#### Model M - an agent-based epidemiological model

Petra Vidnerová

úi av čr

#### Hora Informaticae, December 6, 2022



#### Let's go back in time to 2020 and the start of the pandemic.





▲白 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ 約

## Contents

#### Introduction

Team

- Motivation
- Brief history of epidemic models
- Model M
  - Base model
  - Graph
  - Simulation of interventions
- Examples of experiments
  - Contact tracing
  - School policies
  - Vaccination
- Conclusion





# **BISOP** Crew

- Luděk Berec, prf jcu
- Tomáš Diviák, Manchester Uni.
- Aleš Kuběna, útia av čr
- René Levínský, cerge-ei
- Roman Neruda, úl AV ČR
- Josef Šlerka, FP CUNI
- Martin Šmíd, ύτια αν čr

- Gabriela Suchopárová, ύι Αν čR
- Jan Trnka, зғм симі
- Vít Tuček, Zagreb Uni.
- Petra Vidnerová, úl AV ČR
- Karel Vrbenský, ύτιΑ Αν ČR
- Milan Zajíček, ύτιΑ Αν čκ
- ▶ and others



www.bisop.cz

Data from PAQ and MEDIAN.



# Introduction

# Why models?

- Understanding
- Prediction
- Study of interventions

# Epidemic Modelling

- Modelling is an important tool in epidemic control
- Non-pharmaceutical interventions slow down the spread of a virus
- Models has to reflect the interventions valid at the moment









## Epidemic curve





# Epidemiological models

#### History

- 18th century Daniel Bernoulli (1700–1782) first mathematical approach to infectious disease, regarding variola
- Ronald Ross (1857–1932) model of malaria



#### Model types

- compartment models groups, susceptible, infected, recovered
- agent based models work on individual level



・ロト ・ 一下・ ・ ヨト・

# SIR model (Kermack and McKendrick, 1927)



- $\blacktriangleright$  S(t) susceptible
- ► *I*(*t*) infectious
- R(t) recovered/removed
- $\blacktriangleright~\beta$  infection rate,  $\gamma$  recovery rate

$$S[t+1] = S[t] - \beta \frac{S[t] I[t]}{N},$$
  
$$I[t+1] = I[t] + \beta \frac{S[t] I[t]}{N} - \gamma I[t],$$
  
$$R[t+1] = R[t] + \gamma I[t],$$



イロト イヨト イヨト



# From Compartments to Agents



イロト イボト イヨト イヨ

- Compartment models have difficulties in modelling non-pharamaceutical interventions (contact reductions, partial closures)
- Agent models work with a population of individuals
- Agents are connected in a network, i.e. a contact graph
- Agents provide simulation tools for modelling of individual human behaviour
- Enable detailed simulation of various interventions



# Model M



- Agent based model
- Why M? M referes to the world "town" (in Czech "město")
- Works with a population of individuals (56 000 nodes/agents)
- Uses a realistic contact graph
- The graph models one Czech county
- Focus on comparing interventions (rather than on precise forecasting)
- Enables modelling of non-pharmaceutical interventions
- Simulates quarantines, isolations, flat closures on individual level



## $\mathsf{Model}\ \mathsf{M}$



#### Base model - SEIR model

- Each individual is in exactly one of possible states
- Iterates on a daily basis
- Transition  $S \rightarrow E$  is given by  $\beta$  and the contact graph
- Other transitions depends on parameters of the infection only





#### Base model - SEIR model





#### Base model - state durations



# Model M - graph

- Realistic graph
- Model of a real Czech county (Hodonín)
- Models contacts between people
- Multi-graph
- Data sources:
  - Czech Statistical Office
  - State Administration of Land Surveying and Cadastre
  - Ministry of Education, Youth and Sports
  - PAQ research, Median
  - Openstreet map
  - Expert knowledge
- Modified Barabasi-Albert algorithm

#### See Milan Zajíček's talk on youtube



(日)



