Clustering using Genetic Algorithms

Petra Kudová

Department of Theoretical Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic

Experimental results

Conclusion

Introduction

Clustering Genetic Algorithm

Experimental results

Conclusion

Motivation

Clustering

- unsupervised learning (data are unlabelled)
- find structure, clusters
- partition data into subsets that share some common trait

Applications

- Marketing finding groups of customers with similar behaviour
- Biology classification of plants/animals given their features
- WWW document classification, clustering weblog data to discover groups of similar access patterns

Clustering - problem definition

Goal of clustering

- partitioning of a data set into subsets clusters, so that the data in each subset share some common trait
- often based on some similarity or distance measure

Definition of cluster

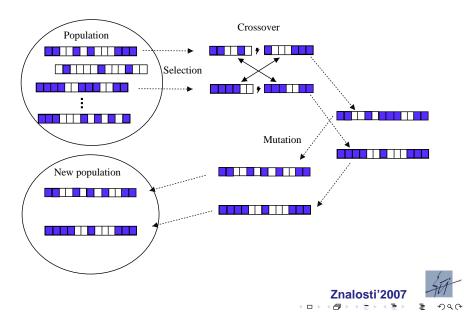
- Basic idea: cluster groups together similar objects
- More formally: clusters are connected regions of a multi-dimensional space containing a relatively high density of points, separated from other such regions by an low density of points
- Note: The notion of proximity/similarity is always problem-dependent.

QQ

Conclusior

Genetic algorithms

Genetic algorithms


- stochastic optimization technique
- applicable on a wide range of problems
- work with population of solutions individuals
- new populations produced by genetic operators selection

Genetic operators

- selection the better the solution is the higher probability to be selected for reproduction
- crossover creates new individuals by combining old ones
- mutation random changes

Genetic algorithms

Clustering Genetic Algorithm (CGA)

Representation of the individual

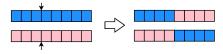
- 1. approach (Hruschka, Campelo, Castro)
 - for each data point store cluster ID

ength = # data points

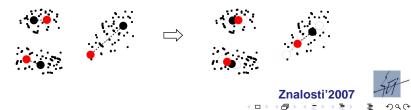
14623461111235643346664342132143222345634212234523456422

- long individuals (high space requirements), problems in crossover and mutation
- 2. approach (Maulik, Bandyopadhyay)
 - store centres of the clusters

center_1 center_2 center_k


need to assign data points to clusters each evaluation

Crossover


One-point Crossover

exchange the whole blocks (i.e. centres)

Combining Crossover

match the centres and combine them

Mutation

One-point mutation, Biased one-point mutation

• One-point Mutation: $\vec{c}_{new} = \vec{x}_i$, where $i \leftarrow random(1, N)$

• Bias one-point Mutation: $\vec{c}_{new} = \vec{c}_{old} + \vec{\Delta}$, where $\vec{\Delta}$ is a random small vector

K-means mutation

several steps o k-means clustering

Cluster addition, Cluster removal

- Cluster Addition adds one centre
- Cluster Removal removes randomly selected centre

 $) \land (\sim$

Fitness

Normalization

- partition the data set into clusters using the given individual
- move the centres to the actual gravity centres

Fitness evaluation

• clustering error: $fit(I) = -E_{VQ}$

$$E_{VQ} = \sum_{i=1}^{K} ||\vec{x_i} - \vec{c}_{f(x_i)}||^2, \qquad f(\vec{x_i}) = \arg\min_k ||\vec{x_i} - \vec{c}_k||^2$$

• silhouette function: $fit(i) = \sum_{i=1}^{N} s(\vec{x}_i)$

$$s(\vec{x}) = \frac{b(\vec{x}) - a(\vec{x})}{max\{b(\vec{x}), a(\vec{x})\}}$$

Znalosti'2007

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Experiments

Goals

- demonstrate the performance of CGA
- compare variants of genetic operators

Data Sets		6 7	192	-33
25 centres	<u>_</u>			\$
		857	N.	
	دي. منطقة الم		ζħ.	樹
			5	

- vowels (UCI machine learning repository)
- mushrooms (UCI machine learning repository)

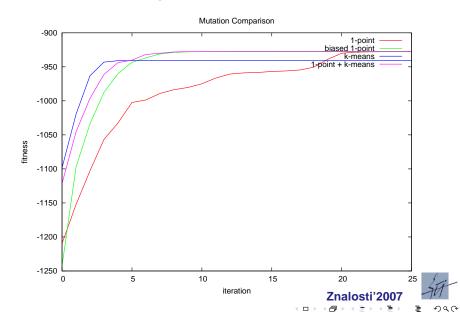
 $\mathcal{O} \land \mathcal{O}$

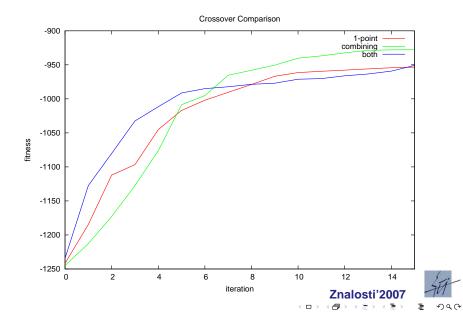
Operators Comparison

Mutation

	25clusters	Vowels
1-point	0.20	927.7
Biased 1-point	0.25	927.3
K-means	0.26	940.7
1-point + Biased 1-pt	0.21	927.3
1-point + K-means	0.21	927.6
All	0.22	927.3

Crossover


	25clusters	Vowels
1-point	0.201	927.7
Combining	0.222	927.4
Both	0.202	927.4


₹

500

Convergence Rate – Mutation

Convergence Rate - Crossover

Comparison to other clustering algorithms

Mushroom data set	method	accuracy
	k-means	95.8%
	CLARA	96.8%
	CGA	97.3%
	HCA	99.2%
25 contoro		

25 centers CGA . ્યા 1 3**4** . -١Ċ. 3¥. · • • • 14 1.9 ँः

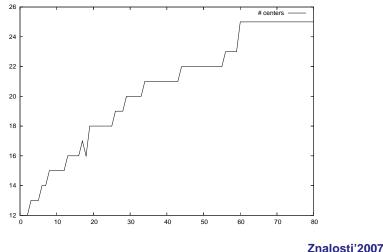
k-means

< 🗗 >

< □ ▶

Znalosti'2007

=


< @ >

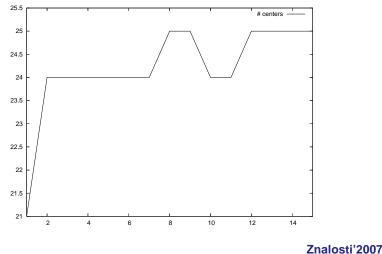
(문) 세문

< □ ▶

Estimating the number of clusters

Initial population: 2 to 15 centres

< 🗗 >


-∢ ≣⇒

P

< □ ▶

Estimating the number of clusters

Initial population: 10 to 30 centres

500

Conclusion

- Clustering Genetic Algorithm proposed
- several genetic operators proposed and compared
- CGA compared to available clustering algorithms
- estimating the number of clusters tested

Thank you. Any questions?

