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Abstract 

Dally records of atmospheric surface pressure, temperature and geopotentlal heights of 500 hPa isobaric level were tested for 
nonhneanty, the necessary condmon for deterministic chaos, using redundancy and surrogate data techniques. While the time 
series of the temperature and the geopotential heights were found indiscermble to be from correspondent isospectral linear 
stochasUc processes, a slgmficant nonlinear component was detected m the dynamics of the pressure recorchng, however, no 
specific signatures of low-dimensional chaos were mamfest. 

During the last decade many papers devoted to the 
problem of inferring the dynamical mechanisms of the 
weather and climate changes from recorded data have 
been published. The measured quantities selected for 
the analyses, have included, e.g., local surface pres- 
sures, relative sunshine durations, zonal wave ampli- 
tudes [ 1 ], upper-level geopotential heights [2,3 ], low- 
level vertical velocity components [4], or, oxygen- 
isotope concentrations in deep sea cores [ 1,5-8]. In 
the majority of  the cases the Grassberger-Procaccia 
algorithm for estimating the correlation dimension 
[9,10] was used as the analytical tool, and low values 
of  the dimension estimates obtained were claimed as 
evidence for low-dimensional chaos in the weather or 
climate dynamics [ 1-5,7]. On the other hand, Grass- 
berger [ 6 ] cautioned that in the case of  short and noisy 
data, as the climatic and weather records usually are, 
the reliability of  the method is questionable and the 
low values of  the dimension estimates may be spuri- 
ous. And indeed, he constructed a random series of  

I E-mail: mp@santafe edu 

corresponding length, preprocessed by the same way 
as the climatic record in Ref. [5 ] and obtained a low 
value of the estimated dimension. Also Lorenz [ 11 ] 
writes that it seems unlikely that global weather or cli- 
mate systems possess a low-dimensional attractor. 

The problem of reliability of  dimensional or Lya- 
punov exponent algorithms, applied to experimental 
data, is the general problem of nonlinear time-series 
analysis, and spurious results, leading to false identi- 
fication of chaotic dynamics in data, consistent with a 
simpler explanation, can emerge elsewhere [ 12 - 16  ]. 
Some authors, considering these problems, proposed 
to test necessary conditions for chaos, like nonlinear- 
ity or nonlinear determinism [ 17-19 ]. As was pointed 
out by Theiler et al. [ 17 ], detection of nonlmeanty is 
a considerably easier goal than that of  positively iden- 
tifying chaotic dynamics. On the other hand, when 
the scrutinized data is found consistent with the ex- 
planation by a linear stochastic process, underlying 
low-dimensional chaos is improbable. 

Recently, Palu[ et al. [ 18 ] have demonstrated how 
the information theoretic functionals - redundancies 
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- can be used for the detect ion of  nonhnearl ty.  A br ief  
overview of  the method follows 

Let X 1 , X 2 , .  ,X~ be an n-dimensional  ran- 
dom variable with zero mean, covarlance matr ix 
C and probabi l i ty  d~strlbutmn density (PDD)  
p ( x l , x 2 , .  ,Xn) The individual  PDDs  are denoted 
as  p ( X / ) ,  l = 1, , n  (For  convenience, we use 
the notatmn p ( x , ) ,  rather than the more accurate 
px, (x , ) ,  and an analogous s lmphficat lon for the n- 
dimensional  P D D  ) 

Then the redundancy R ( X I ,  . , X , ) ,  measuring 
the level of  mutual  dependence of  the components  

XI , Xz ,  , Xn,  1S 

R(x,, :x.)=f fp(xt,x2, ,x.) 
× l o g  p(XhXz, • ,Xn) dxl dx ,  (1) 

p ( X l ) p  (X2) P (Xn) 

The redundancy ( 1 ) for n = 2 ~s called mutual  infor- 
mation.  For  relations of  redundancies and entropies, 
and for further details see Refs [20,21,18,23 ] and ref- 
erences therein. 

