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Abstract. This paper proposes an improved genetic algorithm for producing 
aesthetically pleasing drawings of general undirected graphs. Previous undirected 
graph drawing algorithms draw large cycles with no chords as concave polygons. 
In order to overcome such disadvantage, the genetic algorithm in this paper 
designs a new mutation operator single-vertex- neighborhood mutation and adds a 
component aiming at symmetric drawings to the fitness function, and it can draw 
such type graphs as convex polygons. The improved algorithm is of following 
advantages: The method is simple and it is easy to be implemented, and the 
drawings produced by the algorithm are beautiful, and also it is flexible in that the 
relative weights of the criteria can be altered. The experiment results show that the 
drawings of graphs produced by our algorithm are more beautiful than those 
produced by simple genetic algorithms, the original spring algorithm and the 
algorithm in bibliography [4]. 

1   Introduction 

A number of data presentation problems involve the drawing of a graph on a limited 
two-dimensional surface, like a sheet of paper or a computer screen. Examples include 
circuit schematics, algorithm animation and software engineering. In almost all data 
presentation applications, the usefulness of a drawing of a graph depends on its 
readability, that is, the capability of conveying the meaning of the diagram quickly and 
clearly. Readability issues are expressed by means of aesthetics, which can be 
formulated as optimization goals for the drawing algorithms. Many aesthetic criteria 
can be conceived of and the generally accepted ones include: 

⑴  Uniform spatial distribution of the vertices. 
⑵  To minimize the total edge length on the precondition that the distance between 

any two vertices is no less than the given minimum value. 
⑶  Uniform edge length. 
⑷  To maximize the smallest angle between edges incident on the same vertex. 
⑸  The angles between edges incident on the same vertex should be as uniform as 

possible. 
⑹  Minimum number of edge crossings. 
⑺  To exhibit any existing symmetric feature. 

While these criteria are useful measures of aesthetic properties of graphs, this is not 
an exhaustive list and there are other measures that can be used [1] . 
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It is not easy to locate the vertices of a general undirected graph so that it conforms to 
aesthetically pleasing principles of layout. There are many different strategies that can 
be used to draw a general undirected graph. One method is to use the spring model 
algorithm [2]. The algorithm likens a graph to a mechanical collection of rings (the 
vertices) and connecting springs (the edges). Two connected rings are attracted to each 
other or repelled by each other according to their distance and the properties of the 
connecting spring. A state with minimal energy in the springs corresponds to a nice 
drawing of the underlying graph. However, the spring method is likely to be trapped by 
local optima and thus obtains very poor drawings. Another method is to use simulated 
annealing algorithm [3]. Davidson and Harel have used the algorithm to draw undirected 
graphs. This algorithm produces drawings that are comparable to those generated by 
the spring model algorithm. However, the algorithm does not produce conventional 
looking figures for a large cycle with no chords. While this is normally drawn as a large 
circle, this algorithm tends to draw the cycle curled around itself and thus obtains a 
concave polygon but not a convex one. And also the simulated annealing algorithm is 
likely to be trapped by local optima and thus obtains very poor drawings. Eloranta and 
Mäkinen [4] present a GA for drawing graphs with vertices over a grid and use several 
operators but remark on the lack of a good crossover operator. And also the algorithm 
draws a large cycle with no chords curled around itself. 

A graph G=(V, E) is formed by a set of vertices V and a set of edges E. It may be 
represented in different styles according to the purposes of the presentation. We are 
interested here in producing aesthetically-pleasing 2D pictures of undirected graphs. 
Vertices will be drawn as points in the plane inside a rectangular frame and edges will 
be drawn as straight-line segments connecting the points corresponding to the end 
vertices of the edges. So the problem of graph drawing reduces to finding the 
coordinates of such points. This paper concentrates on constructing the straight-line 
drawings of general undirected graphs with genetic algorithms. The algorithm has the 
following four advantages: 

⑴ The figures drawn by the algorithm are beautiful. 
⑵ it can draw large cycles with no chords as convex polygons. 
⑶ It is simple and it is easy to be implemented. 
⑷ It is flexible in that the relative weights of the criteria can be altered. 

2   The Genetic Algorithm for Drawing Undirected Graph 

The most important thing of solving graph drawing problems with genetic algorithms is 
to design fitness functions according to the adopted aesthetic criteria. The fitness 
function is given in section 2.2, and the various elements of the algorithm are illustrated 
in the following subsections. 

