Adversarial examples - vulnerability of machine learning methods and prevention

Petra Vidnerová

Institute of Computer Science
The Czech Academy of Sciences

2018
Outline

- Introduction
- Works on adversarial examples
- Our work
 - Genetic algorithm
 - Experiments on MNIST
- Ways to robustness to adversarial examples
- Deep RBF networks
Introduction

- Applying an imperceptible non-random perturbation to an input image, it is possible to arbitrarily change the machine learning model prediction.

![Image of perturbed images](image)

57.7% Panda
99.3% Gibbon

Figure from *Explaining and Harnessing Adversarial Examples* by Goodfellow et al.

- Such perturbed examples are known as *adversarial examples*. For human eye, they seem close to the original examples.

- They represent a security flaw in classifier.
Adversarial Examples for Semantic Segmentation and Object Detection.
2017, Cihang Xie et al.
Works on adversarial examples I.

- Perturbations are found by optimising the input to maximize the prediction error (L-BFGS).
Works on adversarial examples I.

Learning

- model $f_{\vec{w}} : \mathbb{R}^n \rightarrow \mathbb{R}^m$
- error func.: $E(\vec{w}) = \sum_{i=1}^{N} e(f_{\vec{w}}(x_i), y_i) = \sum_{i=1}^{N} (f_{\vec{w}}(x_i) - y_i)^2$
- learning: $\min_{\vec{w}} E(\vec{w})$

Finding adversarial example

- \vec{w} is fixed, \vec{x} is optimized
- minimize $\|r\|_2$ subject to $f(x + r) = l$ and $(x + r) \in [0, 1]^m$
- a box-constrained L-BFGS
Works on adversarial examples II.

- Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
 2015, Anh Nguyen, Jason Yosinski, Jeff Clune

- evolutionary generated images
Works on adversarial examples II.

Compositional pattern-producing network (CPPN)

- similar structure to neural networks
- takes \((x, y)\) as an input, outputs pixel value
- nodes: sin, sigmoid, Gaussian, and linear
Works on adversarial examples III.

- *Explaining and Harnessing Adversarial Examples* 2015, Goodfellow et al.
- Linear behaviour in high dimensional spaces is sufficient to cause adversarial examples

\[\tilde{x} = x + \eta \]

\(x, \tilde{x} \) belong to the same class if \(||\eta||_\infty < \epsilon \)

\[w^T \tilde{x} = w^T x + w^T \eta \]

for \(\eta = \epsilon \text{sign}(w) \) activation increases \(\epsilon mn \)

\(||\eta||_\infty \) does not grow with dimensionality, but \(\epsilon mn \) does

- In large dimensions small changes of the input cause large change to the output
Works on adversarial examples III.

- nonlinear models: parameters θ, input x, target y, cost function $J(\theta, x, y)$
- we can linearize the cost function around θ and obtain optimal perturbation

$$\eta = \epsilon \text{sign}(\nabla_x J(\theta, x, y))$$

- adding small vector in the direction of the sign of the derivation – fast gradient sign method
Fast Gradient Sign Method on MNIST

Original test examples and corresponding adversarial examples crafted by FGSM with ϵ 0.2, 0.3, and 0.4.
Works on adversarial examples IV.

\[
\arg \min_{\delta_x} ||\delta_x|| \text{ such that } F(\mathbf{x} + \delta_x) = \mathbf{y}^\ast
\]

- **adversarial saliency maps** - identify features of the input that most significantly impact output classifications

- Motivation:

 \[F(\mathbf{x}) = x_1 \text{ and } x_2, \quad \frac{\delta F(\mathbf{x})}{\delta x_2} \text{ (forward derivative)}\]
Works on adversarial examples IV.

Saliency Map

- misclassify \mathbf{X} such that it is assigned a target class $t \neq \text{label}(\mathbf{X})$
- $F_t(\mathbf{X})$ must increase, while $F_j(\mathbf{X}), j \neq t$ decrease

$$S(\mathbf{X}, t)[i] = \begin{cases} 0 \text{ if } \frac{\delta F_t(\mathbf{X})}{\delta \mathbf{X}_i} < 0 \text{ or } \sum_{j \neq t} \frac{\delta F_j(\mathbf{X})}{\delta \mathbf{X}_i} > 0 \\ \left(\frac{\delta F_t(\mathbf{X})}{\delta \mathbf{X}_i} \right) \sum_{j \neq t} \frac{\delta F_j(\mathbf{X})}{\delta \mathbf{X}_i} \text{ otherwise} \end{cases}$$
Works on adversarial examples IV.

