Clustering Genetic Algorithm

Petra Kudová

Department of Theoretical Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic

ETID 2007

Experimental results

Conclusion

Introduction

Clustering Genetic Algorithm

Experimental results

Conclusion

Motivation

Goals

- study applicability of GAs to clustering
- design genetic operators suitable for clustering
- application to tasks with unknown number of clusters
- compare to standard techniques

Clustering

- partitioning of a data set into subsets clusters, so that the data in each subset share some common trait
- often based on some similarity or distance measure
- the notion of similarity is always problem-dependent.
- wide range of algorithms (k-means, SOMs, etc.)

2007 יחו

< ロ ト < 得 ト < ヨ ト < ヨ)

Clustering

Definition of cluster

- Basic idea: cluster groups together similar objects
- More formally: clusters are connected regions of a multi-dimensional space containing a relatively high density of points, separated from other such regions by an low density of points

Applications

- Marketing find groups of customers with similar behaviour
- Biology classify of plants/animals given their features
- WWW document classification, clustering weblog data to discover groups of similar access patterns

'2007 OT

(日)

Genetic algorithms

Genetic algorithms

- stochastic optimization technique
- applicable on a wide range of problems
- work with population of solutions individuals
- new populations produced by genetic operators

Genetic operators

- selection the better the solution is the higher probability to be selected for reproduction
- crossover creates new individuals by combining old ones
- mutation random changes

Clustering Genetic Algorithm (CGA)

Representation of the individual

- 1. approach (Hruschka, Campelo, Castro)
 - for each data point store cluster ID

ength = # data points

14623461111235643346664342132143222345634212234523456422

- long individuals (high space requirements)
- 2. approach (Maulik, Bandyopadhyay)
 - store centres of the clusters

center_1 center_2 center_k

 need to assign data points to clusters before each fitness evaluation

Fitness

Normalization

- partition the data set into clusters using the given individual
- move the centres to the actual gravity centres

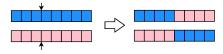
Fitness evaluation

• clustering error: $fit(I) = -E_{VQ}$

$$E_{VQ} = \sum_{i=1}^{K} ||\vec{x}_i - \vec{c}_{f(x_i)}||^2, \qquad f(\vec{x}_i) = \arg\min_k ||\vec{x}_i - \vec{c}_k||^2$$

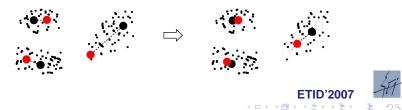
• silhouette function: $fit(i) = \sum_{i=1}^{N} s(\vec{x}_i)$

$$s(\vec{x}) = \frac{b(\vec{x}) - a(\vec{x})}{max\{b(\vec{x}), a(\vec{x})\}}$$



・ロト ・ 四 ト ・ 回 ト ・ 回

Crossover


One-point Crossover

exchange the whole blocks (i.e. centres)

Combining Crossover

match the centres and combine them

Mutation

One-point mutation, Biased one-point mutation

• One-point Mutation: $\vec{c}_{new} = \vec{x}_i$, where $i \leftarrow random(1, N)$

• Bias one-point Mutation: $\vec{c}_{new} = \vec{c}_{old} + \vec{\Delta}$, where $\vec{\Delta}$ is a random small vector

K-means mutation

several steps of k-means clustering

Cluster addition, Cluster removal

- Cluster Addition adds one centre
- Cluster Removal removes randomly selected centre

'ID'2007

< ロ > < 同 > < 回 > < 回 >

Experiments

Goals

- demonstrate the performance of CGA
- compare variants of genetic operators

Data Sets

25 centres

	S
	遡
	協
· MA - MA - MA - MA	22

- vowels (UCI machine learning repository) 11 kinds of vowels, dimension 9
 - 990 examples
- mushrooms (UCI machine learning repository)

23 kinds of mushrooms, dimension 125 8124 examples

FTID'2007

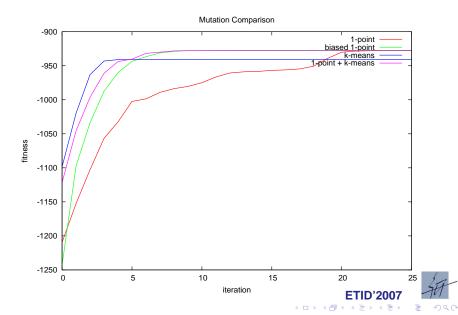
< ロ > < 同 > < 回 > < 回 >

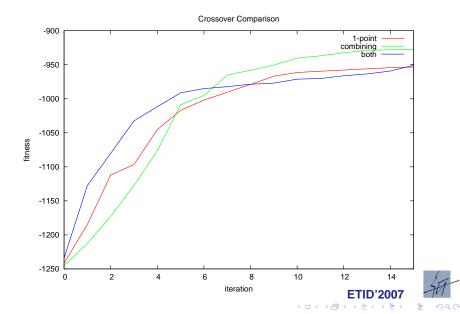
Operators Comparison

Mutation

	25clusters	Vowels
1-point	0.20	927.7
Biased 1-point	0.25	927.3
K-means	0.26	940.7
1-point + Biased 1-pt	0.21	927.3
1-point + K-means	0.21	927.6
All	0.22	927.3

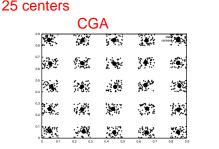
Crossover


	25clusters	Vowels
1-point	0.201	927.7
Combining	0.222	927.4
Both	0.202	927.4


ETID'2007

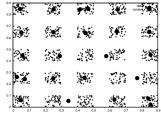
・ロト ・四ト ・ヨト ・ヨト

Convergence Rate – Mutation



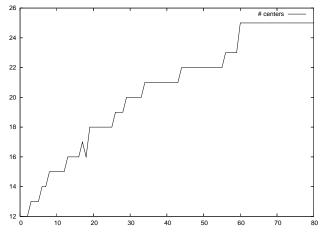
Convergence Rate - Crossover

Comparison to other clustering algorithms


Mushroom data set	method	accuracy
	k-means	95.8%
	CLARA	96.8%
	CGA	97.3%
	HCA	99.2%
o= /	-	

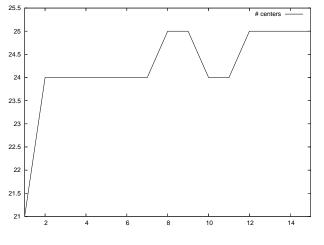
k-means

FTID'2007


・ロト ・聞 ト ・ ヨト ・ ヨ

Estimating the number of clusters

Initial population: 2 to 15 centres



FTID'2007

▲□▶▲圖▶▲厘▶▲厘

Estimating the number of clusters

Initial population: 10 to 30 centres

'D'2007

FΤ ▲□▶▲圖▶▲厘▶▲厘

Summary

- Clustering Genetic Algorithm proposed
- several genetic operators proposed and compared
- CGA compared to available clustering algorithms
- estimating the number of clusters tested

Future work

- application of CGA to large data sets
- reducing time requirements, lazy evaluations, etc.
- applications

Thank you. Any questions?

