< □ > < 同 > < 回 > < 回

Categorical Data Clustering Using Statistical Methods and Neural Networks

P. Kudová¹, H. Řezanková², D. Húsek¹, V. Snášel³

1 Institute of Computer Science Academy of Sciences of the Czech Republic

University of Economics, Prague, Czech Republic

Technical University of Ostrava, Czech Republic

Introduction

Clustering

Veural Networks

Experiments

SYRCoDIS'2006 < ㅁ > < 큔 > < 콜 > < 콜 > < 콜 > Conclusion

Introduction

Clustering

Statistical methods

Neural Networks

Experiments

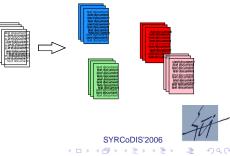
Conclusion

Machine learning

- amount of data rapidly increasing
- need for methods for intelligent data processing
- extract relevant information, concise description, structure
- supervised × unsupervised learning

Clustering

- unsupervised technique
- unlabeled data
- find structure, clusters



Possible applications of clustering

- Marketing finding groups of customers with similar behavior
- Biology classification of plants and animals given their features
- Libraries book ordering
- Insurance identifying groups of motor insurance policy holders with a high average claim cost, identifying frauds
- Earthquake studies clustering observed earthquake epicenters to identify dangerous zones
- WWW document classification, clustering weblog data to discover groups of similar access patterns

Goals of our work

State of the Art

- summarize and study available clustering algorithms
- starting point for our future work

Clustering techniques

- statistical approaches available in SPSS, S-PLUS, etc.
- neural networks, genetic algorithms our implementation

Comparison

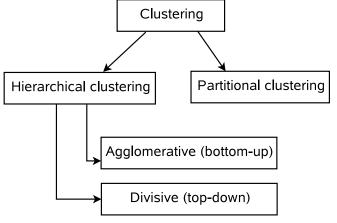
- compare the available algorithms
- on benchmark problems

Goal of clustering

- partitioning of a data set into subsets clusters, so that the data in each subset share some common trait
- often based on some similarity or distance measure

Definition of cluster

- Basic idea: cluster groups together similar objects
- More formally: clusters are connected regions of a multi-dimensional space containing a relatively high density of points, separated from other such regions by an low density of points
- Note: The notion of proximity/similarity is always problem-dependent.



SYRCoDIS'2006 < □ > < 클 > < 클 > < 클 >

Clustering of categorical data I.

Categorical data

- object described by p attributes x_1, \ldots, x_p
- attributes dichotomous or from several classes
- examples: $x_i \in \{yes, no\}$

 $x_i \in \{male, female\}$

 $x_i \in \{small, medium, big\}$

Methods for categorical data

- new approaches for categorical data
- new similarity and dissimilarity measures

Clustering of categorical data II.

Problems

- available statistical packages provide similarity measures for binary data
- methods for categorical data rare and often incomplete

Similarity measures

$$s_{ij} = rac{\sum_{l=1}^{p} g_{ijl}}{p}$$
 $g_{ijl} = 1 \iff x_{il} = x_{jl}$

• Percentual disagreement $(1 - s_{ij})$ (used in STATISTICA)

Clustering of categorical data III.

Similarity measures

- Log-likelihood measure (in Two-step Cluster Analysis in SPSS)
- $\hfill distance between two clusters <math display="inline">\sim$ decrease in log-likelihood as they are combined into one cluster

$$d_{hh'} = \xi_h + \xi_{h'} - \xi_{\langle h, h' \rangle}; \qquad \xi_g = -n_g \left(\sum_{l=1}^p -\sum_{m=1}^{K_l} \frac{n_{glm}}{n_g} \log \frac{n_{glm}}{n_g} \right)$$

- CACTUS (CAtegorical ClusTering Using Summaries)
- ROCK (RObust Clustering using linKs)
- k-histograms

Conclusion

Statistical methods

Algorithms overview

- hierarchical cluster analysis (HCA) (SPSS)
- CLARA Clustering LARge Applications (S-PLUS)
- TSCA Two-step cluster analysis with log-likelihood measure (SPSS)

Measures used

- Jac Jaccard coefficient assymetric similarity measure
- CL complete linkage
- ALWG average linkage within groups
- SL single linkage
- ALBG average linkage between groups