Crafting algorithm based on Saliency Map

Input: X, Y^*, F, γ(maximal distortion), θ(change)

1. $X^* \leftarrow X$
2. $\Gamma = \{1 \ldots |X|\}$
3. **while** $F(X^*) \neq Y^*$ and $||\delta_X|| < \gamma$ **do**
4. Compute forward derivative $\nabla F(X^*)$
5. $S \leftarrow \text{saliency}_\text{map}(\nabla F(X^*), \Gamma, Y^*)$
6. modify $X_{i_{\text{max}}}^*$ by θ, $i_{\text{max}} = \arg\max_i S(X, Y^*)[i]$
7. $\delta_X \leftarrow X^* - X$
8. **end while**
9. **return** X^*
Saliency Map Method on MNIST
Taxonomy of Threat Models in Deep Learning

Works on Adversarial Examples V.

- Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples
 2016, Papernot et al.

- **black-box** - adversaries need not know internal details of a system to compromise it

- train a local substitute DNN with a **synthetic** dataset

- The algorithm:
 1. create initial collection of data samples S_0
 2. select architecture for the substitute model
 3. substitute model training
 - labeling
 - training
 - augmentation: $S_{\rho+1} = \{\bar{x} + \lambda \text{sgn}(J_F[O(\bar{x})]) : \bar{x} \in S_\rho\} \cup S_\rho$
 4. use the substitute model to craft adversarial samples
Our work

- genetic algorithms used to search for adversarial examples

- tested various machine learning models including both deep and shallow architectures

Search for adversarial images

To obtain an adversarial example for the trained machine learning model, we need to **optimize the input image with respect to model output**.

For this task we employ a GA – robust optimisation method working with the whole population of feasible solutions.

The population evolves using operators of selection, mutation, and crossover.

The machine learning model and the target output are fixed.
Black box approach

- genetic algorithms to generate adversarial examples
- machine learning method is a blackbox
- applicable to all methods without the need to access models parameters (weights)
Genetic algorithm

- **Individual**: image encoded as a vector of pixel values:

\[I = \{i_1, i_2, \ldots, i_N\}, \]

where \(i_i \in <0, 1> \) are levels of grey and \(N \) is a size of flatten image.

- **Crossover**: operator performs a two-point crossover.

- **Mutation**: with the probability \(p_{\text{mutate_pixel}} \) each pixel is changed:

\[i_i = i_i + r, \]

where \(r \) is drawn from Gaussian distribution.

- **Selection**: 3–tournament
GA fitness

The fitness function should reflect the following two criteria:

- the individual should resemble the target image
- if we evaluate the individual by our machine learning model, we would like to obtain a target output (i.e. misclassify it).

Thus, in our case, a fitness function is defined as:

\[f(l) = - (0.5 \times \text{cdist}(l, \text{target_image}) + 0.5 \times \text{cdist}(\text{model}(l), \text{target_answer})) \]

where \(\text{cdist} \) is an Euclidean distance.
Dataset for our experiments

MNIST dataset

- 70000 images of handwritten digits
- 28 \times 28 pixels
- 60000 for training, 10000 for testing
Machine learning models overview

- Shallow architectures
 - SVM — support vector machine
 - RBF — RBF network
 - DT — decision tree

- Deep architectures
 - MLP — multilayer perceptron network
 - CNN — convolutional network
Support Vector Machines (SVM)

- popular kernel method
- learning based on searching for a separating hyperplane with highest margin
- one hidden layer of kernel units, linear output layer

Kernels used in experiments:

- linear $\langle x, x' \rangle$
- polynomial $(\gamma \langle x, x' \rangle + r)^d$, grade 2 and 4
- Gaussian $\exp(-\gamma |x - x'|^2)$
- sigmoid $\tanh(\gamma \langle x, x' \rangle + r)$.

