Genetic Algorithm with Species for Regularization Network Metalearning

Petra Vidnerová

Department of Theoretical Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic

ITAT 2010

- Introduction supervised learning
- Regularization networks
- Meta-parameters
- Genetic parameter search
- Experimental results
- Summary and future work

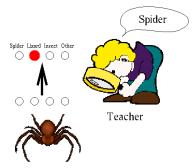
Supervised Learning

Learning

- given set of data samples
- find underlying trend, description of data

Supervised learning

- data input-output patterns
- create model representing IO mapping
- classification, regression, prediction, etc.



Regularization Networks

Regularization Networks

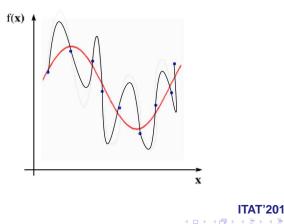
- method for supervised learning
- a family of feedforward neural networks with one hidden layer
- derived from regularization theory
- very good theoretical background

Our Focus

- we are interested in their real applicability
- setup of explicit parameters

Learning from Examples - Problem Statement

- Given: set of data samples $\{(\vec{x_i}, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i=1}^N$
- Our goal: recover the unknown function or find the best estimate of it



Regularization Theory

Empirical Risk Minimization:

- find f that minimizes $H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) y_i)^2$
- generally ill-posed
- choose one solution according to a priori knowledge (smoothness, etc.)

Regularization approach

• add a stabiliser $H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) - y_i)^2 + \gamma \Phi[f]$

Derivation of Regularization Network

Form of the Solution

for a wide class of stabilizers the solution has a form

$$f(\mathbf{x}) = \sum_{i=1}^{N} w_i G(\vec{\mathbf{x}} - \vec{\mathbf{x}}_i)$$

where weights w_i satisfy

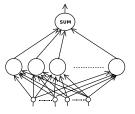
$$(\gamma I + G)\vec{w} = \vec{y}$$

 represented by feed-forward neural network with one hidden layer

Derivation of Regularization Network

Regularization Network

$$f(\mathbf{x}) = \sum_{i=1}^{N} w_i G(\vec{\mathbf{x}} - \vec{\mathbf{x}}_i)$$



- function G called basis or kernel function
- choice of G represents our knowledge or assumption about the problem
- choice of G is crucial for the generalization performance of the network

RN learning algorithm

Basic Algorithm

- 1. set the centers of kernel functions to the data points
- 2. compute the output weigths by solving linear system

 $(\gamma I + K)\vec{w} = \vec{y}$

Advantages and Disadvantages

- algorithm simple and efective
- choice of γ and kernel function is crucial for the performance of the algorithm (cross-validation)

Summary

Meta-parameters

Parameters of the Basic Algorithm

- kernel type
- kernel parameter(s) (i.e. width for Gaussian)
- regularization parameter γ

How we estimate these parameters?

- kernel type usually by user
- kernel parameter and regularization parameter by cross-validation
- in this work: all parameters by genetic approach

Role of Kernel Function

Choice of Kernel Function

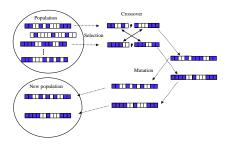
- choice of a stabilizer
- choice of a function space for learning (hypothesis space)

Role of Kernel Function

- represent our prior knowledge about the problem
- no free lunch in kernel function choice
- should be chosen acording to the given problem
- what functions are good first choice?

Genetic Algorithm

- stochastic optimisation technique
- work with population of possible solutions
- operators selection, crossover, mutation



Genetic Algorithm Search

Individuals

• individuals coding RN meta-parameters $I = \{K, p, \gamma\}$

Individual used for search including kernel type:			
type of kernel kernel parameters reg. parameter			reg. parameter
Individual used for Gaussian kernels: width reg. parameter			

Co-evolution

- subpopulations corresponding to different kernel functions
- selection on the whole population
- crossover on subpopulations



(日)

Experiments

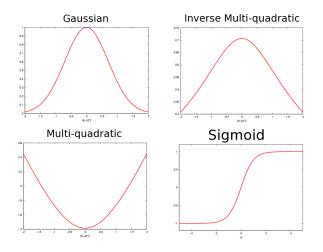
Data

benchmark data sets - Proben1 data repository

Methodology

- separate data for training and testing
- find suitable kernel function and γ on training set by genetic parameter search
- learn on training set (estimation of weights w)
- evaluate error on testing set generalization ability

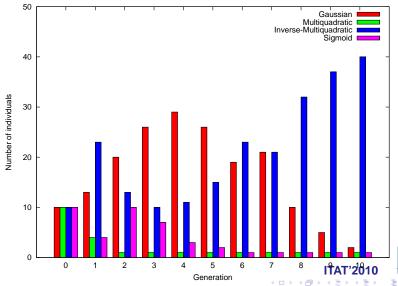
Kernel Functions



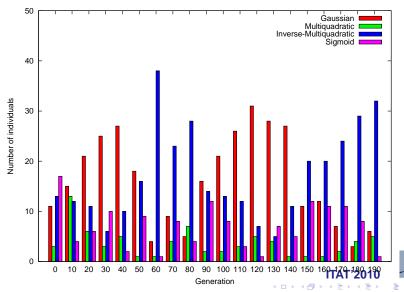
ITAT'2010

< □ > < □ > < □ > < □ > < □ > < □ >

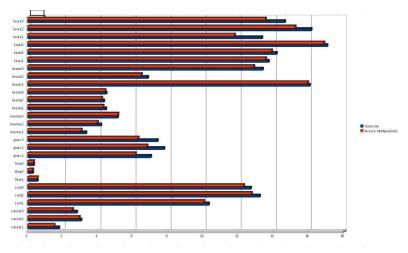
Subpopulations during Evolution - Tournament Selection



Subpopulations during Evolution - Roulette-wheel Selection



Comparison with Gaussian Kernel



ITAT'2010

▲□▶▲圖▶▲厘▶▲厘

Summary and future work

Summary

- learning with RN networks described
- role of kernel function discussed
- genetic parameters search
- best kernel inverse-multiquadratic

Work in progress and future work

- kernel functions for other data types (categorical data, etc.)
- composite types of kernels

Summary

Thank you! Questions?

