

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 28 – 36, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Drawing Undirected Graphs with Genetic Algorithms

Qing-Guo Zhang, Hua-Yong Liu, Wei Zhang, and Ya-Jun Guo

Department of Computer Science, Central China Normal University, Wuhan 430079, China
qgzhang@mail.ccnu.edu.cn

Abstract. This paper proposes an improved genetic algorithm for producing
aesthetically pleasing drawings of general undirected graphs. Previous undirected
graph drawing algorithms draw large cycles with no chords as concave polygons.
In order to overcome such disadvantage, the genetic algorithm in this paper
designs a new mutation operator single-vertex- neighborhood mutation and adds a
component aiming at symmetric drawings to the fitness function, and it can draw
such type graphs as convex polygons. The improved algorithm is of following
advantages: The method is simple and it is easy to be implemented, and the
drawings produced by the algorithm are beautiful, and also it is flexible in that the
relative weights of the criteria can be altered. The experiment results show that the
drawings of graphs produced by our algorithm are more beautiful than those
produced by simple genetic algorithms, the original spring algorithm and the
algorithm in bibliography [4].

1 Introduction

A number of data presentation problems involve the drawing of a graph on a limited
two-dimensional surface, like a sheet of paper or a computer screen. Examples include
circuit schematics, algorithm animation and software engineering. In almost all data
presentation applications, the usefulness of a drawing of a graph depends on its
readability, that is, the capability of conveying the meaning of the diagram quickly and
clearly. Readability issues are expressed by means of aesthetics, which can be
formulated as optimization goals for the drawing algorithms. Many aesthetic criteria
can be conceived of and the generally accepted ones include:

⑴ Uniform spatial distribution of the vertices.
⑵ To minimize the total edge length on the precondition that the distance between

any two vertices is no less than the given minimum value.
⑶ Uniform edge length.
⑷ To maximize the smallest angle between edges incident on the same vertex.
⑸ The angles between edges incident on the same vertex should be as uniform as

possible.
⑹ Minimum number of edge crossings.
⑺ To exhibit any existing symmetric feature.

While these criteria are useful measures of aesthetic properties of graphs, this is not
an exhaustive list and there are other measures that can be used [1] .

 Drawing Undirected Graphs with Genetic Algorithms 29

It is not easy to locate the vertices of a general undirected graph so that it conforms to
aesthetically pleasing principles of layout. There are many different strategies that can
be used to draw a general undirected graph. One method is to use the spring model
algorithm [2]. The algorithm likens a graph to a mechanical collection of rings (the
vertices) and connecting springs (the edges). Two connected rings are attracted to each
other or repelled by each other according to their distance and the properties of the
connecting spring. A state with minimal energy in the springs corresponds to a nice
drawing of the underlying graph. However, the spring method is likely to be trapped by
local optima and thus obtains very poor drawings. Another method is to use simulated
annealing algorithm [3]. Davidson and Harel have used the algorithm to draw undirected
graphs. This algorithm produces drawings that are comparable to those generated by
the spring model algorithm. However, the algorithm does not produce conventional
looking figures for a large cycle with no chords. While this is normally drawn as a large
circle, this algorithm tends to draw the cycle curled around itself and thus obtains a
concave polygon but not a convex one. And also the simulated annealing algorithm is
likely to be trapped by local optima and thus obtains very poor drawings. Eloranta and
Mäkinen [4] present a GA for drawing graphs with vertices over a grid and use several
operators but remark on the lack of a good crossover operator. And also the algorithm
draws a large cycle with no chords curled around itself.

A graph G=(V, E) is formed by a set of vertices V and a set of edges E. It may be
represented in different styles according to the purposes of the presentation. We are
interested here in producing aesthetically-pleasing 2D pictures of undirected graphs.
Vertices will be drawn as points in the plane inside a rectangular frame and edges will
be drawn as straight-line segments connecting the points corresponding to the end
vertices of the edges. So the problem of graph drawing reduces to finding the
coordinates of such points. This paper concentrates on constructing the straight-line
drawings of general undirected graphs with genetic algorithms. The algorithm has the
following four advantages:

⑴ The figures drawn by the algorithm are beautiful.
⑵ it can draw large cycles with no chords as convex polygons.
⑶ It is simple and it is easy to be implemented.
⑷ It is flexible in that the relative weights of the criteria can be altered.