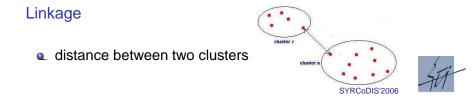
Similarity measures

Jaccard coefficient

assymetric binary attributes, negative are not important

$$s_{ij} = \frac{p}{p+q+r}$$

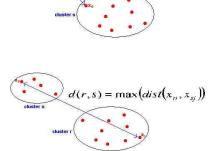
- $p \dots \#$ of attributes positive in both objects
- $q \dots \#$ of attributes positive only in the first object
- r...# of attributes positive only in the second object



cluster r

- Single linkage (SL)
 - nearest neighbor

- Complete linkage (CL)
 - furthest neighbor
- Average linkage(AL)
 - average distance



 $d(r,s) = \min(dist(x_n, x_m))$

Neural networks and GA

possible applications of NN and GA on clustering

Neural Networks

- Kohonen self-organizing map (SOM)
- Growing cell structure (GCS)

Evolutionary approaches

Genetic algorithm (GA)

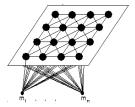
Kohonen self-organizing map (SOM)

Main idea

- represent high-dimensional data in a low-dimensional form without loosing the 'essence' of the data
- organize data on the basis of similarity by putting entities geometrically close to each other

SOM

- grid of neurons placed in feature space
- learning phase adaptation of grid so that the topology reflect the topology of the data
- mapping phase



Kohonen self-organizing map (SOM) II.

Learning phase

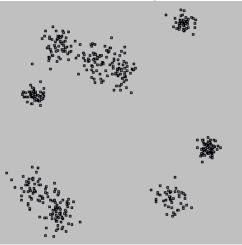
- competition winner is the nearest neuron
- winner and its neighbors are adapted
- adaptation move closer to the new point

Mapping of a new object

- competition
- new object is mapped on the winner

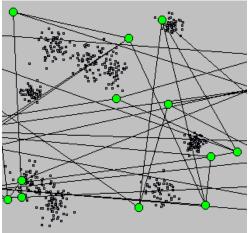
Kohonen self-organizing map (SOM) III.

SOM example



Kohonen self-organizing map (SOM) III.

SOM example



SYRCoDIS'2006 < □ > < @ > < @ > < @

< □ > < 同 >

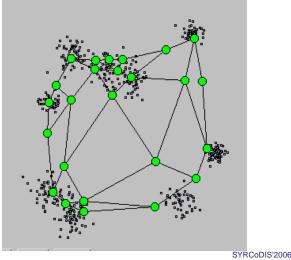
→ Ξ → <</p>

riments

Conclusion

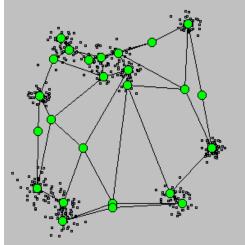
Kohonen self-organizing map (SOM) III.

SOM example



Kohonen self-organizing map (SOM) III.

SOM example



SYRCoDIS'2006

< ロ > < 部 > < き > <</p>

Growing cell structures (GCS)

Network topology

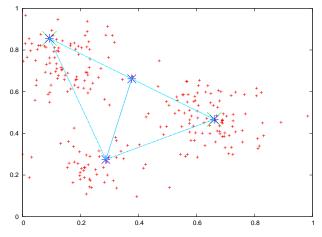
- derivative of SOM
- grid not regular
- network of triangles (or k-dimensional simplexes)

Learning

- learning similar to SOM
- new neurons are added during learning
- superfluous neurons are deleted

Growing cell structures (GCS) II.

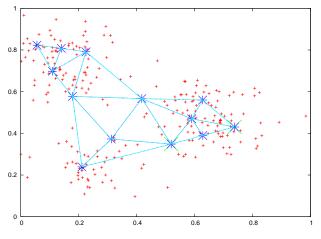
GCS example



Conclusion

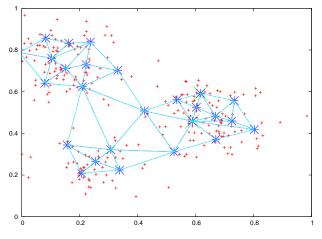
Growing cell structures (GCS) II.