Implementation: SCIKIT-learn library
RBF network

- feedforward network with one hidden layer, linear output layer
- local units (typically Gaussian functions)

- our own implementation
- 1000 Gaussian units
Decision Tree (DT)

- a non-parametric supervised learning method

Implementation: SCIKIT-learn
Deep neural networks

- feedforward neural networks with multiple hidden layers between the input and output layer

Multilayer perceptrons (MLP)

- Perceptron units with *sigmoid* function
- Rectified linear unit (ReLU): \(y(z) = \max(0, z) \).

Implementation:
- KERAS library
- MLP — three fully connected layers, two hidden layers have 512 ReLUs each, using dropout; the output layer has 10 softmax units.
Convolutional Networks (CNN)

- *Convolutional units* perform a simple discrete convolution operation which for 2-D data can be represented by a matrix multiplication.

- *max pooling layers* that perform an input reduction by selecting one of many inputs, typically the one with maximal value

Implementation:
- KERAS library
- CNN — two convolutional layers with 32 filters and ReLUs, each, max pooling layer, fully connected layer of 128 ReLUs, and a fully connected output softmax layer.
Baseline Classification Accuracy

<table>
<thead>
<tr>
<th>model</th>
<th>trainset</th>
<th>testset</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>CNN</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>RBF</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>SVM-rbf</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>SVM-poly2</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>SVM-poly4</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>SVM-sigmoid</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>SVM-linear</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>DT</td>
<td>1.00</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Experimental Setup

GA setup

- population of 50 individuals
- 10,000 generations
- crossover probability 0.6
- mutation probability 0.1
- DEAP framework

Images

- for 10 images from training set (one representant for each class)
- target: classify as zero, one, ..., nine
Evolved Adversarial Examples – CNN (90/90)
Evolved Adversarial Examples – DT (83/90)
Evolved Adversarial Examples – MLP (82/90)
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Evolved Adversarial Examples – SVM poly (50/90)
Evolved Adversarial Examples – SVM poly4 (50/90)
Evolved Adversarial Examples – SVM rbf (43/90)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>
Evolved Adversarial Examples – RBF (22/90)
Experimental Results

- CNN, MLP, and DT were fooled in all or almost all cases.

- RBF network was the most resistant model, but in 22 cases it was fooled too.

- From SVMs, the most vulnerable is SVM_sigmoid, most resistant is SVM_rbf and SVM_linear.
some adversarial examples generated for one model are also missclassified by other models
Generalization

<table>
<thead>
<tr>
<th>Model</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>MLP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>SVM_sigmoid</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
<td>0.11</td>
</tr>
<tr>
<td>SVM_rbf</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.98</td>
<td>0.01</td>
</tr>
<tr>
<td>SVM_poly</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.98</td>
<td>0.02</td>
</tr>
<tr>
<td>SVM_poly4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.98</td>
<td>0.01</td>
</tr>
<tr>
<td>SVM_linear</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>RBF</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.10</td>
<td>0.06</td>
<td>0.07</td>
<td>-0.02</td>
<td>0.44</td>
<td>0.41</td>
</tr>
<tr>
<td>DT</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Generalization Summary

<table>
<thead>
<tr>
<th></th>
<th>MLP</th>
<th>CNN</th>
<th>SVM sigmoid</th>
<th>SVM poly</th>
<th>SVM poly4</th>
<th>SVM linear</th>
<th>SVM rbf</th>
<th>RBF</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM sigmoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM poly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM poly4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM rbf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Generalization — Summary

- adversarial example evolved for CNN was misclassified by other models only in few cases, and CNN never misclassified other adversarial examples than those evolved for the CNN;

- adversarial example evolved for DT was never misclassified by other models, however DT sometimes misclassifies the adversarial examples evolved for other models

- adversarial examples are often shared between various SMVs
We tried to learn a classifier to distinguish between adversarial examples and examples that are only noisy.

Figure: Digit zero — adversarial examples (top), noisy examples (bottom). Noisy examples were classified as zero by the MLP, adversarial examples as other class.
Adversarial vs. noisy data: results

The data contains 22500 noisy examples and 19901 adversarial examples, and are randomly divided to training and test data (20% for test).

