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Outliers in linear regression

Yi = β0 + β1Xi1 + · · ·+ βpXip + ei , i = 1, . . . , n

Outliers vs. leverage points

Outlier detection: masking and swamping effects
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Robust regression

Contamination

Local vs. global contamination

Methods

M-estimators (Huber’s estimator, Hampel’s estimator)

Least trimmed squares

Least weighted squares
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Standard metalearning
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Metalearning: motivation, principles

Transfer learning for automatic method selection

Automatic algorithm selection

Empirical approach for (black-box) comparison of methods

Attempt to generalize information across datasets

Learn prior knowledge from previously analyzed datasets and exploit it for
a given dataset

A dataset (instance) viewed as a point in a high-dimensional space
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Description of standard metalearning (Smith-Miles, 2009)

Datasets
Typically not very many
Real datasets (simulated datasets are biased)
We consider 271 datasets

Algorithms
Fully automatic, including finding suitable parameters
Least squares, Huber’s M, Hampel’s M, LTS (h = bn/2c and h = b3n/4c)

Prediction measure
Mean square error (MSE) evaluated within a cross validation

Features of the datasets
How many (there should not be too many)
Relevant for the model selection
Their choice requires to understand the primary task

Metalearning (performed over metadata)
Typically a classification task
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Selected 10 features of the datasets

1 The number of observations n

2 The number of variables p

3 The ratio n/p

4 Normality of residuals (p-value of Shapiro-Wilk test)

5 Skewness of residuals

6 Kurtosis of residuals

7 Coefficient of determination R2,

8 Percentage of outliers (estimated by the LTS) – important!

9 Heteroscedasticity (p-value of Breusch-Pagan test)

10 Donoho-Stahel outlyingness measure of X
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Results of primary learning

Data Ranks according to MSE
set (1) (2) (3) (4) (5)

Aircraft 5 3 4 1 2
Ammonia 5 3 4 2 1

Auto MPG 3 2 1 4 5
Cirrhosis 2.5 1 2.5 5 4
Coleman 1 2 4 5 3
Delivery 5 4 2 3 1

...
...

...
...

...
...

Leave-one-out cross validation

(1) Least squares

(2) Huber’s M-estimator

(3) Hampels’s M-estimator

(4) LTS with h = bn/2c
(5) LTS with h = b3n/4c
Most often: LTS is the best
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Results of metalearning

Method Clas. accuracy

LDA 0.30
SVM (linear) 0.40

SVM (polynomial) 0.43
SVM (radial) 0.43

SVM (sigmoid) 0.40
k-NN (k=1) 0.30
k-NN (k=3) 0.30
k-NN (k=5) 0.33

Classification accuracy in a leave-one-out cross validation

Methods (and their principles):
LDA: linear discriminant analysis
SVM: support vector machine
k-NN: k-nearest neighbor

P. Vidnerová et al. Metalearning for Robust Regression



Robust regression
Standard metalearning

Advanced metalearning
Conclusion

Study 1

Implementation in Python

At first, we downloaded about 2000 datasets

https://vincentarelbundock.github.io/Rdatasets/datasets.html

Pre-processing
Categorial variables
Missing values
Make the datasets homogeneous

Finally: 721 real datasets

Least squares, Hampel’s M-estimator, LTS with h = b3n/4c, LWS

10 features

classification accuracy evaluated in a leave-one-out cross validation: 59%

better than random choice

better than choosing the most frequent winner
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Study 2

Classification accuracy in crossvalidation study, if using MSE:
Contamination

Classifier None Local Global
SVM 0.59 0.49 0.33

Logistic Regression 0.59 0.50 0.36
LDA 0.59 0.50 0.35
KNN 0.59 0.48 0.36

Classification accuracy in crossvalidation study, if trimmed MSE:
Contamination

Classifier None Local Global
SVM 0.45 0.36 0.36

Logistic Regression 0.53 0.43 0.41
LDA 0.53 0.43 0.41
KNN 0.53 0.40 0.41
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Study 3

Improving metalearning

Automatic dimensionality reduction by means of t-tests

Classification accuracy in crossvalidation study, if trimmed MSE:
Dimensionality reduction

Classifier No Yes
SVM 0.45 0.50

Logistic Regression 0.53 0.58
LDA 0.53 0.57
KNN 0.53 0.56

P. Vidnerová et al. Metalearning for Robust Regression



Robust regression
Standard metalearning

Advanced metalearning
Conclusion

Pros and cons of metalearning

Advantages of metalearning:

Extracting knowledge from previously analyzed datasets

No theoretical analysis needed

Clear, simple, comprehensible

Computationally feasible

Popular in computer science

Limitations:

No theory

Number of methods/algorithms/features

Choice of datasets

Too automatic

The problem itself is unstable and the whole process should be robustified
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Conclusion

What we recommend for application of metalearning:

Avoid the choice of very different datasets

Choose carefully the prediction measure (MSE vs. TMSE)

Classification instead of regression

Correct pre-processing (incl. variable selection) of data needed!
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Thank you!
Questions?
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