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lead to the same simulation results, nevertheless they provide different advantages.
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1This work was supported by the grant MŠMT MSM 600 766 58 08 of the Ministry of Education, Youth
and Sports of the Czech Republic, by the Grant Agency of the Czech Republic through the research grant
No. 102/05/0011, and the institutional research plan No. AV0Z10300504.
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1 Introduction

The photosynthetic microorganism growth description is usually based on the microbial ki-
netics (so-called P–I curve), i.e. on the static lumped parameter models (LPM) describing
the photosynthetic response in small cultivation systems with a homogeneous light distribu-
tion [5, 23]. However, there is an important phenomenon, which occurs under fluctuating
light condition, the so-called flashing light enhancement, demanding some other model
than it residing in the artificial connection between the steady state kinetic model and the
empiric one describing the photosynthetic productivity under fluctuating light condition,
see e.g. [24]. Nevertheless, even having an adequate dynamical LPM of microorganism
growth, e.g. phenomenological model of so-called photosynthetic factory [6, 7, 10, 27],
another serious difficulty resides in the description of the microalgal growth in a photo-
bioreactor, i.e. in a distributed parameter system with strongly non-homogeneous light
distribution, e.g. accordingly to the exponential attenuation, see Section 4.

In our previous papers [16, 21, 18] we studied the PSF model behavior and the tech-
niques for parameter estimation as well. In this paper we aim to develop the distributed
parameter model (DPM) of a photosynthetic microorganism growth in a photo-bioreactor
(PBR), mainly due to the necessity to evaluate the PBR performance and to optimize
PBR operating conditions. Leaving apart the inherently non-reliable scale-up methodol-
ogy for PBR design [8, 13], two main approaches for transport and bioreaction processes
modelling are usually chosen [23]: (i) Eulerian, and (ii) Lagrangian. While the Eulerian
approach, leading to the partial differential equations (PDE), is an usual way to describe
transport and reaction systems, the Lagrangian approach, resulting either in a stochas-
tic ordinary differential equations, or in the further described technique based on random
walk simulation of transport by turbulent diffusion, is an interesting alternative to the
PDE models.

The main purpose of this paper is to clarify how the PSF model can be advantageously
used in DPM of microalgae growth in a general PBR. Hence, after having presented the
main results concerning PSF model as LPM in Section 2, in Section 3 we present the
development of two above mentioned modelling approaches. Section 4 is devoted to simu-
late PBR performance. As a case study we took the PBR with rectangular geometry, see
e.g. the flat-panel PBR and FMT 150 in Fig. 1 (for more details cf. [12] and references
within there), receiving the problem depending only on one space coordinate in direction of
light gradient. This simplification permits to formulate and solve the simple optimization
problem, having as result the incident irradiance maximizing the PBR productivity (Sub-
section 4.3). The simulation results and advantages of each approach, as well as outlooks
for further research, are discussed in the final section.
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Figure 1: Two examples of rectangular PBR geometry: Photobioreactor FMT 150, made
by Photon Systems Instruments, Czech Republic, www.psi.cz (left), and Flat panel photo-
bioreactor, Institute of Physical Biology, University of South Bohemia, Nové Hrady, Czech
Republic (right).

2 Lumped parameter model of photosynthesis and photoinhibition

in microalgae

The dynamical model of photosynthetic factory – PSF model, see Fig. 2 below, has
been thoroughly studied in the biotechnological literature [6, 7, 10, 27]. The state vector
y of the PSF model is three dimensional, namely, y = (yR, yA, yB)

⊤, where yR represents
the probability that PSF is in the resting state R, yA the probability that PSF is in the
activated state A, and yB the probability that PSF is in the inhibited state B. The PSF
can only be in one of these states, so:

yR + yA + yB = 1 . (1)

The PSF model has to be completed by an equation connecting the hypothetical states
of PSF model with some quantity related to the cell growth. This quantity is the specific
growth rate µ. 3 According to [6, 27], the rate of photosynthetic production is proportional
to the number of transitions from the activated to the resting state, i.e. γ yA(t). Hence,
for the average specific growth rate we have the relation:

µ =
κγ

tf − t0

∫ tf

t0

yA(t)dt , (2)

where κ is a new dimensionless constant – the fifth PSF model parameter. Equation (2)
reveals the reason why PSF model can successfully simulate the microalgae growth in high-
frequency fluctuating light conditions: the growth is described through the ”fast” state yA,
hence the sensitivity to high-frequency input fluctuations is reached, see e.g. flashing light
experiments [15].