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM-rbf</td>
<td>0.888</td>
<td>0.843</td>
</tr>
<tr>
<td>MLP</td>
<td>0.923</td>
<td>0.912</td>
</tr>
<tr>
<td>CNN</td>
<td>0.964</td>
<td>0.925</td>
</tr>
</tbody>
</table>
New adversarial examples (for MLP)
Towards approaches robust to adversarial examples

- *Towards Deep Neural Network Architectures Robust To Adversarial Examples.*
 2015, Shixiang Gu, Luca Rigazio

- noise injection, Gaussian blur
- autoencoder
- deep contractive network
Gaussian blur of the input

- a recovery strategy based on additional corruption
- decrease error on adversarial data but not enough

<table>
<thead>
<tr>
<th>blur kernel size</th>
<th>clean data</th>
<th>adversarial data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>— 5 11</td>
<td>— 5 11</td>
</tr>
<tr>
<td>N100-100-10</td>
<td>1.8 2.6 11.3</td>
<td>99.9 43.5 62.8</td>
</tr>
<tr>
<td>N200-200-10</td>
<td>1.6 2.5 14.8</td>
<td>99.9 47.0 65.5</td>
</tr>
<tr>
<td>ConvNet</td>
<td>0.9 1.2 4.0</td>
<td>100 53.8 43.8</td>
</tr>
</tbody>
</table>
Autoencoder

- a three-hidden-layer autoencoder (784-256-128-256-784 neurons)
- trained to map adversarial examples back to the original data and original data back to itself
- autoencoders recover at least 90% of adversarial errors

<table>
<thead>
<tr>
<th></th>
<th>N-100-100-10</th>
<th>N200-200-10</th>
<th>ConvNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-100-100-10</td>
<td>2.3%</td>
<td>2.4%</td>
<td>5.2%</td>
</tr>
<tr>
<td>N-200-200-10</td>
<td>2.3%</td>
<td>2.2%</td>
<td>5.4%</td>
</tr>
<tr>
<td>ConvNet</td>
<td>7.7%</td>
<td>7.6%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

drawback: autoencoder and classifier can be stacked to form a new feed-forward network, new adversarial examples can be generated
Deep Contractive Network

- Layer-wise penalty approximately minimizing the network outputs variance with respect to perturbations in the inputs.
- Deep Contractive Network (DNC) — generalization of the contractive autoencoder.

\[J_{DNC}(\theta) = \sum_{i=1}^{m} (L(t^{(i)}, y^{(i)}) + \lambda \| \frac{\partial y^{(i)}}{\partial x^{(i)}} \|_2) \]

\[J_{DNC}(\theta) = \sum_{i=1}^{m} (L(t^{(i)}, y^{(i)}) + \sum_{j=1}^{H+1} \lambda_j \| \frac{\partial h_j^{(i)}}{\partial h_{j-1}^{(i)}} \|_2) \]
Deep Contractive Network – Experimental Results

<table>
<thead>
<tr>
<th>model</th>
<th>error</th>
<th>adv. distortion</th>
<th>error</th>
<th>adv. distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>N100-100-10</td>
<td>2.3%</td>
<td>0.107</td>
<td>1.8%</td>
<td>0.084</td>
</tr>
<tr>
<td>N200-200-10</td>
<td>2.0%</td>
<td>0.102</td>
<td>1.6%</td>
<td>0.087</td>
</tr>
<tr>
<td>ConvNet</td>
<td>1.2%</td>
<td>0.106</td>
<td>0.9%</td>
<td>0.095</td>
</tr>
</tbody>
</table>
Defence to Adversarial Perturbations by Distillation

- Distillation as a Defence to Adversarial Perturbations against Deep Neural Networks, Papernot et al., 2016
- **distillation** – training procedure using knowledge transferred from a different DNN (originally to reduce computational complexity)
- used to improve resilience to adversarial samples

