The Role of Kernel Function in Regularization Network

Petra Kudová

Department of Theoretical Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic

ITAT 2006

Outline

- Introduction
 - supervised learning
- Regularization Networks
 - regularization theory
 - RN learning algorithm
 - role of kernel function
- Experimental Results
 - Let the role of kernel function and regularization parameter
 - comparison of different kernel functions
- Summary and Future Work

Supervised Learning

Learning

- given set of data samples
- find underlying trend, description of data

Supervised Learning

- data input-output patterns
- create model representing IO mapping
- classification, regression, prediction, etc.

Regularization Networks

Regularization Networks

- method for supervised learning
- a family of feed-forward neural networks with one hidden layer
- derived from regularization theory
- very good theoretical background

Our Focus

- we are interested in their real applicability
- setup of explicit parameters choice of kernel function

Learning from Examples – Problem Statement

- Given: set of data samples $\{(\vec{x_i}, y_i) \in R^d \times R\}_{i=1}^N$
- Our goal: recover the unknown function or find the best estimate of it

Regularization Theory

Empirical Risk Minimization:

- find *f* that minimizes $H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) y_i)^2$
- generally ill-posed
- choose one solution according to <u>a priori knowledge</u> (smoothness, etc.)

Regularization Approach

• add a stabiliser $H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) - y_i)^2 + \gamma \Phi[f]$

Derivation of Regularization Network

Stabilizer Based on Fourier Transform

[Girosi, Jones, Poggio, 1995]

- reflects some knowledge about the target function (usually smoothness, etc.)
- penalize functions that oscillate too much
- stabilizer in a form:

$$\Phi[f] = \int_{\mathcal{R}^d} dec{s} rac{| ilde{f}(ec{s})|^2}{ ilde{G}(ec{s})}$$

- \tilde{f} Fourier transform of f
- G positive function

 $ilde{G}(ec{s})
ightarrow 0$ for $||s||
ightarrow \infty$ $1/ ilde{G}$ high-pass filter

Derivation of Regularization Network

Form of the Solution

 for a wide class of stabilizers (G positive semi-definite) the solution has a form

$$f(\mathbf{x}) = \sum_{i=1}^{N} w_i G(\vec{\mathbf{x}} - \vec{\mathbf{x}}_i)$$

where weights w_i satisfy

$$(\gamma I + G)\vec{w} = \vec{y}$$

 represented by a feed-forward neural network with one hidden layer

Regularization Network

Network Architecture

$$f(\mathbf{x}) = \sum_{i=1}^{N} w_i G(\vec{\mathbf{x}} - \vec{\mathbf{x}}_i)$$

function G called basis or kernel function

Basic Algorithm

- 1. set the centers of kernel functions to the data points
- 2. compute the output weights by solving linear system

$$(\gamma I + K)\vec{w} = \vec{y}$$

Model Selection

Parameters of the Basic Algorithm

- kernel type
- kernel parameter(s) (i.e. width for Gaussian)
- regularization parameter γ

How we estimate these parameters?

- kernel type by user
- kernel parameter and regularization parameter by grid search and cross-validation
- speed-up techniques: grid refining

Role of Regularization Parameter

glass1, test set error

Role of Kernel Function

Choice of Kernel Function

- choice of a stabilizer
- choice of a function space for learning (hypothesis space)

Role of Kernel Function

- represent our prior knowledge about the problem
- no free lunch in kernel function choice
- should be chosen according to the given problem
- what functions are good first choice?

Experiments

Data

- Lenna image approximation
- benchmark data sets Proben1 data repository

Methodology

- separate data for training and testing
- find suitable γ on training set by cross-validation
- learn on training set (estimation of weights w)
- evaluate error on testing set generalization ability

 10^{-3}

 10^{-2}

Lenna – Approximation 10^{-5} 10^{-4}

0.0

UUD

Proben1 – Comparison of Kernel Functions

Proben1 – Comparison of Kernel Functions

Experimental results

Summary

Comparison of Test Errors

- inverse multi-quadratic (20 tasks)
- Gaussian function
- Iocal response

Comparison of Training Errors

- thin plate spline
- multi-quadratic
- sum of two Gaussians
- good generalization without reg. member

Summary and Future Work

Summary

- learning with RN networks described
- role of kernel function discussed
- impact of kernel function choice demonstrated
- different kernel functions compared

Work in Progress and Future Work

- kernel functions for other data types (categorical data, etc.)
- composite types of kernels

Thank you! Questions?