3µ := ċ/c, where c is the microbial cell density. The notation used is the most usual in biotechnological
literature, cf. [5].
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Figure 2: States and transition rates of
the photosynthetic factory – Eilers and
Peeters’s PSF model.
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Figure 3: Steady-state production curve of
Haldane type or Substrate inhibition kinetics.
S stands here for irradiance.

2.1 Re-parametrization of the PSF model

Using the re-parametrization firstly introduced in [21], PSF model has the following form
(recall that y = (yR, yA, yB)

⊤):
ẏ =

[
A+ u(t)B

]
y, (3)

A = q4

 0 q2(1 + q5)
q5

q2(1+q5)

0 −q2(1 + q5) 0
0 0 − q5

q2(1+q5)

 , B = q4

 −1 0 0
1 −q5 0
0 q5 0

 , (4)

where the new parameters qi, i = 1, .., 5, are relate to the old ones as follows:

q1 :=

√
γδ

αβ
, q2 :=

√
αβγ

δ(α + β)2
, q3 := κγ

√
αδ

βγ
, q4 := αq1 , q5 := β/α . (5)

The single scalar input u(t), representing the dimensionless irradiance in the culture, is
defined as u := I/q1, where I is the non-scaled irradiance (units: µE m−2 s−1). It is
assumed that u(t) is at least piecewise continuous. In other words, PSF model is the so-
called bilinear controlled system which inherent property is the so-called light integration
capacity [15], i.e. due to the Lipschitz dependence of trajectories on control, cf. [4] and
references within there, as the frequency of fluctuating light is going to infinity, the value
of resulting production rate (specific growth rate µ) goes to a certain limit value, which
depend on average irradiance only [16].

Let us see that q1 = Iopt (Iopt maximizes µ, see Fig. 3 and Remark 1), q2, q5 are
dimensionless, q3, q4 are in s−1. The reasoning for such a choices arises from the utility to
separate the steady state PSF model behavior (parameters q1, q2, q3) from the PSF model
dynamics (the fast rate q4 := αIopt and the slow rate q4q5 := βIopt), for more details cf.
[21, 18]. The relation for the specific growth rate is now:

µ = q2q3(1 + q5)
1

tf − t0

∫ tf

t0

yA(t)dt . (6)
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For the constant input signal (irradiance u ≥ 0) the ODE system (3) is linear and
its system matrix A + uB has three distinct eigenvalues. Two eigenvalues are negative
(λF , λS), and the third is zero (its corresponding eigenvector is the globally stable steady
state solution of (3)). In the sequel, we will need the steady state values of states yA and
yB:

yAss =
u

q2(1 + q5)(u2 + u/q2 + 1)
, yBss =

u2

u2 + u/q2 + 1
. (7)

Remark 1: Notice that the parameter q5 quantifies the separation between the fast
and slow dynamic; q5 ≈ 10−4, based on [27].4 Moreover, the PSF model steady state
behavior corresponds to Haldane type kinetics (or so-called Substrate inhibition kinetics),
see Fig. 3: µ = µ∗ I

KS+I+I2/KI
, where I is irradiance (i.e. limiting substrate S for photo-

synthetic microorganism) and µ∗, KS, KI are model constants. The connection between
PSF model and Haldane kinetics could be described as follows: µ∗ = q2q3, KS = q1q2, and
KI = q1

q2
. For the constant value of irradiance which maximizes the steady-state growth

rate, i.e. Iopt := q1 =
√
KSKI , holds µ(Iopt) := µmax = µ∗

2
√

KS/KI+1
= q2q3

2q2+1
. See also that

for KI → ∞, the production curve changes to Monod kinetics.