Further,  we define the hnear redundancy L ( XI , . , 

X , )  ofX1,X2, . ,An as 

L ( X , ;  ,Xn) = ½ l o g ( c , , ) - ½ E l o g ( a z ) ,  (2) 
~ 1  1=1 

where c ,  are the diagonal elements (varmnces) and a~ 
are the exgenvalues of  the n × n covanance  matr ix C 

If  XI , .  , X~ has an n-dlmensmnal  Gausslan dls- 
tnbuUon, then L(X~,  ,X~)  and R(X~,  ,X~)  are 
theoretically equivalent  [24] 

In usual experimental  SltUaUons one records a t ime 
senes {y (t)  } of  a specific observable. {y ( t)  } is usu- 
ally considered as a reahzat~on of  a stochastic process 
{ Y (t)},  which is stat ionary and ergodlc 

We wdl study the redundancies for the variables 

X , ( t )  = y ( t +  ( t - 1 ) r ) ,  t = 1, ,n,  (3) 

where r is a t ime delay and n is an embedding dimen-  
sion [22 ] Redundancies  of  the type 

R ( y ( t ) ; y ( t  + r ) ,  , y ( t  + (n - 1)T)) 

are, due to statxonarlty of  { Y (t)  }, independent  of  t. 
We introduce the notat ion 

Rn(r )  = R ( y ( t ) , y ( t  + r ) ,  , y ( t  + ( n -  1 ) r ) ) ( 4 )  

for the redundancy and 

Ln(z )  = L ( y ( t ) ; y ( t  + z) ,  , y ( t  + ( n -  l ) z ) ) ( 5 )  

for the l inear redundancy of  the n variables y ( t ) ,  
y ( t  + z),  , y ( t  + (n - 1)r)  (Quanti t ies (4) and 
(5) are obtained from a single process realization - an 
experimental  t ime series - by t ime averaging, which 
can be apphed due to the above assumption of  ergod- 
IClty ) 

The redundancy R n ( r ) ,  based on PDDs, measures 
general dependences among the series {y (t)} and 
~ts delayed versions, while the linear redundancy 
Ln(T), based on covanances (or correlations, see 
Refs. [18,23]) reflects only their  l inear relations 
Therefore Palug et al [18] proposed to compare 
L n (~) wtth R n (~), considered as the functions of  the 
t ime lag z If  their shapes are the same or very sim- 
ilar, a linear description of  the process under study 
should be considered sufficient. Large discrepancies 
suggest impor tant  nonllneant~es in the dynamics of  
the process under study. 

This approach, further referred to as quahtattve 
testmg, or, quahtauve comparison, was demonstra ted 
to be successful m dtstmgulshmg specffically non- 
hnear  dynamics (chaotic [18] or also nonchaotlc 
[23])  from hnear stochastic processes. In compar-  
ison of  figures, however, there can be a subjective 
factor, influencing the conclusion about the findings. 
Therefore the development  of  a quant l ta twe method,  
suitable for rigorous statistical testing, ~s desirable 
This can be achieved by incorporat ing the concept of  
"surrogate data",  advocated by Theder  et al [17] 

In testing for nonhnearxty, the surrogate data are ar- 
ttficmlly generated reahzatlons of  a linear stochastic 
process, which m~mlc hnear  propert ies of  the studied 
data, namely the spectrum and autocorrelat lon func- 
t ion (For  details see Refs. [ 17,25 ] ) Nonhnear  struc- 
tures, i f  present in the scrutinized data, are ehmmated  
in the surrogates. Thus we can statistically compare 
the redundancies obtained from the analyzed data  and 
from a set of  surrogates to f ind out whether the data  
is slgmficantly different from the null hypothesis of  a 
hnear  stochastic process, or whether a linear stochas- 
tic process is a probable explanation of  the data dy- 
namics. As the discriminating statistic we use the dif- 
ference between the redundancy, obtained from the 
data, and the mean value of  the redundancy for a set 
of  surrogates, m the number  of  s tandard deviat ions 
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(SDs) o f  the latter. The null hypothesis is rejected 
and the results called slgmficant, when the probabi l i ty  
p of  the null hypothesis is lower than a chosen level, 
usually set to 0 05 or  0.01. Providing the statistic has 
a normal  dis tr ibut ion N(0 ,  1 ) and 30 realizations of  
the surrogates are used in the test 2, then the proba-  
blhty of  the null hypothesis is p < 0 05 for values o f  
the statistic greater than 1 699; or greater than 2 462 
f o r p  < 0 01, etc., see e.g. Ref. [26] 

It is well-known that in construction of  n- 
dimensional  embeddmgs by the t ime delay method,  
the results are usually influenced by the choice o f  
the embedding dimension n and the t ime delay z. 
Therefore, in the quanti ta t ive testing, we evaluate the 
redundancy-based statistics for a wide range of  t ime 
delays and, i f  possible (l e., allowed by the t ime series 
length), also for several embedding dimensions.  