- **distillation temperature** – high temperature → probability vectors with large values for each class
- output softmax layer:

\[
F(X) = \left[\frac{e^{z_i(X)/T}}{\sum_{l=0}^{N-1} e^{z_l(X)/T}} \right]_{i \in 0...N-1}
\]
Defence to Adversarial Perturbations by Distillation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Original DNN</th>
<th>Distilled DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>95.89</td>
<td>1.34</td>
</tr>
<tr>
<td>CIFAR10</td>
<td>89.90</td>
<td>16.76</td>
</tr>
</tbody>
</table>
Denoising input samples

<table>
<thead>
<tr>
<th></th>
<th>none</th>
<th>mean</th>
<th>gaussian</th>
<th>tv_chambolle</th>
<th>tv_bregman</th>
<th>bilateral</th>
<th>nl_means</th>
</tr>
</thead>
<tbody>
<tr>
<td>legitimate</td>
<td>98.35</td>
<td>98.13</td>
<td>97.67</td>
<td>97.72</td>
<td>97.95</td>
<td>98.28</td>
<td>98.34</td>
</tr>
<tr>
<td>FGSM</td>
<td>2.87</td>
<td>3.83</td>
<td>6.94</td>
<td>8.11</td>
<td>6.25</td>
<td>4.52</td>
<td>5.34</td>
</tr>
<tr>
<td>Saliency Map</td>
<td>39.07</td>
<td>90.13</td>
<td>78.06</td>
<td>74.17</td>
<td>68.93</td>
<td>43.93</td>
<td>64.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>none</th>
<th>mean</th>
<th>gaussian</th>
<th>tv_chambolle</th>
<th>tv_bregman</th>
<th>bilateral</th>
<th>nl_means</th>
</tr>
</thead>
<tbody>
<tr>
<td>legitimate</td>
<td>98.94</td>
<td>98.42</td>
<td>98.38</td>
<td>98.48</td>
<td>98.70</td>
<td>98.89</td>
<td>98.92</td>
</tr>
<tr>
<td>FGSM</td>
<td>14.80</td>
<td>21.52</td>
<td>23.17</td>
<td>25.65</td>
<td>22.53</td>
<td>17.86</td>
<td>18.54</td>
</tr>
<tr>
<td>Saliency Map</td>
<td>0.10</td>
<td>68.21</td>
<td>65.25</td>
<td>48.45</td>
<td>43.54</td>
<td>5.18</td>
<td>2.17</td>
</tr>
</tbody>
</table>
Denoising GA adversarial examples

<table>
<thead>
<tr>
<th></th>
<th>none</th>
<th>mean</th>
<th>gaussian</th>
<th>tv_chambolle</th>
<th>tv_bregman</th>
<th>bilateral</th>
<th>nl_means</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>98.49</td>
<td>98.27</td>
<td>98.14</td>
<td>98.16</td>
<td>98.26</td>
<td>98.41</td>
<td>98.44</td>
</tr>
<tr>
<td>MLP</td>
<td>0.00</td>
<td>68.15</td>
<td>70.77</td>
<td>81.35</td>
<td>84.41</td>
<td>88.04</td>
<td>93.74</td>
</tr>
<tr>
<td>CNN</td>
<td>98.77</td>
<td>98.20</td>
<td>98.35</td>
<td>98.50</td>
<td>98.59</td>
<td>98.71</td>
<td>98.75</td>
</tr>
<tr>
<td>CNN</td>
<td>0.00</td>
<td>14.29</td>
<td>28.57</td>
<td>21.43</td>
<td>21.43</td>
<td>21.43</td>
<td>14.29</td>
</tr>
<tr>
<td>DT</td>
<td>87.54</td>
<td>87.77</td>
<td>37.93</td>
<td>21.02</td>
<td>23.71</td>
<td>60.52</td>
<td>87.28</td>
</tr>
<tr>
<td>DT</td>
<td>0.00</td>
<td>27.93</td>
<td>17.06</td>
<td>12.32</td>
<td>15.17</td>
<td>20.63</td>
<td>17.07</td>
</tr>
<tr>
<td>SVM lin</td>
<td>94.87</td>
<td>94.41</td>
<td>93.96</td>
<td>94.14</td>
<td>94.40</td>
<td>94.78</td>
<td>94.85</td>
</tr>
<tr>
<td>SVM lin</td>
<td>0.00</td>
<td>7.58</td>
<td>42.53</td>
<td>69.47</td>
<td>54.53</td>
<td>62.95</td>
<td>67.16</td>
</tr>
</tbody>
</table>
Denoising GA adversarial examples