2.2 Order reduction of the ODE system (3)

In some special although common conditions, e.g. in the case of constant average irradiance
uav :=

1
tf−t0

∫ tf
t0

u(t)dt, and when the period of light fluctuation is ”small”, we can simplify

the ODE system (3) by reducing the PSF model dynamics to the one dimensional one
using the singular perturbation approach with respect to the small parameter q5 ≈ 10−4

[25]. The system (3) thanks to the properties of its right hand side clearly satisfies the
sufficient condition for the convergence of the singular perturbation. One can therefore
take the limit q5 → 0 in (3) to obtain

ẏA
F = −q4q2 yA

F + q4u(t) yR , ẏFB = 0 . (8)

Upper index ”F” aims to avoid confusion with notation for the non-reduced model (3).
Taking into account the normalization condition (1), and preferring the states yA, yB (due
to their measurability5), we further analyze only two above differential equations (8); for
more detail see our paper [18]. The second relation in (8), i.e. ẏFB = 0, means that the
”slow” state variables reach its steady state value, i.e., yB = yBss(uav). Recalling relation
(1), i.e., yR = 1− yA − yB, only one ODE for the fast dynamics of yA

F state is received:

ẏA
F = −q4(u(t) + q2)yA

F + q4u(t) [1− yBss(uav)] . (9)

4For the microalga Porphyridium sp., on basis of Wu and Merchuk’s parameters α, β, γ, δ, κ, we
have calculated: q1 = 250.106 µE m−2, q2 = 0.301591, q3 = 0.176498e − 3 s−1, q4 = 0.483955 s−1,
q5 = 0.298966e− 3.

5The connection of yA with a measurable quantity describes (6), and yB can be estimate via chlorophyll
fluorescence measurement, cf. [12, 27].
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Roughly speaking we can also apply the theorem of Lipschitz dependence of trajectories on
control [4, 16, 18] when we suppose that the period of light cycles is ”sufficiently small” for
”averaging” of yB but not so small for averaging yA. Further we denote the steady state
solution of the above equation (9) as: yA∞ . In subsection 4.3, we shall advantageously use
this term.

3 Distributed parameter model of photosynthesis and photoinhibi-

tion in microalgae

Two approaches for modelling of microbial growth are usually chosen: (i) Eulerian, and
(ii) Lagrangian. The first ”more classical” approach, based on the balance equation for an
infinitesimal volume, leads to the partial differential equation (reaction-convection-diffusion
system). The quantities to describe are concentrations of microbial cells and some other
species.

The Lagrangian approach, consisting in description of each individual microbial cell,
offers two possibilities: first, to compute or measure (cf. e.g. [11]) the cell trajectories in
PBR and evaluate the so-called irradiance history u(t) as the stochastic input variable for
the ODE (3), resulting in a stochastic ordinary differential equation; the second possibility
is based on random walk simulation of transport by turbulent diffusion, and is further
described in subsection 3.2.

3.1 Distributed parameter model of photosynthesis and photoinhibition in mi-
croalgae: Eulerian approach

Accordingly to [1], the transport and reaction phenomena of some species or components
describes the following equation (where ci = ci(r⃗, t) is either a species concentration or cell
density):

∂ci
∂t

+∇ · (v⃗ci)−∇ · (De∇ci) = R , i = 1, ...,m, (10)

where R is the reaction (source) term, v⃗ is the velocity flow field, and r⃗ stands for a vector of
space coordinates. De(r⃗) is the dispersion coefficient (generally the tensor of second order),
which corresponds to the diffusion coefficient in microstructure description and becomes
mere empirical parameter suitably describing mixing in the system. De is influenced by
the molecular diffusion and velocity profile (this explains why De is spatially dependent).
When mixing is mainly caused by the turbulent micro-eddies, the phenomenon is called
the turbulent diffusion and a turbulent diffusion coefficient is introduced, e.g. in [1].