However,  one cannot always construct good surro- 
gate data. That  is, in spite of  theoretical expectation, 
in numerical  practice l inear propert ies  o f  the surro- 
gates can differ from those of  the data under study. 
The changes in l inear propert ies  are reflected in non- 
l inear measures 3 as well, and thus, a change in l inear 
propert ies can lead to spurious detect ion of  nonlinear- 
ity in l inear data  [27,25 ]. Therefore, we evaluate also 
the statistic based on the l inear redundancy L n (z) ,  
reflecting specifically the changes in l inear propert ies  
Then only those significant differences in the nonlin- 
ear  statistic can reliably count for nonlinearity,  which 
are not detected in the l inear statistic. 

Due to the central l imit  theorem, the dis t r ibut ion 
o f  the lSOSpectral surrogates of  a stat ionary process 
(generated by the Four ier  t ransform) tends to a Gaus- 
slan distr ibution.  I r a  (one-dimensional)  dis tr ibut ion 
of  the scrutinized data  is different from the Gausslan 
one, another  case of  spurious identif icat ion of  nonhn- 
earity can emerge. Therefore, before the analysis, we 

2 With a limited number Ns of the reahzatlons of the sur- 
rogates, the t-dlstnbuUon with N s - 1 degrees of freedom 
should be used for deriving the critical values of statistics, 
instead of the normal distribution In all the tests, presented 
here, 30 reallzaUons of surrogates were used, therefore the 
critical values presented m this paper are related to the t- 
dlstnbutlon w~th 29 degrees of freedom and to one-sided 
tests, because the change of the statistics are expected m one 
direction For more details see Ref [25] 
3 We use primarily R n (z), other authors use &menslons, 
correlation integral, or nonlinear forecastlblhty [ 17 ] 

perform a histogram transformation - "Gausslanlza-  
t i on ' ,  resulting in an approximate  Gaussian distribu- 
t ion of  the data [25,28]. 

Data Two series of  daily values of  geopotential  
heights of  500 hPa isobaric level were analyzed, the 
first, 6570 samples (18 years) recorded in Prague, 
Ruzyn~ station, the second, 11670 samples (32 years) 
recorded in Krakow. We generated the surrogate data 
using the fast Fourier  t ransform (FFT) ,  which re- 
quires the series length to be a power o f  two, there- 
fore we analyzed subserles of  lengths 4096 and 8192 
samples, respectively 

The other two analyzed series, recorded In Prague, 
Klement lnum station, are more unique" the series of  
200 years (73000 samples) of  mean dally values of  
the surface atmospheric  temperature  and dally val- 
ues of  the surface atmospheric  pressure. Again, due to 
FFT-based  surrogate, we analyzed subseries of  65536 
samples 

Results Geopotenttal hetghts The results of  the 
analysis of  the Prague series of  the geopotentlal  
heights are presented in Fig. 1. The quali tative com- 
parison shows no substantial difference between the 
t ime plots of  the l inear redundancy L2(~ ") and the 
redundancy RE(z), showed in Figs la  and lb,  re- 
spectively In the quanti ta t ive analysis (Figs lc, l d )  
there are several formally significant results (1 e dif- 
ferences greater than 1 699), however, there are two 
reasons why not to reject the null hypothesis o f  a 
l inear stochastic process" 

(a) Statistical reason. Due to mult ipl ici ty of  the test 
values (60 in this case) the criterion for significance of  
an individual  value must be strengthened, i.e., based 
on the Bonferroni inequahty we should take, in this 
case, p < 0.05/60 instead o f p  < 0.05 [29,30], which 
increases the critical value of  the statistics from 1.699 
to approximately  3.5 This approach,  however, is fully 
correct for independent  test values, for the dependent  
test values, which is the case here, the power of  the test 
can be decreased. In order  to avoid the type II error 
(I.e., acceptance of  the null hypothesis when it should 
be rejected),  the Hel lper in-Ruger  inequali ty can be 
considered instead of  the Bonferroni mequahty,  and, 
expecting k significant values (from m total  test val- 
ues) p < 0 0 5 k / m  can be taken [31,32]. In this case 
the critical value is still about  3. Thus, no significant 
difference was found. 