2.1   Encoding 

Let G=(V, E) be a finite, undirected, simple graph. Let n=|V| denote the number of 
vertices of G, and let m=|E| denote the number of edges of G. Suppose the vertices 
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sequence of a graph G is v1，v2，…，vn , and the coordinates assigned to them are 
(x1，y1)，(x2，y2)，…，(xn，yn), respectively. The algorithm uses a real number 
vector (x1，y1，x2，y2，…，xn，yn) with the length of 2n to denote the solution to the 
problem. In order to draw graphs inside a rectangular frame in the plane, we add the 
following constraints: 

a≤xi ，≤b c≤yi≤d 

2.2   Fitness Function 

The algorithm designs the following fitness function according to the aesthetic criteria 
⑴－⑺, which are stated in Section 1. The fitness function is interpreted as follows: 

+
−

++=

∑∑∑ ∑
∈

∈
= += Evv

ij
Evv

ij
n

i

n

ij ij
ji

ji m

edgelengthideald

w

d

w

d

w
f

),(

2
3

),(

2
2

1 1
2

1

)_(1

 
+

−∠
+

∠ ∑
∑

∈
∈

=∈
∈

=
n

Evv
Evv

i i

i
kij

n

Evv
Evv

i kij

ki

ji

ki

ji pree

pree
ppp

w

ppp

w

),(
),(
1

2

5

),(
),(
1

2

4

)(deg

)
)(deg

2
(

)(

1 π

 

∑
∑∑∑

=

==∈
∈

−
++

+
n

i

n

i
icic

n

i icEvv
Evv

lkji

n

d
n

d

w

d

w

ppppCross

w

lk

ji

1

2

1

8

1
2

7

),(
),(

6

)
1

(
11),(

 . 

pi is the position vector of vertex vi , dij is the Euclidean distance between points pi and 
pj and dic is that between point pi and the center of the rectangular frame. The first and 
the second terms make the points distributed evenly and minimize the total edge length 
of graph G. The value of the first term will decrease if the points in the plane get too 
close, while that of the second term will decrease if the points get too far. In the third 
term, nsedgelengthideal /_ =  is the desired edge length, where s = (d-c)(b-a) is 
the area of the rectangular frame in the plane. The length of each individual edge will be 
as close as possible to the parameter ideal_edgelength because of the third term, and 
thus be uniform. ∠pjpipk in the fourth and the fifth term is the angle between edges 
incident on the point pi, degree(pi) in the fifth term is the vertex degree of point pi. 

),( lkji ppppCross  in the sixth term is defined as formula (2). It can be calculated by 
means of analytic geometry according to the coordinates of end points of the two 
straight- line segments ji pp  and lk pp . The seventh and the eighth terms make 
drawings symmetric if such feature exists. wi is the weight of criteria and it is a 
constant. They control the relative importance of the seven criteria and compensate for 
their different numerical magnitudes. The drawings produced by the algorithm can 
widely vary by modifying these constants. 

(1) 
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2.3   Selection 

In order to avoid premature convergence, we perform a sigma proportional transform- 
ation on each individual’s fitness value [5], i.e., for the fitness value f(i) of the i-th 
individual, at first we apply the following formula to f(i) to transform it into ExpVal(i): 
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where f(t) is the average fitness value of the t-th generation population, and )(tσ is the 
standard deviation of the t-th generation population. After such transformation, the 
algorithm then uses elitist fitness proportionate selection mechanism for ExpVal(i) to 
select chromosomes for reproduction. The best individual in the population is always 
passed on unchanged to the next generation, without undergoing crossover or mutation. 

2.4   The Design of Genetic Operator 

The algorithm has three types of genetic operations: crossover, mutation and inversion. 
The crossover operator is defined as follows: The single-point crossover generates two 
new graph layouts by randomly selecting one vertex and exchanging the corresponding 
coordinates between the parent graphs. The mutation operators are applied sequential 
and independently from crossover. They are defined as follows: 

The non-uniform mutation[6] – If S=( v1, v2,…,v2n) is a chromosome and the 

element vk is selected for this mutation(the domain of vk is [ak, bk]), the result is a 

vector  S′=( nkk vvvvv 2121 ,...,,,...,, ′− ), with k∈1,…, 2n, and 

 kv′ ＝
⎩
⎨
⎧

=−∆−
=−∆+

,1)(
,0)(

cifavtv
cifvbtv

kkk

kkk
，，

，，

 (4) 

Where c is a random number that may have a value of zero or one, and the 
function )( yt，∆  returns a value in the range [0, y] such that the probability of 

)( yt，∆ being close to 0 increases as t increases: 

 )1()( )/1( λTtryyt −−=∆ ，  (5) 

where r is a random number in the interval[0, 1], t is the current generation number, T is 
the maximum number of generations, andλis a parameter chosen by the user, which 
determines the degree of dependency with the number of iterations. This property 
causes this operator to make an uniform search in the initial space when t is small, and a 
very local one in later stages. 

If straight-line segments ji pp and lk pp don’t intersect . 

If straight-line segments ji pp and lk pp intersect . 

If straight-line segments ji pp and lk pp  overlap . 
(2) 
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The single-vertex-neighborhood mutation-choose a random vertex and move it to a 
random point in the circle of decreasing radius around the vertex’s original location. 
Suppose that vertex vi(xi,yi) is chosen for mutation, then the new coordinates ( ii yx ′′, ) 
of vi are defined as follows: 
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⎨
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where radius r=ideal_edgelength*(1-t/T);θ∈[0, 2π] is an angle randomly produced; 
The meanings of t, T and ideal_edgelength are the same as above. As can be seen, the 
radius r is decreasing as the algorithm proceeds. 