2 The Genetic Algorithm for Drawing Undirected Graph

The most important thing of solving graph drawing problems with genetic algorithms is
to design fitness functions according to the adopted aesthetic criteria. The fitness
function is given in section 2.2, and the various elements of the algorithm are illustrated
in the following subsections.

2.1 Encoding

Let G=(V, E) be a finite, undirected, simple graph. Let n=|V| denote the number of
vertices of G, and let m=|E| denote the number of edges of G. Suppose the vertices

30 Q.-G. Zhang et al.

sequence of a graph G is v1，v2，…，vn , and the coordinates assigned to them are
(x1，y1)，(x2，y2)，…，(xn，yn), respectively. The algorithm uses a real number
vector (x1，y1，x2，y2，…，xn，yn) with the length of 2n to denote the solution to the
problem. In order to draw graphs inside a rectangular frame in the plane, we add the
following constraints:

a≤xi ，≤b c≤yi≤d

2.2 Fitness Function

The algorithm designs the following fitness function according to the aesthetic criteria
⑴－⑺, which are stated in Section 1. The fitness function is interpreted as follows:

+
−

++=

∑∑∑ ∑
∈

∈
= += Evv

ij
Evv

ij
n

i

n

ij ij
ji

ji m

edgelengthideald

w

d

w

d

w
f

),(

2
3

),(

2
2

1 1
2

1

)_(1

+

−∠
+

∠ ∑
∑

∈
∈

=∈
∈

=
n

Evv
Evv

i i

i
kij

n

Evv
Evv

i kij

ki

ji

ki

ji pree

pree
ppp

w

ppp

w

),(
),(
1

2

5

),(
),(
1

2

4

)(deg

)
)(deg

2
(

)(

1 π

∑
∑∑∑

=

==∈
∈

−
++

+
n

i

n

i
icic

n

i icEvv
Evv

lkji

n

d
n

d

w

d

w

ppppCross

w

lk

ji

1

2

1

8

1
2

7

),(
),(

6

)
1

(
11),(

 .

pi is the position vector of vertex vi , dij is the Euclidean distance between points pi and
pj and dic is that between point pi and the center of the rectangular frame. The first and
the second terms make the points distributed evenly and minimize the total edge length
of graph G. The value of the first term will decrease if the points in the plane get too
close, while that of the second term will decrease if the points get too far. In the third
term, nsedgelengthideal /_ = is the desired edge length, where s = (d-c)(b-a) is
the area of the rectangular frame in the plane. The length of each individual edge will be
as close as possible to the parameter ideal_edgelength because of the third term, and
thus be uniform. ∠pjpipk in the fourth and the fifth term is the angle between edges
incident on the point pi, degree(pi) in the fifth term is the vertex degree of point pi.

),(lkji ppppCross in the sixth term is defined as formula (2). It can be calculated by
means of analytic geometry according to the coordinates of end points of the two
straight- line segments ji pp and lk pp . The seventh and the eighth terms make
drawings symmetric if such feature exists. wi is the weight of criteria and it is a
constant. They control the relative importance of the seven criteria and compensate for
their different numerical magnitudes. The drawings produced by the algorithm can
widely vary by modifying these constants.

(1)

 Drawing Undirected Graphs with Genetic Algorithms 31

⎪
⎪
⎩

⎪⎪
⎨

⎧

∞

= 1

0

),(lkji ppppCross

2.3 Selection

In order to avoid premature convergence, we perform a sigma proportional transform-
ation on each individual’s fitness value [5], i.e., for the fitness value f(i) of the i-th
individual, at first we apply the following formula to f(i) to transform it into ExpVal(i):

⎩⎨
⎧ >−+= .0)(,1

.0)(,)(2/))()((1)(
＝tif

tifttfifiExpVal σ
σσ (3)

where f(t) is the average fitness value of the t-th generation population, and)(tσ is the
standard deviation of the t-th generation population. After such transformation, the
algorithm then uses elitist fitness proportionate selection mechanism for ExpVal(i) to
select chromosomes for reproduction. The best individual in the population is always
passed on unchanged to the next generation, without undergoing crossover or mutation.