(b) Methodological  reason: Even If we accept some 
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Fig. 1. (a) Linear redundancy L 2 (z), (b) redundancy R2(z), as funcUons of the lag z, (c) hnear redundancy stanstle, (d) 
redundancy statlsnc for the Prague series of the geopotentlal heights of the 500 hPa isobaric level. Embedding dimension 
n = 2  

values of the nonlinear statistic (based on R" (z)) as 
s~gmficant, we cannot reject reliably the null hypoth- 
esis of a hnear stochastic process, as far as equivalent 
differences were found in the hnear statistic (based 
on L" (z)). Therefore the observed differences can be 
caused by the fact that the surrogates do not exactly 
mimic the linear properties of the data, not by a non- 
lineanty. 

We can conclude that by both the quahtatwe and 
quantitative methods we found the Prague senes 
of the geopotentlal heights indiscernible from the 
lSOSpectral linear stochastic process 

The mare feature of the dynamics of the above 
geopotennal heights series, as it can be observed 
m the nine-lag plots of the redundancies (F~gs. la, 
lb), is the one-year period~oty. We can ask whether 
there is anything beyond this dynamics; therefore we 
analyzed also the filtered series, m which one-year 
periodicity was ehmmated by the FFT based filter. In 

the quahtative analysis both L n ( z )  and Rn(T) show 
the same picture - they decrease quxckly until the lag 
12 days and then fluctuate about a very low level. The 
question whether these small values ((2-4) x l 0-  a ) 
can mean a "numerical zero", i.e., the fact that the 
filtered series {y(t)} and {y(t  + z)} for z > 12 are 
independent, was answered by the quantitative test 
using so-called scrambled surrogates - the elements 
of the series were mixed m temporal order so that all 
temporal correlations were destroyed. Comparing the 
data with the scrambled surrogates the null hypoth- 
esis of an IID (independent identically d~stnbuted) 
process was tested and rejected (differences of 4-8 
SDs) On the other hand, using the FFT surrogates, 
both the stronger dependences (the lags 1-12) and 
the weak dependences for the lags z > 12 days were 
found consistent with the lsospectral hnear stochastic 
process. 

The results for the Krakow series were very similar 
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Fig. 2 (a) Linear redundancy L n (r), (b) redundancy Rn(z ) ,  computed from the surface atmospheric temperature senes. 
The four different curves in each picture are the redundanoes for different embedding dimensions, n = 2-5, reading from 
the bottom to the top. Redundancies L n (z) and R n (z) are plotted as L n ( z ) / ( n  - 1) and R n ( l r ) / ( n  - 1 ), respectwely. (c) 
Rn(z ) ,  n = 2 (lower curve), 3 (upper curve), for the surrogate data of the filtered temperature series, (d) Rn(z ) ,  n = 2 
(lower curve), 3 (upper curve), for the filtered temperature senes. 

to those for the above Prague series. Therefore, we 
can conclude that the analysis of the recordings of the 
geopotent~al heights d~d not yteld any argument to 
reject the hnear stochastic explanation. 

T e m p e r a t u r e  The results of the analys~s of the sur- 
face atmospheric temperature record (65536 samples 
- days) are presented in Fig. 2. The qualltatwe anal- 
ysis of the data (Figs. 2a, 2b) brought no substantial 
difference between R"(r)  and L n ( z ) ,  n = 2-5, z = 
10-1500 days (Figs 2a, 2b). (Analyzed, but not pre- 
sented, were also short-time dependences for z = 1- 
250 days.) In the quantitative analysis, the differences 
obtained were not h~gher than 1.6 SDs. After filtenng 
out the one-year penod~clty, the quant~taUve analy- 
sis brought no slgmficant results, hke the analysis be- 
fore the filtratmn. In the quahtatlve analysis (Figs. 2c, 
2d: we present R" (T) computed from the data and its 

surrogate, this comparison is equivalent to those of 
R " ( z )  and L " ( z )  from the data [18,23,25]) we can 
see, that the redundancies of the filtered temperature 
series decrease untd the lag of about 80 days and then 
fluctuate about the same (low) level. Similarly, hke 
m the case of the geopotential heights data, the hy- 
pothesis of an liD process was rejected, however, all 
those dependences were found consistent with a hn- 
ear stochastic explanatmn. 

