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Introduction
Our approach is based on the model called regu-
larization network (RN). RNs benefit from a good
theoretical background, they has been proved to be
the solution of the problem of learning from exam-
ples when formulated as a regularized minimiza-
tion problem [1, 2].
The key step of the RN learning is a choice of kernel
function. Different kernel functions are suitable for
different data types, but data are often heteroge-
neous. We proposed the composite kernel functions
that reflect better the character of data. Such ap-
proach can be ranked among the so called multi-
kernel models.

RN and Kernels
Learning problem formulation
Given the data set {(~xi, yi) ∈ Rn×R}Ni=1, obtained
by random sampling of a unknown function f , our
goal is to find the function f or its approximation.
Regularization Network
Minimize H[f ] = 1

N

∑N
i=1(f(~xi) − yi)

2 + γΦ[f ],
where Φ is some stabilizer and γ > 0.
The solution is unique and has the form

f(~x) =
∑N

i=1 wiK~xi
(~x), (NγI +K)~w = ~y,

where I is the identity matrix, K is the matrix
Ki,j = K(~xi, ~xj), and ~y = (y1, . . . , yN ). Meta-
parameters γ, and a type of kernel K are given.
Kernel function
The choice of the kernel functionK is an important
part of the learning. It corresponds to the choice of
a stabilizer and reflects our prior knowledge of the
problem.

Multi-Kernels
Common elementary kernel functions:

linear K(~x, ~y) = ~xT~y polynomial K(~x, ~y) = (α~xT~y + r)d, α > 0
Gaussian K(~x, ~y) = exp(−α||~x− ~y||2), α > 0 sigmoid K(~x, ~y) = tanh(α~xT~y + r)

α, d and r are parameters of the kernel.
Motivation for multi-kernel approach stems from the multi-modal nature of data. Each set of features may
require a different notion of similarity (i.e., a different kernel). Instead of building a specialized kernel for
such applications, it is possible to define just one kernel for each of these modes, and combine them.
It this work, two types of composite kernels are considered:
Product kernelsK1 andK2 are some kernel functions defined on Rn1 and Rn1 , n1+n2 = n. Then, a product
kernel is defined: K(~x, ~y) = K( ~x1, ~x2, ~y1, ~y2) = K1(~x1, ~y1)K2(~x2, ~y2).
Sum kernels K(~x, ~y) = K1(~x, ~y) +K2(~x, ~y), where K1 and K2 are kernel functions.
We can combine different kernel functions or two kernel functions of the same type but with different
parameters, such as two Gaussians of different widths (but the same centre).

Evolution of Kernels
We deploy genetic algorithm (GA) to search for op-
timal composite kernels. It works with population
of possible kernels (individuals) and evolves them
using operators selection, crossover and mutation.
Individual Encoding
Elementary kernel function: I = {K, p, γ},.
Product kernel: I = {K0, p0,K1, p1, i1, . . . , in, γ},.
Example:

I ={Gaussian, 0.84,

Inverse_Multiquadric, 1.58,

[0, 0, 1, 0, 1, 1, 1, 1], γ = 0.2}.

Crossover and Mutation Crossover on elemen-
tary kernels generates new values in the interval
formed by the parents, i.e. γ = (1 − r)γ1 + rγ2,
where r ∈ 〈0, 1〉 is a random number, γ1 and γ2 are
parents’ values.
Crossover on composite kernels swaps the subker-
nels (and in case of product kernels runs one-point
crossover on attribute vectors).
Tournament Selection Use the kernel to create a
network. Compute the crossvalidation error. The
winner is the one with the lower error.

Experiments
Data set: a real-world data from the area of sensor networks for air pollution
monitoring [3]. Tens of thousands measurements of gas multi-sensor devices
recording concentrations of several gas pollutants for every hour.
5 input sensors and 3 target values( CO, NO2, and NOx concentrations).
Methodology: GA was run for 300 generations, with 20 individuals, elite
size 2. For fitness evaluation, the 10 folds crossvalidation was used.
E = 100 1

N

∑N
i=1 ||~yi − f(~xi)||2, each computation was repeated 10 times. -0.1
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Task I - sparse measurements
The training data con-
sists of 4 samples per
day, the rest (values in-
between) is then used for
testing. Errors for CO
(right), NO2 and NOx
(bottom left and right).  0.115
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Task II - missing epochs
The whole time period
was split into five inter-
vals, one for training, the
rest for testing. Consider-
ing mean values, improve-
ment was achieved mainly
on train errors. Minimal
errors of product kernels
are more promising, the
GA should be improved.
The resulting product ker-
nels are mainly combi-
nations of Gaussians and
Inverse-Multiquadrics.
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