The initial condition and boundary condition (impermeability of PBR walls, i.e. domain
boundary ∂V ) to (10) are following:

ci0 = ci(r⃗, t0) , ∇ci(∂V, t) = 0, i = 1, ...,m. (11)

The solution of transport equation (10-11) usually causes many complications residing
in fact that the relevant transport and reaction phenomena are multi-scale. If we realize
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that the characteristic time of microalgae growth (e.g. doubling time tg := ln(2)
µ

) is in

order of hours, and the the characteristic time of turbulent diffusion (td := L2

De
) is in

order of seconds (similarly that of convective transport tc := L
v
), then actually only two

alternatives exist: (i) to neglect the details concerning mixing phenomena, e.g. by accepting
the hypothesis that the entire cell culture dispersed in medium was homogenized at each
calculation step (cf. [14], where the time step ∆t was set to one hour), and (ii) to observe
the changes due to the hydrodynamic mixing and neglect those of biochemical reaction.
Both alternatives completely lose the coupling between transport and reaction phenomena,
which qualify the corresponding modelling framework as unsatisfactory.

Our proposition to resolve about mentioned difficulties is based on the extension of PSF
model ”into space”. The stochastic formulation of PSF model, as described in Section 2,
is not unique: instead of one photosynthetic factory (with three states), we can imagine
as many factories as cells in the cultivation system (i.e. PBR). Each microalgae cell with
certain probability stays in its current state or is transformed into one of the remaining
states, and at he same time it travels inside the PBR. Assuming we know the irradiance
distribution in PBR, i.e. u = u(r⃗, t), then we evaluate the specific growth rate not only as
the value proportional to the temporal average of the activate state, cf. (6), but also the
spatial averaging takes place:

µ = q2q3(1 + q5)
1

tf − t0

∫ tf

t0

(
1

V

∫
V

yA(r⃗, t)dV

)
dt . (12)

The only thing which rests to explain is how to introduce into the transport equation
(10) the reaction term coherently with PSF model. Let us evaluate the PSF model states as
relative concentrations (molar fractions) of microbial cells in respective state (R, A, or B).
Let define the variables ci as the concentrations of cells in respective states of PSF model,
and c as an overall cell concentration. The concentrations are generally varying in time and
space ci = ci(x, t), i ∈ {R,A,B}, nevertheless it holds: c = cR + cA + cB. Consequently,
without loss of precision, we re-define the state vector of PSF model as follows:

y = (yR, yA, yB)
⊤ :=

1

c
(cR, cA, cB)

⊤. (13)

Furthermore, after dividing (10) by c, we can substitute the right hand side of PSF
model equation (3) as the reaction term in the right hand side of the following (14):

∂y

∂t
+∇ · (v⃗y)−∇ · (De∇y) =

[
A+ u(r⃗, t)B

]
y . (14)

Equation (14) with the corresponding initial and boundary condition (11) represents the
PDE based model for describing multi-scale transport and reaction phenomena in a general
PBR. To illustrate the reliability of our approach, we will analyze in Section 4, as a case
study, the microalgae growth in a simple rectangular PBR.
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3.2 Distributed parameter model of photosynthesis and photoinhibition in mi-
croalgae: Lagrangian approach

In our Lagrangian based modelling approach, both the biochemical reaction and transport
are treated in a stochastic manner. This brings several advantages over the classical PDE
based approach, high potential of parallel implementation, as described further, being one
of them. Stochastic model of the transport is based on a discrete random walk model
which reflects the spatially dependent turbulent diffusion coefficient. It is this coefficient
that binds the stochastic behavior to the real hydrodynamic conditions in the simulated
domain. Spatial dependence of the diffusion coefficient may be obtained by classical means,
i.e. CFD (Computational Fluid Dynamics) numerical simulation for the given geometry.
With respect to the implementation - mainly computational issues, the apparent advan-
tage of this approach is mutual independence of the individual cells under cultivation,
where every cell is represented by an independent photosynthetic factory, whose only in-
put parameter is spatially dependent irradiance u(r⃗) (the temporal variation of irradiance
is neglected, because it occurs in several order slower time-scale). The succession of states
of the individual cells (R, A, and B) forms a Markov chain, with A + uB being the sys-
tem matrix of (3), the infinitesimal generator, see e.g. [3] and references within there. The
details about algorithm design and implementation are discussed in the following Section 4.