The above analysis of the temperature record 
brought no arguments to reject the null hypothesis of 
a hnear stochastic process. 

Pressure  The results of the analysis of the surface 
atmospheric pressure record (65536 samples - days) 
are presented in Fig. 3. The qualitative analysis of the 
data (Figs. 3a, 3b) shows some differences between 
L ~ (~) and R n (T), namely the half-year peaks are not 
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so clearly pronounced m L ~ (r)  as m R n (z), the one- 
year penodlclty, however, is apparent m both L n (z) 
and R ~ (z). Clearer results were obtained by the quan- 
titative analys~s: while no significant &fferences were 
detected on the linear level, ~ e., by the statistic based 
on L ~ (z), the nonhnear  statistic (based on R n ( r ) )  

brought significant &fferences of values between 5 
and 15 SDs The results of the analysis of the filtered 
pressure senes are even more illustrative. The results 
of the quantitative analysis did not change after the fil- 
tration, 1 e., evidence for nonhnearlty,  safe from spu- 
rious effects of differences on the linear level, was de- 
tected. In the quahtatlve comparison (Figs 3c, 3d), 
we can see that R" (z) decreased after the filtration, 
1 e ,  the hnear contribution to the dependence struc- 
tures in the data (reflected in nonlinear  R n (r) as well ) 
was removed by the filtrauon, while the character of 
the time-lag dependence of R ~ (z) is almost the same 

as in R n (z) computed from the original data, 1 e ,  prin- 
cipal one-year peaks and smaller half-year peaks were 
detected On the other hand, linear redundancy L n (z) 
of the filtered data does not reveal these structures 
The latter ~s also evidence that the filtration was well 
done. If the periodicity was due to a peak in the spec- 
trum, it would be detected by the linear redundancy as 
well (An example of a numerically generated nonhn-  
ear series, in which a perlo&c structure was detected 
only by the redundancy R n ( z )  and not by the linear 
redundancy L"(z) ,  can be found in Refs [23,25] ) 

Thus, we can conclude, that the results of both the 
quahtatlve and quantitative methods show that a lin- 
ear stochastic explanation of the pressure series is not 
adequate and the data contains an important nonlin- 
ear component 

The lndlscermblhty of the geopotentlal heights 
and the temperature series from hnear stochastic 



M Palug, D Novotnti /Phystcs Letters A 193 (1994) 67- 74 73 

processes, demonst ra ted  above, supposes that the de- 
tecUons of  low dlmens~onahty in similar studies were 
probably spurious On the other hand, our results 
cannot be unders tood as evidence that the nature of  
corresponding atmospheric  processes is indeed hn- 
ear  stochastic. Even i f  the dynamics  of  a part icular  
process, or a part icular  a tmospheric  subsystem, ~s 
nonhnear  and determinist ic,  as many physical models 
propose, its numerous interactions with other subsys- 
tems and d~sturbances of  various origins and scales, 
can influence a part icular  measurement  m such a way, 
that  the best explanauon of  part icular  data, based 
on ~ts analysis, is as a l inear stochastic process. Sim- 
ulation experiments,  involving networks of  coupled 
dynamical  systems, related to the models studied in 
the a tmosphenc  physics, could be of  interest here. 

In the case of  the pressure series, an impor tant  
nonhnear  component  was detected. In our estimates 
of  the correlation d~menslon, however, no satura- 
t ion was observed up to embedding d~mens~on 12 
Also, no specific features of  low-dimensional  chaos 
were observed m the analysis based on the marginal 
redundancy technique [23]. Thus we can conclude 
that  the dady recording of  the surface atmospheric  
pressure has nonlinear  dynamics,  but  it is not a case 
of  low-dimensional chaos. An explanation by a high- 
dimensional ,  determinist ic,  nonhnear,  and maybe 
chaotic process is possible, however, the hypothesis 
of  a nonlinear  stochastic process is, at least formally, 
eqmvalent,  due to the practical impossibi l i ty to dis- 
t inguish the two by the recent method of  nonlinear  
t ime series analysis. 
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