#### Prem contact matrices



#### Contacts in time



#### PAQ, Life during pandemic



# Model M - graph

- Multi-graph
- Edges organised in layers (family, work, school, etc.)
- 56 thousands nodes
- 2.8 millions edges
- 30 layers



- Each node represents one individual (agent)
- Node attributes age, sex, work activity, commute time, location



# Model M - graph

#### Edges parameters:

- Contact probability p
- Intensity i
- Layer type /
- Each day an edge is activated with the probability  $w_l * p$  ( $w_l$  layer weight)
- Probability of infection transmission

$$p_{S 
ightarrow E}(e) = egin{cases} eta * i & ext{if the edge is active} \ 0 & ext{otherwise} \end{cases}$$



(日)、

# Model M - policy module

 Implements various interventions and changes in people's behaviour

- Invoked on daily basis
- Modifies the graph
- Controls and change model parameters

#### Interventions

Protective measures - masks, hygiene, distancing, cautiousness

(日)

- Contact restrictions
  - Flat closures closed schools, pubs, shops, etc.
  - Individual isolation, quarantine

# Model M - policies

Protective measures
 reduction of β

- Flat contact restrictions
  - Switching off whole layers



イロト イヨト イヨト

#### Individual isolation

- Testing, self-isolation individuals with symptoms
- Contact tracing different levels of contact tracing (family, school & work, leisure time, others)





#### Model M - contact tracing





#### Experiments

- Calibration
- Contact tracing
- Schools
- Vaccination



# Calibration



< □ > < 同

- Finding parameters to fit the history
- Using grid search and CMA-ES

#### Contact tracing

- Compare different levels of contact tracing layers (family, school & work, leisure time, others)
- Two scenarios with and without flat restrictions
- Flat restrictions corresponds to spring 2020 in the Czech Republic
- ▶ 1000 simulations for each setup (model is stochastic)





#### Different levels of contact tracing comparison



### Different levels of contact tracing with flat closures



# Distribution of individual simulation runs by epidemic level





## Histogram of simulation runs - scenario with a mass event

#### Experiment II

- A mass event
- Once a week
- 300 individuals
- 14 000 edges



イロト イボト イヨト イヨ

#### Experiments with school environment

# První den školy





・ロト ・ 日 ・ ・ 目 ・ ・

# Schools

- ▶ In cooperation with Ministry of Education, Youth, and Sports
- Need for safe mode of school attandance
- An alternative graph, model of a real school
- Based on sociological survey
- 650 nodes (teachers and pupils), 70 layers of edges
- Goals is to study various interventions
- Partial closures
- Week alternations
- Testing



#### **Rotation Scenarios**





## Rotation Scenarios

|                          | import |        |        |        |  |  |
|--------------------------|--------|--------|--------|--------|--|--|
|                          | 0.1    | 0.25   | 0.5    | 1.0    |  |  |
| baseline                 | 100.00 | 100.00 | 100.00 | 100.00 |  |  |
| G1–5 full, G6–9 closed   | 50.67  | 54.67  | 52.98  | 54.38  |  |  |
| G1–5 full, G6–9 rotate   | 60.19  | 63.87  | 63.92  | 64.46  |  |  |
| rotations                | 18.93  | 21.94  | 22.69  | 24.79  |  |  |
| half rotations           | 13.18  | 12.57  | 14.02  | 15.42  |  |  |
| G1–5 rotate, G6–9 closed | 12.17  | 12.47  | 13.83  | 15.32  |  |  |
| closed                   | 0.00   | 0.00   | 0.00   | 0.00   |  |  |



## Rotations - violin plots



41 5

æ

・ロト ・ 一下・ ・ ヨト・

#### Testing scenarios





<ロ> (四) (四) (三) (三) (三)