<table>
<thead>
<tr>
<th>Method</th>
<th>none</th>
<th>mean</th>
<th>gaussian</th>
<th>tv_chambolle</th>
<th>tv_bregman</th>
<th>bilateral</th>
<th>nl_means</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM poly</td>
<td>98,20</td>
<td>97,99</td>
<td>97,40</td>
<td>97,42</td>
<td>97,72</td>
<td>98,16</td>
<td>98,21</td>
</tr>
<tr>
<td>SVM poly</td>
<td>0,00</td>
<td>21,23</td>
<td>44,39</td>
<td>58,95</td>
<td>53,33</td>
<td>72,46</td>
<td>55,79</td>
</tr>
<tr>
<td>SVM poly4</td>
<td>98,35</td>
<td>97,98</td>
<td>97,06</td>
<td>97,07</td>
<td>97,54</td>
<td>98,20</td>
<td>98,28</td>
</tr>
<tr>
<td>SVM poly4</td>
<td>0,00</td>
<td>10,49</td>
<td>28,39</td>
<td>44,67</td>
<td>36,17</td>
<td>65,46</td>
<td>49,19</td>
</tr>
<tr>
<td>SVM rbf</td>
<td>98,57</td>
<td>98,33</td>
<td>96,52</td>
<td>96,90</td>
<td>97,52</td>
<td>98,39</td>
<td>98,53</td>
</tr>
<tr>
<td>SVM rbf</td>
<td>0,00</td>
<td>1,08</td>
<td>16,20</td>
<td>36,29</td>
<td>31,97</td>
<td>61,56</td>
<td>51,62</td>
</tr>
<tr>
<td>SVM sigmoid</td>
<td>89,11</td>
<td>88,81</td>
<td>89,84</td>
<td>89,62</td>
<td>89,94</td>
<td>89,28</td>
<td>89,17</td>
</tr>
<tr>
<td>SVM sigmoid</td>
<td>0,00</td>
<td>0,00</td>
<td>3,26</td>
<td>21,61</td>
<td>10,12</td>
<td>57,80</td>
<td>30,36</td>
</tr>
</tbody>
</table>
Deep Networks and RBF Networks

- combinations of Deep Networks and RBF Networks
- RBF layers can be also included in evolution
- RBF networks less vulnerable to adversarial examples
- Does add RBF layers to deep network help to prevent adversarial examples?
RBF Networks

- feed-forward neural networks with one hidden layer of RBF units
- local units alternative to MLP
- RBF unit:

 \[y = \varphi(\xi); \quad \xi = \beta \| \vec{x} - \vec{c} \|^2 \]

 where \(\varphi : \mathbb{R} \to \mathbb{R} \) is suitable activation function, typically Gaussian \(\varphi(z) = e^{-z^2} \).

- the network computes the function \(\vec{f} : \mathbb{R}^n \to \mathbb{R}^m \):

 \[f_s(\vec{x}) = \sum_{j=1}^{h} w_{js} \varphi \left(\frac{\| \vec{x} - \vec{c}_j \|}{\beta_j} \right) \]
RBF Networks Learning

- wide range of methods

Three Step Learning

1. **set the centers** - approximate the distribution of training samples
 - random or uniform samples, various clustering methods
2. **set the widths** - cover the input space by unit’s fields
 - heuristics (k-neighbours)
3. **compute the output weights**
 - linear system, pseudoinverse

Gradient Learning

- analogous to backpropagation for MLP
Proposed architecture DNNRBF

- stacking deep neural network and RBF network
DNNRBF learning

1. train the *DNN*
2. set the centers of *RBF* randomly, drawn from uniform distribution on \((0, 1.0)\)
3. set the parameters \(\beta\) to the constant value
4. init the weights of RBF output layer to random small values
5. retrain the whole network DNNRBF (by back propagation)
Experiments

Architectures

- **MLP**
 - dense layer of 512 ReLU
 - dense layer of 512 ReLU
 - dense layer of 10 softmax units