4 Simulation results: Random walk vs. Finite difference method

4.1 Problem formulation

We aim to simulate, eventually to optimize microalgae cell growth in a PBR. For the sake
of clarity, we further suppose the rectangular, axi-symmetrical PBR geometry, illuminated
from one side, i.e. the irradiance level is decreasing from the PBR wall to PBR core, cf.
Fig. 1. Thus, the PBR volume (our computational domain) can be divided into layers with
the same irradiance level. Moreover, if the flow field in the PBR is stationary and does not
depend on the coordinates perpendicular to the direction of light gradient, then we can
neglect the cell motion over the layers with the same irradiance level, transforming the 3D
problem into the one-dimensional. It means that only the cell motion in direction of light
gradient is of most interest. This motion is caused by the turbulent diffusion (hydrodynamic
dispersion) characterized by an only parameter De(r), i.e. by the dispersion coefficient (a
tensor of second order in 3D case).

As stated before, the only input parameter determining the bio-reaction rate is the
spatially dependent irradiance u(r). Here we announce the exponential, so-called Lambert-
Beer law, and the relation for average (absorbed) irradiance, in the form:

u(r) = u0 e−Λr , uav = u0
1− e−ΛL

ΛL
, (15)

where u0 is the incident irradiance, Λ is the attenuation coefficient (unit: m−1) and L is
the PBR thickness in direction of light gradient. It is convenient to define a dimensionless
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”thickness constant” k > 0 as follows: L := k r1/2, where r1/2 :=
ln(2)
Λ

, is the length interval
(unit: m) making diminish the intensity of light to one half. Furthermore, we introduce
the dimensionless spatial coordinate x as follows:

x :=
r

L
, x ∈ [0, 1] . (16)

After this transform, we introduce also the dimensionless dispersion coefficient p(x)
by De := p(x) D0, where D0 is a constant with some characteristic value, unit: m2s−1.
According to [1], nearly all physical exchange is linearly dependent on the driving force.
Hence, for the growing power supply to the PBR pumping device we expect D0 propor-
tionally grows, meanwhile the De shape (i.e. p(x)) remains constant. For p(x) we propose
the following relation:

p(x) := p0 + p1 [1− (|2x− 1|)n] , (17)

where p0, p1, n are dimensionless positive constants (to be determined empirically).
All the values needed to perform further calculations are summarized in Table 1:

u0 D0 k L p0 p1 q2 q4 n yR(t0) yA(t0) yB(t0)
8 ln(2)
1−2−8 0.0001 8 0.02 2 1 0.3 0.5 2 1 0 0

Table 1: Parameters summary

The values representing initial guess for operating conditions (to be optimized) are in
the first two columns, the middle seven data are empirical constants, and the last three
values are initial conditions for simulation of time course of PSF states. It is important
at this stage to point out that the empirical data have an illustrative and testing purpose
only.

4.2 Lagrangian simulation

The Lagrangian simulation algorithm was designed with parallel platform implementation
in mind and was performed both on the classical PC and a parallel platform - namely
CUDA (Compute Unified Device Architecture) architecture. Random walk model was
implemented on top of the Mersenne Twister parallel random number generator in combi-
nation with Box-Muller transformation. With this parallel reimplementation on CUDA we
were able to get an additional 90-fold gain in speed when compared to the single threaded
implementation running on PC.