## Testing scenarios

|                          | import |        |        |        |  |
|--------------------------|--------|--------|--------|--------|--|
|                          | 0.1    | 0.25   | 0.5    | 1.0    |  |
| baseline                 | 100.00 | 100.00 | 100.00 | 100.00 |  |
| PCR test once            | 38.34  | 42.26  | 42.26  | 44.59  |  |
| antigen test twice (0.1) | 83.43  | 83.28  | 83.60  | 85.27  |  |
| antigen test twice (0.2) | 64.02  | 67.91  | 67.55  | 71.33  |  |
| antigen test twice (0.4) | 43.48  | 44.42  | 45.98  | 48.43  |  |
| antigen test once (0.1)  | 90.86  | 93.36  | 91.26  | 92.43  |  |
| antigen test once (0.2)  | 79.34  | 82.01  | 82.13  | 83.74  |  |
| antigen test once (0.4)  | 61.27  | 64.28  | 65.81  | 68.77  |  |
| closed                   | 0.00   | 0.00   | 0.00   | 0.00   |  |



#### Rotations + Tests





æ

・ロト ・ 日 ・ ・ ヨ ・ ・

## Rotations + Tests

|                                    | import |        |        |        |  |
|------------------------------------|--------|--------|--------|--------|--|
|                                    | 0.1    | 0.25   | 0.5    | 1.0    |  |
| baseline                           | 100.00 | 100.00 | 100.00 | 100.00 |  |
| rotation + PCR test once           | 12.77  | 13.12  | 12.95  | 14.76  |  |
| rotation $+$ antigen twice $(0.1)$ | 18.46  | 19.45  | 19.76  | 22.50  |  |
| rotation $+$ antigen twice (0.2)   | 16.65  | 16.96  | 17.87  | 20.51  |  |
| rotation $+$ antigen twice (0.4)   | 14.76  | 14.11  | 14.25  | 16.28  |  |
| rotation $+$ antigen once $(0.1)$  | 19.51  | 20.24  | 20.61  | 23.63  |  |
| rotation $+$ antigen once (0.2)    | 18.70  | 19.51  | 19.80  | 22.23  |  |
| rotation + antigen once (0.4)      | 16.92  | 16.38  | 16.94  | 19.49  |  |
| closed                             | 0.00   | 0.00   | 0.00   | 0.00   |  |



#### Experiments with vaccination

- Policy implementing vaccination
- Various efficacy of vaccination
- Various effects of vaccination
- Comparing different scenarious of second dose delays





(日)、

#### Experiments with vaccination





## Software



#### github.com/epicity-cz/model-m



#### Papers

- Berec et al. Delays, masks, the elderly, and schools: first Covid-19 wave in the Czech Republic, Bulletin of Mathematical Biology volume 84, Article number: 75 (2022) https://doi.org/10.1007/s11538-022-01031-5
- Berec et al. Importance of vaccine action and availability and epidemic severity for delaying the second vaccine dose, Scientific Reports volume 12, Article number: 7638 (2022) https://doi.org/10.1038/s41598-022-11250-4
- Brom et al. Rotation-based schedules in elementary schools to prevent COVID-19 spread: A simulation study. https://doi.org/10.1101/2021.06.28.21259628

(日)

 Berec et al. On the Contact Tracing for COVID-19: A simulation study. (in review, Epidemics, Elsevier)

#### Papers

- Berec et al. Model-M: An agent-based epidemic model of a middle-sized municipality. https://doi.org/10.1101/2021.05.13.21257139
- Vidnerová et al. Simulation of non-pharmaceutical interventions in an agent based epidemic model. Proceedings of the 21st Conference Information Technologies – Applications and Theory (ITAT 2021). https://ics.upjs.sk/ antoni/ceur-ws.org/Vol-0000/paper12.pdf
- Monography in Czech in print. To appear soon.



## Conclusion

#### Summary

- Agent based epidemic model with a realistic graph
- Enables simulation of various interventions on individual level
- Modular and extensible (different graphs, vaccination, etc.)

Thank you! Questions?

