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Abstract:

The development of a distributed parameter model of microalgae growth is presented. Two
modelling frameworks for photo-bioreactor modelling, Eulerian and Lagrangian, are discussed
and the complications residing in the multi-scale nature of transport and reaction phenomena
are clarified. It is shown why is the mechanistic two time-scale model of photosynthetic factory
the adequate model for biotechnological purposes. For a special laboratory Couette-Taylor
bioreactor with cylindrical geometry, we reached a reliable simulation results using steady-state
Eulerian approach and the finite difference scheme. Moreover, we prove numerically that the
resulting photosynthetic production rate in this reactor goes, for growing inner cylinder angular
velocity, to a certain limit value, which depends on the average irradiance only.
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1 Introduction

Biotechnology with microalgae and photo-bioreactor (PBR) design is nowadays regaining
attention thanks to emerging projects of CO2 sequestration and algae biofuels. Never-
theless, there neither exist reliable methods nor software for modelling, simulation and
control of PBR [13]. Modelling in a predictive way the photosynthetic response in the
three-dimensional flow field seems unrealistic today, because the global response depends
on numerous interacting intracellular reactions, with various time-scales. In our previous
works [9, 12, 10], we examined an adequate multi-scale lumped parameter model, describ-
ing well the principal physiological mechanisms in microalgae: photosynthetic light-dark
reactions and photoinhibition. Now our main goal is the development and implementation
of a mathematical model of microalgae growth in a general gas-liquid-solid PBR as tool in
PBR design and optimization of its performance. Afterward, as a case study, we simulate
the growth of microalgae in Couette-Taylor bioreactor [8], in order to validate our results.

2 Development of a distributed parameter model of microalgae

growth in a PBR

Leaving apart the inherently non-reliable scale-up methodology for PBR design [13], two
main approaches for transport and bioreaction processes modelling are usually chosen
[14]: (i) Eulerian, and (ii) Lagrangian. While the Eulerian approach, resulting in partial
differential equations, is a usual way to describe transport and reaction phenomena in
bioreactors, the Lagrangian approach, leading either to stochastic ordinary differential
equations or to random walk simulation of transport by turbulent diffusion (hydrodynamic
dispersion), is an interesting alternative to PBR models.

Till nowadays, the most important information about the photosynthetic production of
some microalgae species resides in the measurement of the coupling between photosynthesis
and irradiance (being a controlled input), in form of the steady-state light response curve
(so-called P–I curve), which represents the microbial kinetics, see e.g. Monod or more
general Haldane type kinetics [14]. However, PBR operating under high irradiance, per-
mitting large non-homogeneities of irradiance and allowing the photoinhibition of the cell
culture and the photolimitation as well, belong to intensively studied topics of microalgal
biotechnology, see e.g. [13] and references within there. Hence, we need such a model of
microalgal growth, which can describe both the steady state and dynamic phenomena, i.e.
it has to fulfill the following experimental observations: (i) the steady state kinetics is of
Haldane type or Substrate inhibition kinetics [7]; (ii) the microalgal culture in suspension
has the so-called light integration property [15, 7], i.e. as the light/dark cycle frequency
is going to infinity, the value of the resulting production rate (e.g. oxygen evolution rate)
goes to a certain limit value, which depends on the average irradiance only [9]. These
features are best comprised by the mechanistic model of photosynthetic factory - PSF
model [5, 16, 9]. Using the re-parametrization firstly introduced in [12], three-state PSF
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model has the following form:

ẏ =
[
A+ u(t)B

]
y , µ = q2q3 yA(t) , (1)

A = q4

 0 q2(1 + q5)
q5

q2(1+q5)

0 −q2(1 + q5) 0
0 0 − q5

q2(1+q5)

 , B = q4

 −1 0 0
1 −q5 0
0 q5 0

 , (2)

where y = (yR, yA, yB)
⊤, yR + yA + yB = 1 , and qi, i = 1...5, are five positive model

parameters, cf. [12, 10]. Notice that the steady state PSF model behavior is defined by
the parameters q1, q2, q3 (q1 := Iopt, Iopt maximizes µ), and the PSF model dynamics is
determined by the fast rate q4 and the slow rate q4q5, for more details cf. [12, 10]. Notice
also that (1) is composed by one ODE system and one algebraic equation connecting the
hypothetical state yA of PSF model with the specific growth rate µ := ċx/cx, where cx
stands for microbial cell concentration. Considering that the value of q3 is of order 10−4

s−1, cf. [16], and yA(t) is periodic with period T , cf. [9] for more details, we have for the

specific growth rate: µ = q2q3
T

∫ T

0
yA(t)dt . PSF model successfully simulates the growth

in high-frequency fluctuating light conditions because the growth is described through
the ”fast” state yA, hence the sensitivity to high-frequency inputs, see e.g. flashing light
experiments [7] or light/dark cycles induced by hydrodynamic mixing, is reached.