GCS example



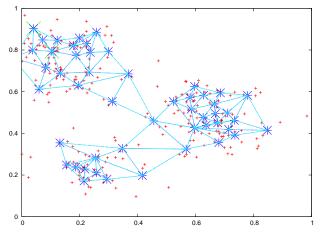
Growing cell structures (GCS) II.

GCS example



Growing cell structures (GCS) II.

GCS example



RCoDIS'2006

Genetic algorithms (GA)

GA

- stochastic optimization technique
- applicable on a wide range of problems
- work with population of solutions individuals
- new populations produced by operators selection, crossover and mutation

GA operators

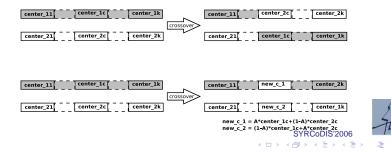
- selection the better the solution is the higher probability to be selected for reproduction
- crossover creates new individuals by combining old ones
- mutation random changes

Clustering using GA

Individual center_1 center_2 _ _ _ center_k

$$E = \sum_{j} ||\mathbf{x}_j - \mathbf{c}_s||^2;$$
 $\mathbf{c}_s \dots$ nearest cluster center

Operators



Experimental results

Data set

- Mushroom data set available from UCI repository
- popular benchmark
- 23 species
- 8124 objects, 22 attributes
- 4208 edible, 3916 poisonous

Experiment

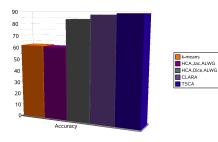
- compare different clustering methods
- clustering accuracy

$$r=\frac{\sum_{\nu=1}^{k}a_{\nu}}{n}$$

SYRCoDIS'2006 < □ > < ⊡ > < ⊇ > < ⊇ >

Statistical methods - 2 clusters

	Edible		Poiso	Accuracy	
Method	Correct	Wrong	Correct	Wrong	
k-means	3836	372	1229	2687	62.3%
HCA, Jac, ALWG	3056	1152	1952	1964	61.6%
HCA, Dice, ALWG	3760	448	3100	816	84.4%
CLARA	4157	51	2988	928	87.9%
TSCA	4208	0	3024	892	89.0%



æ

Number of "pure" clusters

	Total number of clusters							
Methods	2	4	6	12	17	22	23	25
k-means	0	0	0	2	9	16	16	16
HCA, Jac, CL	0	2	2	9	15	20	21	23
HCA, Jac ,ALWG	0	1	2	7	12	18	19	21
HCA, Jac, ALBG	1	2	3	8	13	21	23	25
HCA, Jac, SL	1	3	4	10	14	22	23	25
TSCA – binary	1	3	4	8	14	20	21	24
TSCA – nominal	1	3	4	8	14	20	21	22
CLARA	0	0	0	7	7	13	15	16

SYRCoDIS'2006 < □ > < 급 > < ≧ > < ≧ >

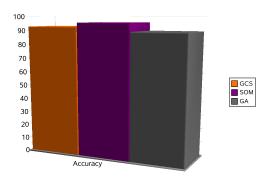
Accuracy for different number of clusters

	Total number of clusters						
	4	6	12	17	22	23	25
k-means	78%	80%	92%	94%	95%	95%	98%
HCA, Jac, CL	76%	82%	<mark>97</mark> %	<mark>98</mark> %	98%	99%	99%
HCA, Jac, ALWG	88%	88%	95%	<mark>98</mark> %	99%	99%	99%
HCA, Jac, ALBG	68%	89%	89%	94%	99%	100%	100%
HCA, Jac, SL	68%	89%	89%	91%	100%	100%	100%
CLARA	<mark>90</mark> %	75%	93%	96%	93%	96%	98%
TSCA – binary	89%	89%	95%	97%	98%	99%	99%
TSCA – nominal	89%	89%	93%	98%	99%	99%	99%
GCS	х	<mark>90</mark> %	92%	90%	93%	91%	95%

SYRCoDIS'2006 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < Conclusion

Neural Networks and GA

Method	Accuracy	# clusters
GCS	93%	22
SOM	96%	25
GA	90%	4



Statistical methods and Neural networks

- statistical methods give better accuracy
- GCS, SOM provide topology, not only clustering
- GA good accuracy with 4 clusters , but time consuming

Future work

- focus on hierarchical methods
- clustering using kernel methods
- application, clustering text documents

