Main Index Number Theory Sequences Recurrent sequences Linear recurrent sequences Binary recurrent sequences Lucas’ sequences Fibonacci Numbers
Subject Index
comment on the page

Cassini’s Identity

This one of the oldest identities involving Fibonacci numbers is due to the French astronomer Jean-Dominique Cassini (1625-1712) who proved it in  1680 [1] 1:

Theorem.  typeset structure for every typeset structure.

1st proof.

Using relation (2) we get
typeset structure.   

2nd proof.

Using the rule for formation of Fibonacci numbers we get

F(n + 1) F(n - 1) - F^2(n)= F(n + 1) F(n - 1) - F(n) (F(n - 1) + F(n - 2)) br / = F(n + 1) F(n - 1) - F(n) F(n - 1) -  ... n)) - F(n) F(n - 1) br / = F^2(n - 1) - F(n) F(n - 2) br / = (-1) (F(n) F(n - 2) - F^2(n - 1))

The proof can be now finished using mathematical induction.      QED

Substituting  typeset structure for typeset structure we get this form of  Cassini’s identity

F^2(n + 1) - F(n + 1) F(n) - F^2(n) = (-1)^n .

Corollary. We have

F(n + 1)/F(n) - F(n)/F(n - 1) = (-1)^n/(F(n - 1) F(n)) .

This form says that the difference between two successive ratios of Fibonacci numbers is alternatively plus or minus. Furthermore it shows that this difference gets progressively smaller confirming that the ratio does converge to a limit.

Corollary (Gelin-Cesàro identity). typeset structure.

Proof. From Cassini identity we get

2 (-1)^(n + 1) + F(n + 1) F(n - 1)= 2 F^2(n) - F(n + 1) F(n - 1) br / = F^2(n) + F(n) (F(n + 1) - F(n - 1) - F(n + 1) F(n - 1) ...  1) + F^2(n) - F(n - 1) F(n) br / = (F(n) - F(n - 1)) (F(n + 1) F(n)) br / = F(n - 2) F(n + 2)

Multiplying both sides by typeset structure we get

2 (-1)^(n + 1) F(n - 1) F(n + 1) + F^2(n + 1) F^2(n - 1) = F(n - 2) F(n - 1) F(n + 1) F(n + 2)

If we square the Cassini identity we get

F^4(n) = 1 + 2 (-1)^(n + 1) F(n + 1) F(n - 1) + F^2(n + 1) F^2(n - 1)

and the proof is finished.    QED

R.S.Melham [2] proved the following identity (he even presents this identity  for general second-order recurrences)

F(n + 1) F(n + 2) F(n + 6) - F^3(n + 3) = (-1)^n F(n) .

Carroll’s puzzle [3]

Cut a chess-board on the left into four pieces as shown, and the reassemble them into a rectangle on the right hand side. The original consists of typeset structure squares. On the right hand side there have been rearranged to get typeset structure squares. Cassini’s identity shows that when we dissect any typeset structure square into four pieces with dimensions typeset structure. the resulting rectangle gains or loses one square depending on whether typeset structure is even or odd.

[Graphics:HTMLFiles/CassiniIdentity_22.gif]

The real situation after decomposition depending on the parity of typeset structure can be graphically depicted as follows:

[Graphics:HTMLFiles/CassiniIdentity_26.gif]

Notes

1 also attributed to Brig Ivan Simson (1890-1971)

References

[1]  Cassini, J. (Paris 1733). Une nouvelle progression de nombres. Histoire de l’Acaémie Royale des Sciences, volume 1.

[2]  Melham, R. S. (2003). A Fibonacci identity in the spirit of Simson and Gelin-Cesàro . Fibonacci Quarterly, 41(2), 142-143.

[3]  Collingwood, S. D. (1899). The Lewis Carroll Picture Book. T. Fisher Unwin.

Cite this web-page as:

Štefan Porubský: Cassini’s Identity.

Page created  .