The single scalar input u(t), representing the dimensionless irradiance in the culture,
is defined as u := I/q1, where I is the non-scaled irradiance (units: µE m−2 s−1). It is
assumed that u(t) is at least piecewise continuous. In other words, PSF model is the so-
called bilinear controlled system which inherent property is the so-called light integration
capacity [7], i.e. due to the Lipschitz dependence of trajectories on control, cf. [2] and
references within there, as the frequency of fluctuating light is going to infinity, the value
of resulting production rate (specific growth rate µ) goes to a certain limit value, which
depends on average irradiance only [9]. For the constant input signal (irradiance u ≥ 0)
the ODE system (1) is linear and its system matrix A+ uB has three distinct eigenvalues.
Two eigenvalues are negative (λF , λS), and the third is zero (its corresponding eigenvector
is the globally stable steady state solution of (1)). In the sequel, we will need the steady
state values of states yA and yB:

yAss =
u

q2(1 + q5)(u2 + u/q2 + 1)
, yBss =

u2

u2 + u/q2 + 1
. (3)

Eq. (1) represents, for some known input signal u(t), the Lagrangian model of PBR.
However, it should be stressed that u(t) is a random variable, depending on the fluid flow
in PBR.

In some special, although common, conditions, e.g. in the case of constant average
irradiance uav := 1

tf−t0

∫ tf
t0

u(t)dt, and when the period of light fluctuation is ”small”,

we can simplify the ODE system (1) by reducing the PSF model dynamics to the one
dimensional system using the singular perturbation approach with respect to the small
parameter q5 ≈ 10−4. The system (1) thanks to the properties of its right hand side clearly
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satisfies the sufficient condition for the convergence of the singular perturbation [6]. One
can therefore take the limit q5 → 0 in (1) to obtain:3

ẏA
F = −q4q2 yA

F + q4u(t) yR , ẏFB = 0 ,

and consequently (recall that yR = 1− [yA + yB] ):

ẏA
F = −q4(u(t) + q2)yA

F + q4u(t) [1− yBss (uav)] . (4)

3 Microalgae growth in Couette-Taylor bioreactor: Simulation re-

sults

We aim to simulate, eventually to optimize, microalgae cell growth in a Couette-Taylor
bioreactor (CTBR) with cylindrical geometry, cf. [8]. For the sake of clarity, we further
suppose all phenomena are axi-symmetrical, i.e. CTBR is homogeneously illuminated from
the outside, and the biomass concentration is sufficiently high for making irradiance level
decreasing from the CTBR outer wall to the CTBR core. Thus, the CTBR volume (our
computational domain) can be divided into layers with the same irradiance level. Moreover,
we also transform the 3D fluid dynamics problem into the one-dimensional. It means that
only the cell motion in direction of light gradient is taken into account. Let then suppose
this motion is caused by the turbulent diffusion (hydrodynamic dispersion) characterized
by the dispersion coefficient De(r), the tensor of second order in 3D case.

As stated before, the only input parameter determining the bio-reaction rate is the
spatially dependent irradiance u(r). Based on [4] we use the following relations for u(r)
and for the average (absorbed) irradiance:

u(r) =
R u1

r

coshκ r
R

sinhκ
, uav = u1

2R2

R2 − r02
[sinhκ− sinhκ r

R
]

κ coshκ
, (5)

where u1 is the incident irradiance on the outer CTBR wall, κ is the dimensionless at-
tenuation coefficient, R and r0 are the outer and inner cylinder radii, respectively. The
dimensionless attenuation coefficient κ > 0 is defined as follows: κ := ln(2)R

r1/2
, where r1/2, is

the length interval (unit: m) making diminish the intensity of light to one half (in rectan-
gular geometry). Furthermore, we introduce the dimensionless spatial coordinate in radial
direction x, and dimensionless dispersion coefficient p(x) as follows:

x :=
r

R
, x ∈

[r0
R
, 1
]
, De := p(x)D0 , p(x) := p0 + p1 [1− (|2x− 1|)n] , (6)

where D0 is a constant with some characteristic value (unit: m2s−1), and p0, p1, n are
dimensionless positive constants (to be determined empirically).

