
Asynchronous Evolution

of

Convolutional Networks

Petra Vidnerová

Institute of Computer Science
The Czech Academy of Sciences

ITAT 2018

Outline

Introduction

Related Work

Convolutional Networks, Keras

Our Approach

Coding of Individuals

Genetic Operators

Parallel Approch

Asynchronous Evolution

Experiments

MNIST, Fashion-MNIST

Conclusion

Introduction

Convolutional Neural Networks

subset of deep neural networks

convolutional networks - convolutional layers

our work: evolving architecture of convolutional networks

Network Architecture

typically designed by humans

trial and error method

our goal: automatic design

Related Work

quite many attemps on architecture optimisation via

evolutionary process (NEAT, HyperNEAT, COSyNE)

neuroevolution - evolving both topology and weights

architecture optimisation for DNN is very time consuming

works focus on parts of network design

I. Loshchilov and F. Hutter, CMA-ES for hyperparameter

optimization of deep neural networks, 2016

number of layers fixed, only optimised number of neurons in

individual layers, dropout rates, learning rates

J. Koutník, J. Schmidhuber, and F. Gomez, Evolving deep

unsupervised convolutional networks for vision-based

reinforcement learning, GECCO ’14.

architecture is fixed, only a small controller evolved

Related Work

optimising deep learning architectures through evolution

R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink, O.

Fran- con, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B.

Hodjat, Evolving deep neural networks, 2017

DeepNEAT - extending NEAT do deep networks, nodes are

layers

CoDeepNEAT - two coevolving populations, one of

modules, one of blueprints

Related Work

Autokeras

Efficient Neural Architecture Search with Network

Morphism. Haifeng Jin, Qingquan Song, and Xia Hu.

arXiv:1806.10282.

uses Bayesitan optimisation to select network morphism

operation

impor t autokeras as ak

c l f = ak . ImageC lass i f i e r ()

c l f . f i t (x_ t ra in , y _ t r a i n)

r e s u l t s = c l f . p r e d i c t (x_ tes t)

Convolutional Neural Networks

convolutional layers

max-pooling layers

Convolutional Networks in Keras

Keras - widely used tool for implementing deep neural

networks

model = Sequent ia l ()

model . add (Conv2D(32 , ke rne l_s i ze =(3 , 3) ,

a c t i v a t i o n = ’ r e l u ’ ,

input_shape=input_shape))

model . add (Conv2D(32 , (3 , 3) , a c t i v a t i o n = ’ r e l u ’))

model . add (MaxPooling2D (poo l_s ize =(2 , 2)))

model . add (Dropout (0 . 2 5))

model . add (F l a t t e n ())

model . add (Dense(128 , a c t i v a t i o n = ’ r e l u ’))

model . add (Dropout (0 . 5))

model . add (Dense (num_classes , a c t i v a t i o n = ’ softmax ’))

Our Approach

Keep the search space as simple as possible.

only architecture is optimized, weights are learned by

gradient based technique

the approach is inpired by and designed for Keras library

architecture defined as list of layers

dense, convolutional, max-pooling layers

layer defined by number of neurons/number of filters, size

of filter, size of pool, activation function, type of

regularization

future work: metaparameters of learning algorithm (type of

algorithm, learning rate, etc.)

Evolutionary Algorithms

robust optimisation techniques

work with population of individuals representing feasible

solutions

each individual has assigned a fitness value

population evolves by means of selection, crossover, and

mutation

Our previous work

classical GA for DNN (FedCSIS 2017)

evolution strategies for DNN (ITAT 2017)

Convolution Networks - Individuals

convolutional part - convolutional and max-pooling layers -

feature extraction

dense part - only dense layers - classification

individuals consists of two parts convolutional and dense

Coding of Individuals

I = (Iconv , Idense),

Iconv = ([type, params]1, . . . , [type, params]H1)

Idense = ([size, dropout , act]1, . . . , [size, dropout , act]H2)

I1 and I2 - convolutional and dense part

H1 and H2 corresponding number of layers

type ∈ {convolutional,max− pooling}

convolutional parameters: number of filters, size of filter,

activation function

max-pooling parameters: size of pool

act ∈ {relu,tanh,sigmoid,hardsigmoid,linear}

Crossover

one-point crossover working on the whole blocks (layers)

Parents:

Ip1 = (Bp1
1 ,B

p1
2 , . . . ,B

p1
k)

Ip2 = (Bp2
1 ,B

p2
2 , . . . ,B

p2
l),

Offspring:

Io1 = (Bp1
1 , . . . ,B

p1
cp1,B

p2
cp2+1, . . . ,B

p2
l)

Io1 = (Bp2
1 , . . . ,B

p2
cp2,B

p1
cp1+1, . . . ,B

p1
k).

