SPARSE VERSIONS OF OPTIMIZED CENTROIDS

JAN KALINA & PETRA VIDNEROVÁ & PATRIK JANÁČEK

Introduction

 Mouth localization in images using centroids EXAMPLES OF INITIAL CENTROIDS (26 × 56 PIXELS EACH)

- 212 gray-scale images of faces
- Centroid-based classification is popular, but lacks sparsity
- We propose several methods for constructing sparse centroids

Motivation for Sparsity

- Computational demands (saving time)
- Energetic demands (saving computational energy)
- Explainability

Centroid-based Object Detection

Similarity measure - Pearson product-moment correlation coefficient r

$$\underset{x \in \mathbb{E}}{\operatorname{arg min}} r(x, c),$$

c is a centroid and x is an candidate part of the image

Similarity measure - Euclidean distance [2]

$$\underset{x \in \mathbb{E}}{\arg\min} ||x - c||_2$$

- Vanilla approach centroid is an average of positive examples
- Instead the vanilla approach use optimal centroids [1]

Methods

- Weighted approach: each pixel is assigned a weight $w_i > 0$
- Weights are also optimized
- Several approaches (see the paper):
 - Linear approximation
 - Constrained sparse optimization
 - Evolutionary algorithm
 - Binarized optimal weights
 - Thus a back of a set in a time of such as

Experimental Results

MOUTH LOCALIZATION ACCURACY (USING TEST SET).

		# of used	Localization
Centroid	Weights	pixels	accuracy
Average	Equal	1456	0.93
Average [2]	Equal [2]	1456	0.90
Optimal	Equal	1456	1.00
Optimal	Optimal	932	1.00
Optimal	Sparse opt.	1456	1.00
Optimal	EA	770	0.88
Optimal	EA	500	0.82
Optimal	Binarized optimal	904	0.97
Optimal	Binarized optimal	500	0.92
Optimal	Thresholded optimal	904	1.00
Optimal	Thresholded optimal	500	0.98
Average	Binarized equal	536	0.95
Average	Binarized equal	500	0.93
Average ce	entroid with r _{LWS}	892	0.96
Viola-Jones [3]	-	1456	1.00

LOCALIZATION ACCURACY (USING TEST SET WITH ADDED NOISE).

Method	# of	Localization accuracy		
(Section*)	pixels	Noise I	Noise II	Noise III
II-A	1456	0.90	0.88	0.85
II-B	1456	0.87	0.86	0.82
II-C	1456	1.00	0.99	0.97
III-B	932	1.00	0.95	0.96
III-C	500	1.00	0.98	0.95
III-D	770	0.86	0.81	0.84
III-D	500	0.86	0.81	0.84
III-E	904	0.96	0.92	0.93
III-E	500	0.96	0.92	0.93
III-F	904	1.00	0.98	0.99
III-F	500	1.00	0.98	0.99
IV-A	536	0.93	0.91	0.91
IV-A	500	0.93	0.91	0.91
IV-B	892	0.96	0.89	0.92
Viola-Jones [3]	1456	0.99	0.98	0.96

* see the paper

Conclusions

- Sparse versions of optimal centroids, smaller numbers of pixels
- Robustness with respect to noise
- We recommend thresholded optimal version

I hresholded optimal weights

Illustrative Example

Initial weights:

Optimal weights:

References

- J. Kalina and C. Matonoha, "A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images", Biocybern. Biomed. Eng., vol. 40, pp. 774–786, 2020.
- P. Hall and T. Pham, "Optimal properties of centroid-based classifiers for very high-dimensional data", Ann. Stat., vol. 38, pp. 1071–1093, 2010.
- P. Viola and M.J. Jones, "Robust real-time face detection", Int. J. Comput. Vis., vol. 57, pp. 137–154, 2004.

The Czech Academy of Sciences, Prague

kalina@cs.cas.cz, petra@cs.cas.cz