2.4 The Design of Genetic Operator

The algorithm has three types of genetic operations: crossover, mutation and inversion.
The crossover operator is defined as follows: The single-point crossover generates two
new graph layouts by randomly selecting one vertex and exchanging the corresponding
coordinates between the parent graphs. The mutation operators are applied sequential
and independently from crossover. They are defined as follows:

The non-uniform mutation[6] – If S=(v1, v2,…,v2n) is a chromosome and the

element vk is selected for this mutation(the domain of vk is [ak, bk]), the result is a

vector S′=(nkk vvvvv 2121 ,...,,,...,, ′−), with k∈1,…, 2n, and

 kv′ ＝
⎩
⎨
⎧

=−∆−
=−∆+

,1)(
,0)(

cifavtv
cifvbtv

kkk

kkk
，，

，，

 (4)

Where c is a random number that may have a value of zero or one, and the
function)(yt，∆ returns a value in the range [0, y] such that the probability of

)(yt，∆ being close to 0 increases as t increases:

)1()()/1(λTtryyt −−=∆ ， (5)

where r is a random number in the interval[0, 1], t is the current generation number, T is
the maximum number of generations, andλis a parameter chosen by the user, which
determines the degree of dependency with the number of iterations. This property
causes this operator to make an uniform search in the initial space when t is small, and a
very local one in later stages.

If straight-line segments ji pp and lk pp don’t intersect .

If straight-line segments ji pp and lk pp intersect .

If straight-line segments ji pp and lk pp overlap .
(2)

32 Q.-G. Zhang et al.

The single-vertex-neighborhood mutation-choose a random vertex and move it to a
random point in the circle of decreasing radius around the vertex’s original location.
Suppose that vertex vi(xi,yi) is chosen for mutation, then the new coordinates (ii yx ′′,)
of vi are defined as follows:

⎩
⎨
⎧

+=′
+=′

θ
θ

sin
cos

ryy
rxx

ii

ii

where radius r=ideal_edgelength*(1-t/T);θ∈[0, 2π] is an angle randomly produced;
The meanings of t, T and ideal_edgelength are the same as above. As can be seen, the
radius r is decreasing as the algorithm proceeds.

The last genetic operation is inversion. Inversion works by randomly selecting two
inversion points within a chromosome and inverting the order of genes between the
inversion points, but remembering the gene's meaning or functionality. If

S=(v1,…,vi,…,vj,…,v2n)

is the parent vector and the two inversion points are i and j， then the offspring vector
will be

S′=(v1,…,vi-1,vj,vj-1,…,vi+1,vi,…,v2n)

In order to avoid swapping x-coordinates for y-coordinates, we add the following
constraint:

(j–i)mod 2=0

2.5 Determining the Termination Condition of the Algorithm

The termination condition is just a check whether the algorithm has run for a fixed
number of generations.

3 Experimental Results and Analysis

The algorithm described above was implemented and run on a PC with Celeron 1.7 GHz
CPU, 128MB RAM. The experimental parameters values are shown as table 1. The
simple genetic algorithm and our algorithm were applied respectively to six test graphs
with the number of vertices ranging from 4 to 28. For each class of graphs, the two
algorithms were run 20 times, respectively. Table 2 shows the mean fitness value of the
two algorithms. As can be seen, our algorithm is much better than the simple genetic
algorithm under the same condition. The experimental results are shown as figures 1-8.
Figure 1 shows three different outputs of three different algorithms for the same cycle.
Figure 1(a) is the output of the algorithm in bibliography [3]; Figure 1(b) is that of the
algorithm in bibliography [4]; Figure 1(c) is that of our algorithm. Clearly, Figure 1(c)
is the best because it is a convex polygon while the other two are concave polygons.

Figure 2(a) shows a rectangular grid input graph with random locations for the
vertices. Figure 2(b) is the output of the simple genetic algorithm. Figure 2(c) is that
of our algorithm. Figure 2(c) took 14.000547 seconds using 675 generation. As can be
seen, the drawing produced by our algorithm is more beautiful than that produced by
the simple genetic algorithm under the same condition.