Mutation

random changes to the individual

Roulette wheel selection of:

mutateLayer - modifies one randomly selected layer

addLayer - adds one random layer

delLayer - deletes one random layer

mutateLayer

change layer size, number of filters, filter size, pool size

change dropout

change activation

Fitness and Selection

Fitness Evaluation

create network defined by individual

evaluate crossvalidation error on trainset

KFold crossvalidation

for each fold train network using gradient based technique

Tournament selection

k individuals selected at random, the best one selected for

repreduction

Parallel approach

Classic approach

very time consuming

each fitness evaluation includes crossvalidation

Parallel approach

GA are easy to paralelize

fitness evaluations are independent

can be done in parallel

Parallel GA

basic idea of parallel programs - divide-and-conquer

approach

can be applied to GAs in many different ways

three main types of parallel GA:

global single-population master-slave GAs

single population fine-grained

multi-population coarse-grained

Master-slave parallel GA

one population stored on the master

master executes GA operations

slaves only evaluate the fitness of individuals

does not effect the algorithm

easy to implement

Our parallel implementation - Master-slave

we use master-slave approach

fitness is evaluated in parallel

Disadvantage

individuals are networks of different sizes

some evaluate faster than others

in each generation some processors idle for a period of

time

Asynchronous evolution

individuals evaluated one by one

no notion of generation

as soon as there is an idle processor, new individual is

created

arbitrary number of processors

slightly prefers smaller networks

1. get evaluated individual I

2. append I to the population

3. discard the worst individual

4. generate new individual I′ by genetic operators

5. send I′ for fitness evaluation

Experiments

MNIST dataset

well known data set, classification of hand written digits

28 × 28 pixels

60000 for training, 10000 for testing

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

MNIST Results

asynchronous evolution

population size 20

20 generations

model avg std min max

baseline 98.97 0.07 98.84 99.13

evolved 99.17 0.11 98.92 99.36

MNIST Results – Architectures

Baseline network

conv #32 kernelsize=3 activation=relu

conv #32 kernelsize=3 activation=relu

pool poolsize=2

dense #128 dropout=0.5 activation=relu

Trainable params: 600,810

Evolved network

conv #22 kernelsize=2 activation=tanh

conv #31 kernelsize=5 activation=linear

pool poolsize=3

conv #33 kernelsize=5 activation=relu

dense #143 dropout=0.4 activation=relu

dense #42 dropout=0.0 activation=tanh

Trainable params: 431,659

Fashion-MNIST Results

Data Set

alternative to MNIST

28 × 28 pixels, 10 classes

60000 for training, 10000 for testing

Results

model avg std min max

baseline 91.64 0.37 90.77 91.97

evolved 92.32 0.52 91.07 92.86

Fashion MNIST Results – Architectures

Baseline network

conv #32 kernelsize=3 activation=leakyRelu

pool poolsize=2

conv #64 kernelsize=3 activation=leakyRelu

pool poolsize=2

conv #128 kernelsize=3 activation=leakyRelu

pool poolsize=2

dense #128 dropout=0.3 activation=leakyRelu

Trainable params: 356,234

Fashion MNIST Results – Architectures

Evolved network

conv #46 kernelsize=3 activation=relu

conv #15 kernelsize=3 activation=relu

conv #36 kernelsize=4 activation=relu

conv #13 kernelsize=3 activation=relu

conv #36 kernelsize=3 activation=relu

pool poolsize=2

dense #235 dropout=0.4 activation=hard_sigmoid

dense #130 dropout=0.3 activation=tanh

Trainable params: 1,714,219

Synchronous vs. Asynchronous Approach

both algorithms run on 5 processors for 4 days with

population size 20

asychronous approach: 140 fitness evaluations

synchronous approach: 100 fitness evalutations

Conlusion and Future Work

proposed algorithm for CNN architecture design

demonstrated the algorithm on experiments

Future Work

compare our approach and autokeras

evolve also other parameters of learning

multi-criteria evolution

speed up the evolution - surrogate modeling

Thank you! Questions?

