalence classes such
that Rt′s′u′), then (e) is clearly satisfied by RF .

Theorem 6.6. DFNLx is decidable for all x ∈ {e, w, ew}.

6.3 Interpretations of Lambek PDLs

In this section we outline three interpretations of dynamic Lambek models which
point to potential applications of PDL\. We leave a more thorough discussion
of these interpretations and applications for another occasion.

6.3.1 The linguistic interpretation

According to the linguistic interpretation, states in Lambek models are seen as
structured expressions and JAK represent relations between these expressions.
Formulas represent types of expressions (see Section 6.1). An expression is of
type [A]X iff it is in relation A only with expressions of type X; an expression
is of type 〈A〉X iff it is in relation A with some expressions of type X.

An example of a structure of this kind is provided by term rewriting systems
[1], consisting of a set of ‘terms’ and a ‘rewrite’ relation −→ between terms. In
our setting, the rewrite relation corresponds to an arbitrary atomic action a.
Many important properties of term rewriting systems are expressed using the
reflexive transitive closure

∗−→ of the rewrite relation; in our setting a∗.
Hence, PDL\ can be seen as a formalism potentially useful in the context

of structured multi-dimensional rewriting systems (with atomic actions repre-
senting basic rewrite relations and the composition and choice operations rep-
resenting inner structure of complex rewrite relations).

6.3.2 The informational interpretation

According to the informational interpretation of Lambek models, states are seen
as bodies of information (or information states) and R represents merging of
information states; we may read Ruvw as “merging u with v might result in
information state w”. A similar interpretation of relational Lambek models is
the basis of several applications of substructural logics in epistemic logic; see
[5, 36, 39] where versions of DFNLe are used. ([39] argues for the need to
use non-associative commutative structures, but in that paper an operational
version—where R is a binary operation—is used; [5, 36] use relational models.)

PDL\ and its extensions can be seen as formalisms for reasoning about
structured modifications of information states, with actions representing types
of such modifications.
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6.3.3 The epistemic interpretation

Members of AAct are sometimes interpreted not as atomic actions, but as agents.
It turns out that, on this interpretation, well-known group-epistemic operators
such as group knowledge (“everyone in the group G knows that”) or common
knowledge are expressible by PDL-style complex actions. (For the sake of
brevity, we assume familiarity with group-epistemic logic; the reader is referred
to [14], for example).

• If AAct is seen as a set of agents, then subsets of AAct represent groups of
agents; we may read [a]X as “agent a has information that X”.

• For finite G ⊆ AAct, [
⋃

ai∈G ai]X means that everyone in the group G has
information that X (we write [EG]X).

• For finite G ⊆ AAct, [
(⋃

ai∈G ai
)∗

]X means that X is common knowledge
in group G (we write [CG]X).

Similarly as on the informational interpretation, states in Lambek models
can be seen as bodies of information. The set {v ; uJaKv} may be seen as the set
of potential information states of agent a according to u (i.e. states that might
be the information state of a for all that u says about a). On this interpretation,
u � [a]X means that, according to u, a has information that X, and similarly for
group and common knowledge. Accordingly, u � [a; b]X means that, according
to u, a has information that b has information that X.

We may read R as an update relation on information states; Rvuw means
that updating u by v might result in w. Hence, u � X\Y means that updating
u with any state supporting X results in a state supporting Y . Consequently,
u � [a](X\Y ) means that, according to u, if a’s information state (whatever
that might be) is updated with (a state supporting) X, then the resulting state
of a will support Y . Similarly, u � [EG](X\[CG]Y ) means that, according to
u, every agent in G has an information state such that if the state is updated
by X, then the resulting state will support the information that Y is common
knowledge in G (we may also say that updating with X will lead to Y being
common knowledge—the state resulting from updating by X, for each agent in
G, will support Y and [En

G]Y for all n ∈ ω).
The epistemic interpretation invites an extension of Lambek PDL with a non-

Boolean negation, representing the fact that information states may support
negative information (as opposed to not supporting positive information). A
natural combination is a combination of PDL\ with PDL∼. It is not hard
to see that a complete axiomatization for such a combination is obtained by
pooling PDL∼ and PDL\; we leave a deeper study of this combination for
another occasion. (For more about adding non-Boolean negation to Lambek
calculus, see [43]; for categorial grammar with negative information, see [6]).

Adding a negation to Lambek PDL provides a deeper motivation for the
epistemic interpretation—information states in Lambek models with De Morgan
negation, for example, are potentially incomplete and inconsistent (yet non-
trivial). Hence, we obtain a more realistic generalization of information states as
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modelled by classical epistemic logic. This is a basis for a group-epistemic logic
with dynamic features (recall R) better suited for modelling dynamic epistemic
scenarios involving inconsistent information.

7 Conclusion

The main contribution of this article was a modification of the standard com-
pleteness argument for PDL yielding an approach suitable for PDLs without
Boolean negation in their language. In this manner, we obtained a complete
axiomatization of the positive fragment of PDL and combinations of this frag-
ment with some non-classical logics, namely, First Degree Entailment FDE and
the Non-associative Lambek calculus NL. Some extensions of these logics were
studied as well.

The study of other non-classical PDLs will be the topic of future research.
For some such logics, additional modifications of the standard completeness ar-
gument will be required. Firstly, an argument not involving filtrations through
a finite set of formulas will be required for PDLs based on logics without the
finite model property (for instance, the relevant logic R). Secondly, PDLs based
on logics requiring partially ordered relational models (e.g. some extensions of
DLL with modal negation, some superintuitionistic logics or Hilbert-style pre-
sentations of many substructural logics) are a challenge if both box and diamond
modalities (with the usual interpretation) are in the language. The reason is
that in these models the partial order is assumed to interact with the accessibil-
ity relations and it is often unknown whether these interactions are preserved
by (some kind of ) filtration. There is also an interesting issue related to the
interpretation of the test operator in partially ordered models. In such models,
JXK needs to be an upper set for all X, but J[Y ?]XK is not necessarily an upper
set if JY ?K is defined in the standard manner as the identity relation on JY K. An
alternative definition of JY ?K needs to be used,9 but then the complex actions
involving the test operator obtain a rather different reading. Instead of “Test
whether Y holds in the present state”, the action Y ? corresponds to “Move to
any successor of the present state in which Y holds”.
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