3Roughly speaking we can also apply the theorem of Lipschitz dependence of trajectories on control
[2, 9, 10] when we suppose that the period of light cycles is ”sufficiently small” for ”averaging” of yB but
not so small for averaging yA.
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According to [1], nearly all mass transfer is linearly dependent on the driving force.
Hence, for the growing power supply to the CTBR (by augmenting inner cylinder angular
velocity ω) we expect D0 proportionally grows, meanwhile the De shape, i.e. p(x), remains
constant. All the values needed to perform further calculations are summarized in Table 1
(u1 is chosen accordingly to fulfill the condition uav = 1):

u1 D0 κ r0 R p0 p1 q2 q4 n
R2−r02

2R2
κ coshκ

[sinhκ−sinhκ r
R
]

0.0001 24 ln(2) 0.04 0.06 2 1 0.3 0.5 2

Table 1: Parameters summary

Similarly as in our work [11], Lagrangian time dependent simulation (data not shown)
revealed that the state vector converges to a steady state in few minutes (this is the time
scale of the photoinhibition process). Moreover, only the long term cultivation either in
continuous or batch operation mode, where the quasi-steady state is reached, is of biotech-
nological importance. Consequently, based on the above reasons, our Eulerian modelling
approach is simpler than generally three dimensional non-stationary transport-reaction
PDE system:

∂y

∂t
−∇ · (De(r⃗)∇y) =

[
A+ u(r)B

]
y in Ω , ∇y = 0 on ∂Ω .

Furthermore, employing the fast reduction (4) and omitting the upper index ”F”,4 we get
only one ODE for modelling the steady state of one state yA in radial direction x (i.e. x is
the only one independent variable):

−1

x
[xp(x)y′A]

′
+ q(x) yA = q(x) yA∞ , y′A(r0/R) = 0 , y′A(1) = 0 , (7)

where q(x) := q4(u(x)+q2) R2

D0
. The function yA∞(x) is calculated as the steady state solution

of (4):

yA∞(x) =
u(x)

u(x) + q2
[1− yBss(uav)] =

u(x)

u(x) + q2

[
uav + q2

q2(uav
2 + uav/q2 + 1)

]
.

Let the characteristic number, the so-called Damköhler number of second type, be defined
as DaII := q4 R2

D0
, then q(x) := (u(x) + q2) DaII holds. In the sequel, the dependence of

the solution of (7) on DaII will be studied.
The boundary value problem with Neumann boundary conditions and inhomoge-

neous right-hand side (7) has a lot of nice properties. It is symmetric and positive and the
corresponding linear differential operator of the second order is self-adjoint. As q(x) > 0,
problem (7) has a unique solution. It was solved numerically using the finite difference

4The lower index ”ss” is omitted as well, nevertheless, when some confusion could arise, the term
yA(x,∞) is used.
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Figure 1: Approximate solution of (7):
yA(x,∞) vs. x.
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Figure 2: Performance index J vs. DaII , cf.
(8).

scheme for uniformly distributed nodes with the steplength h. It leads to the symmetric
and positive definite system of linear equations with the tridiagonal matrix for unknown
values

yAi = yA(xi) ≡ yA(xi,∞), i = 0, . . . , N.

The scheme approximates the exact solution of the boundary value problem (7) with ac-
curacy of order h2.

In our numerical experiments we have chosen the values from Table 1 together with
N = 1000. The following Fig. 1 shows the dependence of the solution on the Damköhler
number DaII . We can see that the solution approaches constant value yA(x,∞) = 0.625 for
DaII → 0. Let us see that the solution becomes flatter for decreasing DaII and for DaII =
0.1 the solution is nearly constant. Notice also that the value yA = 0.625 corresponds to
the value yAss(1) = 1

2q2+1
, cf. (3). This means that the ODE system (7), for the case

DaII → 0, performs the ”averaging” of u(x).
From practical point of view, in order to maximize the specific growth rate, cf. (1), it

is important to evaluate the integral average of the activated state yA(x,∞), depending on
the operational conditions, i.e. on the u1 and on ω. Let define

J =
1

V

∫
V

yA(x,∞)dV =
2

R2 − r02

∫ 1

r0/R

xyA(x,∞)dx , (8)

recalling that yA(x,∞) is a solution of (7). Then we can formulate the optimization
problem residing in maximizing of J . The next Fig. 2 shows the dependence of J , cf. (8),
on DaII , for the incident irradiance u1 taken from Table 1. The maximum value arises for
DaII → 0 and its value is again J = 0.625. The minimum value in (8) arises when the
solution of (7) is yA(x,∞) = yA∞(x), which leads to a value J ≈ 0.4539.
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4 Conclusions

The main benefit of this paper resides in an extension of a multi-scale lumped parameter
model of photosynthetic factory to the domain with heterogeneously distributed relevant
parameters; in our case these parameters are irradiance and hydrodynamic dispersion (tur-
bulent diffusion). For a special laboratory bioreactor based on Couette-Taylor flow, the
so-called Couette-Taylor bioreactor, we reached reliable simulation results using Eulerian
modelling framework and the finite difference scheme. Moreover, our results reflect well
the dependence of microalgae growth on Damköhler number DaII , i.e. on hydrodynamic
dispersion (depending on inner cylinder angular velocity ω), permitting the announcement
of our statement about light integration property of PSF model for CTBR as well: The
resulting photosynthetic production rate in CTBR, for growing ω, goes to a certain limit
value, which depends on the average irradiance only.
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