The last genetic operation is inversion. Inversion works by randomly selecting two 
inversion points within a chromosome and inverting the order of genes between the 
inversion points, but remembering the gene's meaning or functionality. If 

S=(v1,…,vi,…,vj,…,v2n) 

is the parent vector and the two inversion points are i and j， then the offspring vector 
will be 

S′=( v1,…,vi-1,vj,vj-1,…,vi+1,vi,…,v2n) 

In order to avoid swapping x-coordinates for y-coordinates, we add the following 
constraint: 

(j–i)mod 2=0 

2.5   Determining the Termination Condition of the Algorithm 

The termination condition is just a check whether the algorithm has run for a fixed 
number of generations. 

3   Experimental Results and Analysis 

The algorithm described above was implemented and run on a PC with Celeron 1.7 GHz 
CPU, 128MB RAM. The experimental parameters values are shown as table 1. The 
simple genetic algorithm and our algorithm were applied respectively to six test graphs 
with the number of vertices ranging from 4 to 28. For each class of graphs, the two 
algorithms were run 20 times, respectively. Table 2 shows the mean fitness value of the 
two algorithms. As can be seen, our algorithm is much better than the simple genetic 
algorithm under the same condition. The experimental results are shown as figures 1-8. 
Figure 1 shows three different outputs of three different algorithms for the same cycle. 
Figure 1(a) is the output of the algorithm in bibliography [3]; Figure 1(b) is that of the 
algorithm in bibliography [4]; Figure 1(c) is that of our algorithm. Clearly, Figure 1(c) 
is the best because it is a convex polygon while the other two are concave polygons. 

Figure 2(a) shows a rectangular grid input graph with random locations for the 
vertices. Figure 2(b) is the output of the simple genetic algorithm. Figure 2(c) is that 
of our algorithm. Figure 2(c) took 14.000547 seconds using 675 generation. As can be 
seen, the drawing produced by our algorithm is more beautiful than that produced by 
the simple genetic algorithm under the same condition.  

(6) 
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Table 1. The parameters value of experiment 

Parameters Parameters value 

Population size 30 

Generation count 1000 

Crossover probability 0.75 

Mutation probability 0.25 

Inversion probability 0.20 

Table 2. Compare our algorithm with the simple genetic algorithm 

Number of vertices Simple GA GA in this paper 
4 0.106244 0.236976 
7 0.106602 0.224305 

11 0.104997 0.215806 
16 0.103219 0.222807 
25 0.062136 0.200684 
28 0.054096 0.200018 

 

(a)      (b)      (c) 

Fig. 1. Three different outputs of three different algorithms for the same cycle 

Figure 3 shows two different layouts of the same graph with bridges. Figure 3(a) is 
the layout produced by the original spring algorithm[2]; Figure 3(b) is the layout 
produced by our algorithm. Clearly, Figure 3(b) is better than Figure 3(a) for the 
uniform edge length.  

Figure 4 shows two different drawing of the same graph produced by two different 
algorithms. Figure 4(a) is the drawing produced by the algorithm in bibliography [4]; 
Figure 4(b) is that produced by our algorithm. Clearly, Figure 4(b) is better than 
Figure 4(a) because Figure 4(b) has no crossing. 
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(a)      (b)      (c) 

Fig. 2. A random input and the corresponding outputs of simple genetic algorithm and our 
algorithm 

        

(a)       (b) 

Fig. 3. Two different layouts of the same graph with bridges 

     

(a)       (b) 

Fig. 4. Two different outputs of two different algorithms for the same graph 
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Figure 5 is an output for a tree. Figure 6 is an output for a disconnected graph. Figure 
7(a) shows an output for a rectangular grid graph with 25 vertices and 40 edges. Figure 
7(b) is an output for a triangular grid graph with 15 vertices and 30 edges. Figure 8 is 
other sample outputs of our algorithm. 

            

Fig. 5. An output for a tree Fig. 6. An output for a disconnected graph 

  

(a)        (b) 

Fig. 7. Outputs for two grid graphs 

      

Fig. 8. Simple examples 
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4   Conclusions and Further Work 

This paper has proposed an algorithm for producing aesthetically pleasing drawings of 
general undirected graphs. The primary advantage of our algorithm is that it can draw 
large cycles with no chords as convex polygons. This overcomes the disadvantage of 
previous undirected graph drawing algorithms drawing such type graphs as concave 
polygons. In addition, it is flexible in that the relative weights of the criteria can be 
altered. The experiment results show that the figures drawn by our algorithm are 
beautiful. The weakness of our algorithm is speed (like all that use GAs). The future 
research, based on bibliography [7], is the evolution (by a GA) of an ideal set of weights 
for the criteria - reflecting the aesthetic preferences of the user - by learning from 
examples. Those weights would then be used by the GA to layout graphs which will 
hopefully be more likely to please such users. 
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