The simulation results for the Lagrangian simulation are summarized in Tables 2 and 3.
From the last columns it is evident that the steady state was reached. All the simulation
parameters besides D0 were the same as shown in Table 1. The particular value D0 = 0.5
was found empirically as a minimalD0 at which the culture growth is not transport-limited,
i.e. the mixing is sufficient.
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Time [s] 0 1 10 50 100 500 1000 2000 3000 4000 5000

yRav 1.00 0.61 0.21 0.20 0.21 0.20 0.20 0.18 0.17 0.17 0.17
yAav 0.00 0.39 0.79 0.79 0.78 0.74 0.70 0.66 0.65 0.62 0.62
yBav 0.00 0.00 0.00 1.00 0.01 0.06 0.10 0.16 0.18 0.21 0.21

Table 2: Random walk simulation results, D0 = 0.5, maximum growth rate reached

Time [s] 0 50 100 500 1000 2000 3000 4000 5000 10000

yRav 1.00 0.43 0.42 0.40 0.38 0.36 0.34 0.33 0.33 0.33
yAav 0.00 0.57 0.56 0.54 0.51 0.47 0.46 0.45 0.44 0.44
yBav 0.00 0.00 0.02 0.06 0.11 0.17 0.20 0.22 0.23 0.23

Table 3: Random walk simulation results, D0 = 0.005

4.3 Eulerian simulation and optimization of incident irradiance u0

Based on the previous time dependent Lagrangian simulation results, we argue that all
PSF states are approaching some value yiss(x) = limt→∞ yi(x, t), i ∈ {R,A,B}, depending
on the external inputs u0 and D0 only. Moreover, the inhibited state yBss(x) is nearly
constant across the PBR (data not shown) and holds: yB = yBss(uav).

Consequently, based on the above reasons, we modify the transport-reaction system
(14) as follows: first, let put ∂c

∂t
= 0, then employ (9). We obtain (omitting the upper index

”F”):
− [p(x)y′A]

′
+ q(x) yA = q(x) yA∞ , y′A(0) = 0 , y′A(1) = 0 , (18)

where

q(x) :=
q4 (u(x) + q2) L2

D0

.

The function yA∞(x) is calculated as the steady state solution of (9):

yA∞(x) =
u(x)

u(x) + q2
[1− yBss(uav)] =

u(x)

u(x) + q2

[
uav + q2

q2(uav
2 + uav/q2 + 1)

]
. (19)

Let the characteristic number, the so-called Damköhler number of second type be de-
fined as

DaII :=
q4 L2

D0

, (20)

then q(x) := (u(x) + q2) DaII holds. Further, the dependence of the solution of (18) on
DaII will be studied.

The boundary value problem with Neumann initial conditions and inhomogeneous right-
hand side (18) has a lot of nice properties. It is symmetric and positive and the corre-
sponding linear differential operator of the second order

L(yA) = − [p(x)y′A]
′
+ q(x) yA,

9



is self-adjoint. As q(x) > 0, problem (18) has a unique solution (see e.g. [22], [26]). It was
solved numerically using a following finite difference scheme with uniformly distributed
nodes which leads to a symmetric and positive definite system of linear equations for
unknown values

yAi = yA(xi) ≡ yA(xi,∞), i = 0, . . . , N,

with a tridiagonal matrix:
a0 b0 0 . . . 0

b0 a1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . bN−1

0 . . . 0 bN−1 aN




yA0
...
...
...

yAN

 =


g0
...
...
...
gN


where

a0 = p(x0 + h/2) + h2q(x0)/2,

ai = p(xi − h/2) + p(xi + h/2) + h2q(xi), i = 1, . . . , N − 1,

an = p(xN − h/2) + h2q(xN)/2,

bi = −p(xi + h/2), i = 0, . . . , N − 1,

g0 = h2f(x0)/2,

gi = h2f(xi), i = 1, . . . , N − 1,

gn = h2f(xN)/2.

Here f(x) = q(x) yA∞(x), xi = ih, and h = 1
N

where N denotes the number of nodes.
Such a scheme approximates the exact solution of the boundary value problem (18) with
accuracy of order h2.

In our numerical experiments we have chosen the values from Table 1 together with
N = 1000. The following Fig. 4 shows dependence of the solution on the Damköhler
number DaII . We can see that the solution approaches a constant value yA(x,∞) = 0.625
for DaII → 0. Let us see that the solution becomes flatter for decreasing DaII and for
DaII = 0.2 the solution is nearly constant.