(6)

 Drawing Undirected Graphs with Genetic Algorithms 33

Table 1. The parameters value of experiment

Parameters Parameters value

Population size 30

Generation count 1000

Crossover probability 0.75

Mutation probability 0.25

Inversion probability 0.20

Table 2. Compare our algorithm with the simple genetic algorithm

Number of vertices Simple GA GA in this paper
4 0.106244 0.236976
7 0.106602 0.224305

11 0.104997 0.215806
16 0.103219 0.222807
25 0.062136 0.200684
28 0.054096 0.200018

(a) (b) (c)

Fig. 1. Three different outputs of three different algorithms for the same cycle

Figure 3 shows two different layouts of the same graph with bridges. Figure 3(a) is
the layout produced by the original spring algorithm[2]; Figure 3(b) is the layout
produced by our algorithm. Clearly, Figure 3(b) is better than Figure 3(a) for the
uniform edge length.

Figure 4 shows two different drawing of the same graph produced by two different
algorithms. Figure 4(a) is the drawing produced by the algorithm in bibliography [4];
Figure 4(b) is that produced by our algorithm. Clearly, Figure 4(b) is better than
Figure 4(a) because Figure 4(b) has no crossing.

34 Q.-G. Zhang et al.

(a) (b) (c)

Fig. 2. A random input and the corresponding outputs of simple genetic algorithm and our
algorithm

(a) (b)

Fig. 3. Two different layouts of the same graph with bridges

(a) (b)

Fig. 4. Two different outputs of two different algorithms for the same graph

 Drawing Undirected Graphs with Genetic Algorithms 35

Figure 5 is an output for a tree. Figure 6 is an output for a disconnected graph. Figure
7(a) shows an output for a rectangular grid graph with 25 vertices and 40 edges. Figure
7(b) is an output for a triangular grid graph with 15 vertices and 30 edges. Figure 8 is
other sample outputs of our algorithm.

Fig. 5. An output for a tree Fig. 6. An output for a disconnected graph

(a) (b)

Fig. 7. Outputs for two grid graphs

Fig. 8. Simple examples

36 Q.-G. Zhang et al.

4 Conclusions and Further Work

This paper has proposed an algorithm for producing aesthetically pleasing drawings of
general undirected graphs. The primary advantage of our algorithm is that it can draw
large cycles with no chords as convex polygons. This overcomes the disadvantage of
previous undirected graph drawing algorithms drawing such type graphs as concave
polygons. In addition, it is flexible in that the relative weights of the criteria can be
altered. The experiment results show that the figures drawn by our algorithm are
beautiful. The weakness of our algorithm is speed (like all that use GAs). The future
research, based on bibliography [7], is the evolution (by a GA) of an ideal set of weights
for the criteria - reflecting the aesthetic preferences of the user - by learning from
examples. Those weights would then be used by the GA to layout graphs which will
hopefully be more likely to please such users.

References

1. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagra-
ms. IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, no.1, (1988) 61-79

2. Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium, 42 (1984) 149-160
3. Davidson, R., Harel, D.: Drawing Graphs Nicely Using Simulated Annealing. ACM Transac-
4. tions on Graphics, Vol. 15, no.4, (1996)301-331
5. Eloranta, T., Mäkinen, E.: TimGA - a genetic algorithm for drawing undirected graphs. Tech-
6. nical report, Department of Computer Science, University of Tampere , December (1996)
7. Tanese, R.: Distributed Genetic Algorithms for Function Optimization. Unpublished doctoral

dissertation, University of Michigan, Ann Arbor, MI.(1989)
8. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edition.

Springer-Verlag, Berlin Heidelberg New York (1996)
9. T.Masui.: Evolutionary learning of graph layout constraints from examples. In Proceedings

of the ACM Symposium on User Interface Software and Technology (UIST’94). ACM Press,
November (1994) 103-108

	Introduction
	The Genetic Algorithm for Drawing Undirected Graph
	Encoding
	Fitness Function
	Selection
	The Design of Genetic Operator
	Determining the Termination Condition of the Algorithm

	Experimental Results and Analysis
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