- **CNN**
 - convolutional layer with 32 3x3 filters and ReLU activation
 - convolutional layer with 32 3x3 filters and ReLU activation
 - 2x2 max pooling layer
 - dense layer of 128 ReLU
 - dense layer of 10 softmax units
Experiments

Implementation

- FGSM for crafting adversarial examples

- Keras for MLP and CNN
 Keras, François Chollet, https://github.com/fchollet/keras, 2015

- our implementation of RBF Keras layers
 http://github.com/PetraVidnerova/rbf_keras

 http://github.com/PetraVidnerova/rbf_tests
Experiments Results - MLP

<table>
<thead>
<tr>
<th>model</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>98.35</td>
<td>0.12</td>
<td>98.04</td>
<td>98.59</td>
<td>1.95</td>
<td>0.41</td>
<td>1.30</td>
<td>2.86</td>
</tr>
<tr>
<td>MLPRBF(0.01)</td>
<td>97.62</td>
<td>2.43</td>
<td>88.44</td>
<td>98.65</td>
<td>2.56</td>
<td>2.09</td>
<td>1.16</td>
<td>10.71</td>
</tr>
<tr>
<td>MLPRBF(0.1)</td>
<td>88.61</td>
<td>8.56</td>
<td>69.91</td>
<td>98.36</td>
<td>10.04</td>
<td>6.45</td>
<td>1.71</td>
<td>23.10</td>
</tr>
<tr>
<td>MLPRBF(1.0)</td>
<td>98.23</td>
<td>0.10</td>
<td>98.08</td>
<td>98.48</td>
<td>81.77</td>
<td>7.84</td>
<td>64.18</td>
<td>94.06</td>
</tr>
<tr>
<td>MLPRBF(2.0)</td>
<td>98.19</td>
<td>0.14</td>
<td>97.91</td>
<td>98.38</td>
<td>89.21</td>
<td>5.03</td>
<td>66.28</td>
<td>94.83</td>
</tr>
<tr>
<td>MLPRBF(3.0)</td>
<td>98.18</td>
<td>0.14</td>
<td>97.88</td>
<td>98.45</td>
<td>81.66</td>
<td>4.38</td>
<td>70.13</td>
<td>87.23</td>
</tr>
<tr>
<td>MLPRBF(5.0)</td>
<td>97.64</td>
<td>2.09</td>
<td>89.34</td>
<td>98.36</td>
<td>69.47</td>
<td>13.26</td>
<td>13.01</td>
<td>81.95</td>
</tr>
<tr>
<td>MLPRBF(10.0)</td>
<td>80.94</td>
<td>11.82</td>
<td>58.57</td>
<td>98.33</td>
<td>21.49</td>
<td>16.32</td>
<td>2.48</td>
<td>65.11</td>
</tr>
</tbody>
</table>

Average accuracies

- **On legitimate data**
 - MLP: 98.35%
 - MLPRBF(0.01): 97.62%
 - MLPRBF(0.1): 88.61%
 - MLPRBF(1.0): 98.23%
 - MLPRBF(2.0): 98.19%
 - MLPRBF(3.0): 98.18%
 - MLPRBF(5.0): 97.64%
 - MLPRBF(10.0): 80.94%

- **On adversarial data**
 - MLP: 1.95%
 - MLPRBF(0.01): 2.56%
 - MLPRBF(0.1): 10.04%
 - MLPRBF(1.0): 81.77%
 - MLPRBF(2.0): 89.21%
 - MLPRBF(3.0): 81.66%
 - MLPRBF(5.0): 69.47%
 - MLPRBF(10.0): 21.49%
Experiments Results - CNN