Now we can formulate the optimization problem residing in maximizing the integral
average of the activated state yA(x,∞), i.e., we aim to maximize the integral

J =

∫ 1

0

yA(x,∞)dx. (21)

recalling that yA(x,∞) is a solution of (18).
The next Fig. 5 shows dependence of J on DaII , for the incident irradiance u0 taken

from Table 1. The maximum value arises for DaII → 0 and its value is J = 0.625.
Minimum value in (21) arises when the solution of (18) is yA(x,∞) = yA∞(x), which leads
to a value J ≈ 0.4254.
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Remark 2: Notice that the value J = 0.625 corresponds to the value yAss(1) =
1

2q2+1
,

cf. (7). This means that the ODE system (18), for the case DaII → 0, performs the
”averaging” of u(x).

We have made several simulations for various u0 and the values of J were smaller than
that for u0 taken from Table 1. This is a numerical confirmation of the hypothesis often
mentioned in biotechnological literature.

5 Asymptotic properties of the reaction-diffusion system (18)

In the process engineering literature, there exists a concept of well mixed unit. This
construct is further used e.g. in the multicompartmental or multizonal models [2, 19].
The crucial question is: When a compartment with finite volume is well mixed? For a
reaction-diffusion system, it has to depend on the so-called Damköhler number.

In our previous work, in sake of the benchmark problem, we were looking for an ana-
lytical solution of the equation (18). Realizing that it was impossible, we did not search
the solution in the usual form of y = y(x) (here, for the simplicity, we omit the lower
index A), but we wanted to find the mean value of y in the interval x ∈ [0.1], i.e. to

compute the expression
∫ 1

0
y(x) dx. Based on [26], the boundary value problem (18) was

transformed into the related initial value problem. It consisted in finding solutions of two
homogeneous equations, two differential equations with the right-hand side and comput-
ing a solution of a system of two algebraic equations. By this procedure, we could have
obtained a function value and its derivative in an arbitrary point. The original differential
equation with boundary conditions was thus transformed into a differential equation with
an initial condition. As we have needed only a solution in several points, we could apply
the above procedure repeatedly. Finally, the value

∫ 1

0
y(x) dx would be obtained by a

suitable numerical method.
Now, we are developing an asymptotic method. Let first define d

dx
y := z, then the

resulting first order ODE system is

d

dx
y = z ,

d

dx
[p(x)z] = q(x) (y − yss) , z(0) = 0 , z(1) = 0 . (22)

Consequently, if we define k0 as follows: k := kA(u(x)) k0, then the Damköhler number

of second type could be defined as DaII := k0L2

D0
, and the dependence of the solution of

(22) on DaII := ε → 0 could be studied.
The following ODE

d

dx
[p(x)z] = εkA(u(x)) (y − yss) , z(0) = 0 , z(1) = 0 ,

thanks to the properties of its right hand side clearly satisfies the sufficient condition for
applying the averaging method [9]. One can therefore approximate (22) as follows (always
when ε → 0):

d

dx
y = z ,

d

dx
[p(x)z] = ε

∫ 1

0

[kA(u(x)) (y − yss)] dx , z(0) = 0 , z(1) = 0 . (23)
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6 Conclusions

The purpose of this paper was to present an extension of a lumped parameter model of
photosynthetic microorganism growth to the domain with heterogeneously distributed rel-
evant parameters, e.g. irradiance and turbulent diffusion (hydrodynamic dispersion). The
principal problem was to find how to reconcile the multi-scale problem in such a manner,
that the corresponding modelling framework was sensitive to all relevant phenomena. The
key decision was to adopt the model of photosynthetic factory (PSF model), which operates
in three time-scales, being sensitive to the time-scale of turbulent diffusion.

Both approaches and corresponding numerical techniques, i.e. random walk and finite
difference method, show the consistent results, proving the viability of our efforts. The
advantage of the stationary PDE based model resides in less computationally expensive
solution of optimization of PBR operating conditions.

On the other hand, Lagrangian approach and random walk technique permits the par-
allel stochastic simulation of microalgal growth in a real time.
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