<table>
<thead>
<tr>
<th>model</th>
<th>Legitimate samples</th>
<th>Adversarial samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std</td>
</tr>
<tr>
<td>CNN</td>
<td>98.97</td>
<td>0.07</td>
</tr>
<tr>
<td>CNNRBF(0.01)</td>
<td>98.36</td>
<td>1.73</td>
</tr>
<tr>
<td>CNNRBF(0.1)</td>
<td>94.19</td>
<td>8.21</td>
</tr>
<tr>
<td>CNNRBF(1.0)</td>
<td>98.83</td>
<td>0.13</td>
</tr>
<tr>
<td>CNNRBF(2.0)</td>
<td>98.85</td>
<td>0.13</td>
</tr>
<tr>
<td>CNNRBF(3.0)</td>
<td>98.82</td>
<td>0.14</td>
</tr>
<tr>
<td>CNNRBF(5.0)</td>
<td>98.74</td>
<td>0.11</td>
</tr>
<tr>
<td>CNNRBF(10.0)</td>
<td>97.86</td>
<td>2.24</td>
</tr>
</tbody>
</table>

Average accuracies

- **Legitimate data:**
 - CNN: 98.97%
 - CNNRBF(0.01): 98.36%
 - CNNRBF(0.1): 94.19%
 - CNNRBF(1.0): 98.83%
 - CNNRBF(2.0): 98.85%
 - CNNRBF(3.0): 98.82%
 - CNNRBF(5.0): 98.74%
 - CNNRBF(10.0): 97.86%

- **Adversarial data:**
 - CNN: 8.49%
 - CNNRBF(0.01): 15.60%
 - CNNRBF(0.1): 18.58%
 - CNNRBF(1.0): 57.09%
 - CNNRBF(2.0): 74.57%
 - CNNRBF(3.0): 68.65%
 - CNNRBF(5.0): 62.35%
 - CNNRBF(10.0): 64.71%
Experiments Results

<table>
<thead>
<tr>
<th>model</th>
<th>Accuracy on adversarial data</th>
<th>$\epsilon = 0.2$</th>
<th>$\epsilon = 0.3$</th>
<th>$\epsilon = 0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg</td>
<td>std</td>
<td>avg</td>
<td>std</td>
</tr>
<tr>
<td>CNN</td>
<td>33.85</td>
<td>7.58</td>
<td>8.49</td>
<td>3.52</td>
</tr>
<tr>
<td>CNNRBF</td>
<td>76.88</td>
<td>6.25</td>
<td>74.57</td>
<td>7.69</td>
</tr>
<tr>
<td>MLP</td>
<td>3.01</td>
<td>0.69</td>
<td>1.95</td>
<td>0.41</td>
</tr>
<tr>
<td>MLPRBF</td>
<td>90.14</td>
<td>4.82</td>
<td>89.21</td>
<td>5.03</td>
</tr>
</tbody>
</table>
Deep RBF Networks – *I don’t know* scenario I.

- if maximal output < threshold answer *I don’t know*
- threshold = 0.75

<table>
<thead>
<tr>
<th></th>
<th>legitimate data</th>
<th></th>
<th></th>
<th></th>
<th>adversarial data</th>
<th>correct</th>
<th>I don’t know</th>
<th>wrong</th>
<th>correct</th>
<th>I don’t know</th>
<th>wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline CNN</td>
<td></td>
<td>98.20</td>
<td>1.31</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.45</td>
<td>47.22</td>
<td>41.34</td>
</tr>
<tr>
<td>CNN + RBF</td>
<td></td>
<td>95.39</td>
<td>4.25</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.32</td>
<td>92.46</td>
<td>6.22</td>
</tr>
</tbody>
</table>
Deep RBF Networks – I *don’t know* scenario II.

<table>
<thead>
<tr>
<th></th>
<th>legitimate data</th>
<th>adversarial data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>correct</td>
<td>I don’t know</td>
</tr>
<tr>
<td>baseline CNN</td>
<td>97.24</td>
<td>2.50</td>
</tr>
<tr>
<td>CNN + RBF</td>
<td>89.24</td>
<td>10.57</td>
</tr>
</tbody>
</table>

threshold = 0.9
Summary

- We have proposed a GA for generating adversarial examples for machine learning models by applying minimal changes to the existing patterns.
- Our experiment showed that many machine models suffer from vulnerability to adversarial examples.
- Models with local units (RBF networks and SVMs with RBF kernels) are quite resistant to such behaviour.
- The adversarial examples evolved for one model are usually quite general – often misclassified also by other models.
- Defenses against adversarial examples are successful only to some extend.
Thank you! Questions?